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Abstract. The classical NP-complete problem of Boolean Satisfiability (SAT)
has seen much interest in not just the theoretical computer science community,
but also in areas where practical solutions to this problem enable significant
practical applications. Since the first development of the basic search based
algorithm proposed by Davis, Putnam, Logemann and Loveland (DPLL) about
forty years ago, this area has seen active research effort with many interesting
contributions that have culminated in state-of-the-art SAT solvers today being
able to handle problem instances with thousands, and in same cases even
millions, of variables. In this paper we examine some of the main ideas along
this passage that have led to our current capabilities. Given the depth of the
literature in this field, it is impossible to do this in any comprehensive way;
rather we focus on techniques with consistent demonstrated efficiency in
available solvers. For the most part, we focus on techniques within the basic
DPLL search framework, but also briefly describe other approaches and look at
some possible future research directions.

1. Introduction

Given a propositional formula, determining whether there exists a variable assignment
such that the formula evaluates to true is called the Boolean Satisfiability Problem,
commonly abbreviated as SAT. SAT has seen much theoretical interest as the
canonical NP-complete problem [1]. Given its NP-Completeness, it is very unlikely
that there exists any polynomial algorithm for SAT. However, NP-Completeness does
not exclude the possibility of finding algorithms that are efficient enough for solving
many interesting SAT instances. These instances arise from many diverse areas -
many practical problems in AI planning [2], circuit testing [3], software verification
[4] can be formulated as SAT instances. This has motivated the research in practically
efficient SAT solvers.

This research has resulted in the development of several SAT algorithms that have
seen practical success. These algorithms are based on various principles such as
resolution [5], search [6], local search and random walk [7], Binary Decision
Diagrams [8], Stälmarck’s algorithm [9], and others. Gu et al. [10] provide an
excellent review of many of the algorithms developed thus far. Some of these
algorithms are complete, while others are stochastic methods. For a given SAT
instance, complete SAT solvers can either find a solution (i.e. a satisfying variable
assignment) or prove that no solution exists. Stochastic methods, on the other hand,
cannot prove the instance to be unsatisfiable even though they may be able to find a



solution for certain kinds of satisfiable instances quickly. Stochastic methods have
applications in domains such as AI planning [2] and FPGA routing [11], where
instances are likely to be satisfiable and proving unsatisfiability is not required.
However, for many other domains (especially verification problems e.g. [4, 12]), the
primary task is to prove unsatisfiability of the instances. For these, complete SAT
solvers are a requirement.

In recent years search-based algorithms based on the well-known Davis-
Logemann-Loveland algorithm [6] (sometimes called the DPLL algorithm for
historical reasons) are emerging as some of the most efficient methods for complete
SAT solvers. Researchers have been working on DPLL-based SAT solvers for about
forty years. In the last ten years we have seen significant growth and success in SAT
solver research based on the DPLL framework. Earlier SAT solvers based on DPLL
include Tableau (NTAB) [13], POSIT [14], 2cl [15] and CSAT [16] among others.
They are still appearing occasionally in the literature for performance comparison
reasons. In the mid 1990’s, Silva and Sakallah [17], and Bayardo and Schrag [18]
proposed to augment the original DPLL algorithm with non-chronological
backtracking and conflict-driven learning. These techniques greatly improved the
efficiency of the DPLL algorithm for structured (in contrast to randomly generated)
SAT instances. Many practical applications emerged (e.g. [4, 11, 12]), which pushed
these solvers to their limits and provided strong motivation for finding even more
efficient algorithms. This led to a new generation of solvers such as SATO [19],
Chaff [20], and BerkMin [21] which pay a lot of attention to optimizing various
aspects of the DPLL algorithm. The results are some very efficient SAT solvers that
can often solve SAT instances generated from industrial applications with tens of
thousands or even millions of variables. On another front, solvers such as satz [22]
and cnfs [23] keep pushing the ability to tackle hard random 3-SAT instances. These
solvers, though very efficient on random instances, are typically not competitive on
structured instances generated from real applications.

A DPLL-based SAT solver is a relatively small piece of software. Many of the
solvers mentioned above have only a few thousand lines of code (these solvers are
mostly written in C or C++, for efficiency reasons). However, the algorithms involved
are quite complex and a lot of attention is focused on various aspects of the solver
such as coding, data structures, choosing algorithms and heuristics, and parameter
tuning. Even though the overall framework is well understood and people have been
working on it for years, it may appear that we have reached a plateau in terms of what
can be achieved in practice – however we feel that many open questions still exist and
present many research opportunities.

In this paper we chart the journey from the original basic DPLL framework
through the introduction of efficient techniques within this framework culminating at
current state-of-the-art solvers. Given the depth of literature in this field, it is
impossible to do this in any comprehensive way; rather, we focus on techniques with
consistent demonstrated efficiency in available solvers. While for the most part, we
focus on techniques within the basic DPLL search framework, we will also briefly
describe other approaches and look at some possible future research directions.



2. The Basic DPLL Framework

Even though there were many developments pre-dating them, the original algorithm
for solving SAT is often attributed to Davis and Putnam for proposing a resolution-
based algorithm for Boolean SAT in 1960 [5]. The original algorithm proposed
suffers from the problem of memory explosion. Therefore, Davis, Logemann and
Loveland [6] proposed a modified version that used search instead of resolution to
limit the memory required for the solver. This algorithm is often referred to as the
DPLL algorithm. It can be argued that intrinsically these two algorithms are tightly
related because search (i.e. branching on variables) can be regarded as a special type
of resolution. However, in the future discussion we will regard search-based
algorithms as their own class and distinguish them from explicit resolution
algorithms.

For the efficiency of the solver, the propositional formula instance is usually
presented in a Product of Sum form, usually called a Conjunctive Normal Form
(CNF). It is not a limitation to require the instance to be presented in CNF. There
exist polynomial algorithms (e.g. [24]) to transform any propositional formula into a
CNF formula that has the same satisfiability as the original one. In the discussions
that follow, we will assume that the problem is presented in CNF. A SAT instance in
CNF is a logical and of one or more clauses, where each clause is a logical or of one
or more literals. A literal is either the positive or the negative occurrence of a
variable.

A propositional formula in CNF has some nice properties that can help prune the
search space and speed up the search process. To satisfy a CNF formula, each clause
must be satisfied individually. If there exists a clause in the formula that has all its
literals assigned value 0, then the current variable assignment or any variable
assignment that contains this will not be able to satisfy the formula. A clause that has
all its literals assigned to value 0 is called a conflicting clause.

DPLL(formula, assignment) {
necessary = deduction(formula, assignment);
new_asgnmnt = union(necessary, assignment);
if (is_satisfied(formula, new_asgnmnt))

return SATISFIABLE;
else if (is_conflicting(formula, new_asgnmnt))

return CONFLICT;
var = choose_free_variable(formula, new_asgnmnt);
asgn1 = union(new_asgnmnt, assign(var, 1));
if (DPLL(formula, asgn1)==SATISFIABLE)

return SATISFIABLE;
else {

asgn2 = union (new_asgnmnt, assign(var, 0));
return DPLL(formula, asgn2);

}
}

Fig. 1. The recursive description of DPLL algorithm



Traditionally the DPLL algorithm is written in a recursive manner as shown in Fig.
1. Function DPLL() is called with a formula and a set of variable assignments.
Function deduction() will return with a set of the necessary variable assignments
that can be deduced from the existing variable assignments. The recursion will end if
the formula is either satisfied (i.e. evaluates to 1 or true) or unsatisfied (i.e. evaluates
to 0 or false) under the current variable assignment. Otherwise, the algorithm will
choose an unassigned variable from the formula and branch on it for both phases. The
solution process begins with calling the function DPLL() with an empty set of
variable assignments.

In [25], the authors generalized many of the actual implementations of various
solvers based on DPLL and rewrote it in an iterative manner as shown in Fig. 2. The
algorithm described in Fig. 2 is an improvement of algorithm in Fig. 1 as it allows the
solver to backtrack non-chronologically, as we will see in the following sections.
Different solvers based on DPLL differ mainly in the detailed implementation of each
of the functions shown in Fig. 2. We will use the framework of Fig. 2 as the
foundation for our discussions that follow.

The algorithm described in Fig. 2 is a branch and search algorithm. Initially, none
of the variables is assigned a value. We call unassigned variables free variables. First
the solver will do some preprocessing on the instance to be solved, done by function
preprocess() in Fig. 2. If preprocessing cannot determine the outcome, the main
loop begins with a branch on a free variable by assigning it a value. We call this
operation a decision on a variable, and the variable will have a decision level
associated with it, starting from 1 and incremented with subsequent decisions. This is
done by function decide_next_branch() in Fig. 2. After the branch, the
problem is simplified as a result of this decision and its consequences. The function
deduce() performs some reasoning to determine variable assignments that are
needed for the problem to be satisfiable given the current set of decisions. Variables
that are assigned as a consequence of this deduction after a branch will assume the
same decision level as the decision variable. After the deduction, if all the clauses are
satisfied, then the instance is satisfiable; if there exists a conflicting clause, then the

status = preprocess();
if (status!=UNKNOWN) return status;
while(1) {

decide_next_branch();
while (true) {

status = deduce();
if (status == CONFLICT) {

blevel = analyze_conflict();
if (blevel == 0)

return UNSATISFIABLE;
else backtrack(blevel);

}
else if (status == SATISFIABLE)

return SATISFIABLE;
else break;

}
}

Fig. 2. The iterative description of DPLL algorithm



current branch chosen cannot lead to a satisfying assignment, so the solver will
backtrack (i.e. undo certain branches). Which decision level to backtrack to is
determined by the function analyze_conflict(). Backtrack to level 0 indicates
that even without any branching, the instance is still unsatisfiable. In that case, the
solver will declare that the instance is unsatisfiable. Within the function
analyze_conflict(), the solver may do some analysis and record some
information from the current conflict in order to prune the search space for the future.
This process is called conflict-driven learning. If the instance is neither satisfied nor
conflicting under the current variable assignments, the solver will choose another
variable to branch and repeat the process.

3. The Components of a DPLL SAT Solver

In this section of the paper, we discuss each of the components of a DPLL SAT
solver. Each of these components has been the subject of much scrutiny over the
years. This section focuses on the main lessons learnt in this process.

3.1 The Branching Heuristics

Branching occurs in the function decide_next_branch() in Fig. 2. When no
more deduction is possible, the function will choose one variable from all the free
variables and assign it to a value. The importance of choosing good branching
variables is well known - different branching heuristics may produce drastically
different sized search trees for the same basic algorithm, thus significantly affect the
efficiency of the solver. Over the years many different branching heuristics have been
proposed by different researchers. Not surprisingly, comparative experimental
evaluations have also been done (e.g. [26, 27]).

Early branching heuristics such as Bohm’s Heuristic (reported in [28]), Maximum
Occurrences on Minimum sized clauses (MOM) (e.g. [14]), and Jeroslow-Wang [29]
can be regarded as greedy algorithms that try to make the next branch generate the
largest number of implications or satisfy most clauses. All these heuristics use some
functions to estimate the effect of branching on each free variable, and choose the
variable that has the maximum function value. These heuristics work well for certain
classes of instances. However, all of the functions are based on the statistics of the
clause database such as clause length etc. These statistics, though useful for random
SAT instances, usually do not capture relevant information about structured problems.

In [26], the author proposed the use of literal count heuristics. Literal count
heuristics count the number of unresolved (i.e. unsatisfied) clauses in which a given
variable appears in either phase. In particular, the author found that the heuristic that
chooses the variable with dynamic largest combined sum (DLIS) of literal counts in
both phases gives quite good results for the benchmarks tested. Notice that the counts
are state-dependent in the sense that different variable assignments will give different
counts. The reason is because whether a clause is unresolved (unsatisfied) depends on
the current variable assignment. Because the count is state-dependent, each time the



function decide_next_branch() is called, the counts for all the free variables
need to be recalculated.

As the solvers become more and more efficient, calculating counts for branching
dominates the run time. Therefore, more efficient and effective branching heuristics
are needed. In [20], the authors proposed the heuristic called Variable State
Independent Decaying Sum (VSIDS). VSIDS keeps a score for each phase of a
variable. Initially, the scores are the number of occurrences of a literal in the initial
problem. Because modern SAT solvers have a learning mechanism, clauses are added
to the clause database as the search progresses. VSIDS increases the score of a
variable by a constant whenever an added clause contains the variable. Moreover, as
the search progresses, periodically all the scores are divided by a constant number. In
effect, the VSIDS score is a literal occurrence count with higher weight on the more
recently added clauses. VSIDS will choose the free variable with the highest
combined score to branch. Experiments show that VSIDS is quite competitive
compared with other branching heuristics on the number of branches needed to solve
a problem. Because VSIDS is state independent (i.e. scores are not dependent on the
variable assignments), it is cheap to maintain. Experiments show that the decision
procedure using VSIDS takes a very small percentage of the total run time even for
problems with millions of variables.

More recently, [21] proposed another decision scheme that pushes the idea of
VSIDS further. Like VSIDS, the decision strategy is trying to decide on the variables
that are “active recently”. In VSIDS, the activity of a variable is captured by the score
that is related to the literal’s occurrence. In [21], the authors propose to capture the
activity by conflicts. More precisely, when a conflict occurs, all the literals in the
clauses that are responsible for the conflict will have their score increased. A clause is
responsible for a conflict if it is involved in the resolution process of generating the
learned clauses (described in the following sections). In VSIDS, the focus on “recent”
is captured by decaying the score periodically. In [21], the scores are also decayed
periodically. Moreover, the decision heuristic will limit the decision variable to be
among the literals that occur in the last added clause that is unresolved. The
experiments seem to indicate that the new decision scheme is more robust compared
with VSIDS on the benchmarks tested.

In other efforts, satz [22] proposed the use of look-ahead heuristics for branching;
and cnfs [23] proposed the use of backbone-directed heuristics for branching. They
share the common feature that they both seem to be quite effective on difficult
random problems. However, they are also quite expensive compared with VSIDS.
Random SAT problems are usually much harder than structured problems of the same
size. Current solvers can only attack hard random 3-SAT problems with several
hundred variables. Therefore, the instances regarded as hard for random SAT is
generally much smaller in size than the instances considered hard for structured
problems. Thus, while it may be practical to apply these expensive heuristics to the
smaller random problems, their overhead tends to be unacceptable for the larger well-
structured problems.



3.2 The Deduction algorithm

Function deduce() serves the purpose of pruning the search space by “look ahead”.
When a branch variable is assigned a value, the entire clause database is simplified.
Function deduce() needs to determine the consequences of the last decision to
make the instance satisfiable, and may return three status values. If the instance is
satisfied under the current variable assignment, it will return SATISFIABLE; if the
instance contains a conflicting clause, it will return CONFLICT; otherwise, it will
return UNKNOWN and the solver will continue to branch. There are various
mechanisms with different deduction power and run time costs for the deduce
function. The correctness of the algorithm will not be affected as long as the
deduction rules incorporated are valid (e.g. it will not return SATISFIABLE when
the instance contains a conflicting clause under the assignment). However, different
deduction rules, or even different implementations of the same rule, can significantly
affect the efficiency of the solver.

Over the years several different deduction mechanisms have been proposed.
However, it seems that the unit clause rule [6] is the most efficient one because it
requires relatively little computational power but can prune large search spaces. The
unit clause rule states that for a certain clause, if all but one of its literals has been
assigned the value 0, then the remaining (unassigned) literal must be assigned the
value 1 for this clause to be satisfied, which is essential for the formula to be satisfied.
Such clauses are called unit clauses, and the unassigned literal in a unit clause is
called a unit literal. The process of assigning the value 1 to all unit literals is called
unit propagation, or sometimes called Boolean Constraint Propagation (BCP).
Almost all modern SAT solvers incorporate this rule in the deduction process. In a
SAT solver, BCP usually takes the most significant part of the run time. Therefore, its
efficiency is directly related to the implementation of the BCP engine.

3.2.1 BCP Mechanisms
In a SAT solver, the BCP engine’s function is to detect unit clauses and conflicting
clauses after a variable assignment. The BCP engine is the most important part of a
SAT solver and usually dictates the data structure and organization of the solver.

A simple and intuitive implementation for BCP is to keep counters for each clause.
This scheme is attributed to Crawford and Auton [13] by [30]. Similar schemes are
subsequently employed in many solvers such as GRASP [25], rel_sat [18], satz [22]
etc. For example, in GRASP [25], each clause keeps two counters, one for the number
of value 1 literals in the clause and the other for the number of value 0 literals in the
clause. Each variable has two lists that contain all the clauses where that variable
appears as a positive and negative literal, respectively. When a variable is assigned a
value, all the clauses that contain this literal will have their counters updated. If a
clause’s value 0 count becomes equal to the total number of literals in the clause, then
it is a conflicting clause. If a clause’s value 0 count is one less than the total number
of literals in the clause and the value 1 count is 0, then the clause is a unit clause. A
counter-based BCP engine is easy to understand and implement, but this scheme is
not the most efficient one. If the instance has m clauses and n variables, and on
average each clause has l literals, then whenever a variable gets assigned, on the



average l m / n counters need to be updated. On backtracking from a conflict, we need
to undo the counter assignments for the variables unassigned during the backtracking.
Each undo for a variable assignment will also update l m / n counters on average.
Modern solvers usually incorporate learning mechanisms in the search process
(described in the next sections), and learned clauses often have many literals.
Therefore, the average clause length l is quite large, thus making a counter-based BCP
engine relatively slow.

In [30], the authors of the solver SATO proposed the use of another mechanism for
BCP using head/tail lists. In this mechanism, each clause has two pointers associated
with it, called the head and tail pointer respectively. A clause stores all its literals in
an array. Initially, the head pointer points to the first literal of the clause (i.e.
beginning of the array), and the tail pointer points to the last literal of the clause (i.e.
end of the array). Each variable keeps four linked lists that contain pointer to clauses.
The linked lists for the variable v are clause_of_pos_head(v),
clause_of_neg_head(v), clause_of_pos_tail(v) and
clause_of_neg_tail(v). Each of these lists contains the pointers to the clauses
that have their head/tail literal in positive/negative phases of variable v. If v is
assigned with the value 1, clause_of_pos_head(v) and
clause_of_pos_tail(v) will be ignored. For each clause C in
clause_of_neg_head(v), the solver will search for a literal that does not
evaluate to 1 from the position of the head literal of C to the position of the tail literal
of C. Notice the head literal of C must be a literal corresponding to v in negative
phase. During the search process, four cases may occur:

1) If during the search we first encounter a literal that evaluates to 1, then the
clause is satisfied, we need to do nothing.

2) If during the search we first encounter a literal l that is free and l is not the
tail literal, then we remove C from clause_of_neg_head(v) and add C
to head list of the variable corresponding to l. We refer to this operation as
moving the head literal, because in essence the head pointer is moved from
its original position to the position of l.

3) If all literals in between these two pointers are assigned value 0, but the tail
literal is unassigned, then the clause is a unit clause, and the tail literal is the
unit literal for this clause.

4) If all literals in between these two pointers and the tail literal are assigned
value 0, then the clause is a conflicting clause.

Similar actions are performed for clause_of_neg_tail(v), only the search is
in the reverse direction (i.e. from tail to head).

Head/tail list method is faster than the counter-based scheme because when the
variable is assigned value 1, the clauses that contain the positive literals of this clause
will not be visited at all and vice-versa. As each clause has only two pointers,
whenever a variable is assigned a value, the status of only m/n clauses needs to be
updated on the average, if we assume head/tail literals are distributed evenly in either
phase. Even though the work needed to be done for each update is different from the
counter-based mechanism, in general head/tail mechanism is still much faster.

For both the counter-based algorithm and the head/tail list-based algorithm,
undoing a variable’s assignment during backtrack has about the same computational
complexity as assigning the variable. In [20], the authors of the solver Chaff proposed



another BCP algorithm called 2-literal watching. Similar to the head/tail list
algorithm, 2-literal watching also has two special literals for each clause called
watched literals. Each variable has two lists containing pointers to all the watched
literals corresponding to it in either phase. We denote the lists for variable v as
pos_watched(v) and neg_watched(v). In contrast to the head/tail list
scheme in SATO, there is no imposed order on the two pointers within a clause, and
each of the pointers can move in either direction. Initially the watched literals are free.
When a variable v is assigned value 1, for each literal p pointed to by a pointer in the
list of neg_watched(v) (notice p must be a literal of v with negative phase), the
solver will search for a literal l in the clause containing p that is not set to 0. There are
four cases that may occur during the search:

1) If there exists such a literal l and it is not the other watched literal, then we
remove pointer to p from neg_watched(v), and add pointer to l to the
watched list of the variable corresponding to l. We refer to this operation as
moving the watched literal, because in essence one of the watched pointers is
moved from its original position to the position of l.

2) If the only such l is the other watched literal and it is free, then the clause is a
unit clause, with the other watched literal being the unit literal.

3) If the only such l is the other watched literal and it evaluates to 1, then we
need to do nothing.

4) If all literals in the clause is assigned value 0 and no such l exists, then the
clause is a conflicting clause.

2-literal watching has the same advantage as the head/tail list mechanism compared
with the literal counting scheme. Moreover, unlike the other two mechanisms,
undoing a variable assignment during backtrack in the 2-literal watching scheme takes
constant time. This is because the two watched literals are the last to be assigned to 0,
so as a result, any backtracking will make sure that the literals being watched are
either unassigned, or assigned to one. Thus, no action is required to update the
pointers for the literals being watched. Therefore, it is significantly faster than both
counter-based and head/tail mechanisms for BCP. In Fig. 3, we show a comparison of
2-literal watching and head/tail list mechanism.

In [31], the authors examined the mechanisms mentioned above and introduced
some new deduction data structures and mechanisms. In particular, the experiments
suggest that the mechanism called Head/Tail list with Literal Sifting actually
outperforms the 2-literal watching mechanism for BCP. However, the experiments are
carried out in a framework implemented in Java. The authors admit that it may not
represent the actual performance if implemented in C/C++.

3.2.2 Other Deduction Mechanisms

Besides the unit clause rule, there are other rules that can be incorporated into a
deduction engine. In this section, we briefly discuss some of them. We want to point
out that though many of the deduction mechanisms have been shown to work on
certain classes of SAT instances, unlike the unit clause rule, none of them seems to
work without deteriorating the overall performance of the SAT solver for general
SAT instances.



One of the most widely known rules for deduction is the pure literal rule [6]. The
pure literal rule states that if a variable only occurs in a single phase in all the
unresolved clauses, then it can be assigned with a value such that the literal of the
variable in that phase evaluates to 1. Whether a variable satisfies the pure literal rule
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is expensive to detect during the actual solving process, and the consensus seems to
be that incorporating the pure literal rule will generally slow down the solving process
for most of the benchmarks encountered.

Another explored deduction mechanism is equivalence reasoning. In particular,
eqsatz [32] incorporated equivalence reasoning into the satz [22] solver and found
that it is effective on some particular classes of benchmarks. In that work, the
equivalence reasoning is accomplished by a pattern-matching scheme for equivalence
clauses. A related deduction mechanism was proposed in [33]. There, the authors
propose to include more patterns in the matching process for simplification purpose in
deduction.

The unit literal rule basically guarantees that all the unit clauses are consistent with
each other. We can also require that all the 2 literal clauses be consistent with each
other and so on. Researchers have been exploring this idea in the deduction process in
works such as [34, 35]. In particular, these approaches maintain a transitive closure of
all the 2 literal clauses. However, the overhead of maintaining this information seems
to far outweigh any benefit gained from them on the average.

Recursive Learning [36] is another reasoning technique originally proposed in the
context of learning with a logic circuit representation of a formula. Subsequent
research [37] has proposed to incorporate this technique in SAT solvers and found
that it works quite well for some benchmarks generated from combinational circuit
equivalence checking problems.

3.3 Conflict Analysis and Learning

When a conflicting clause is encountered, the solver needs to backtrack and undo the
decisions. Conflict analysis is the procedure that finds the reason for a conflict and
tries to resolve it. It tells the SAT solver that there exists no solution for the problem
in a certain search space, and indicates a new search space to continue the search.

The original DPLL algorithm proposed the simplest conflict analysis method. For
each decision variable, the solver keeps a flag indicating whether it has been tried in
both phases (i.e. flipped) or not. When a conflict occurs, the conflict analysis
procedure looks for the decision variable with the highest decision level that has not
been flipped, marks it flipped, undoes all the assignments between that decision level
and current decision level, and then tries the other phase for the decision variable.
This method is called chronological backtracking because it always tries to undo the
last decision that is not flipped. Chronological backtracking works well for random
generate SAT instances and is employed in some SAT solvers (e.g satz [22]).

For structured problems (which is usually the case for problems generated from
real world applications), chronological backtracking is generally not efficient in
pruning the search space. More advanced conflict analysis engines will analyze the
conflicting clauses encountered and figure out the direct reason for the conflict. This
method will usually backtrack to an earlier decision level than the last unflipped
decision. Therefore, it is called non-chronological backtracking. During the conflict
analysis process, information about the current conflict may be recorded as clauses
and added to the original database. The added clauses, though redundant in the sense
that they will not change the satisfiability of the original problem, can often help to



prune search space in the future. This mechanism is called conflict-directed
learning. Such learned clauses are called conflict clauses as opposed to conflicting
clauses, which refer to clauses that generate conflicts.

Non-chronological backtracking, sometimes referred to as conflict-directed
backjumping, was proposed first in the Constraint Satisfaction Problem (CSP)
domain (e.g. [38]). This, together with conflict-directed learning, were first
incorporated into a SAT solver by Silva and Sakallah in GRASP [25], and by Bayardo
and Schrag in rel_sat [18]. These techniques are essential for efficient solving of
structured problems. Many solvers such as SATO [19] and Chaff [20] have
incorporated similar technique in the solving process.

Previously, learning and non-chronological backtracking have been discussed by
analyzing implication graphs (e.g. [17, 39]). Here we will formulate learning as an
alternate but equivalent resolution process and discuss different schemes in this
framework.

Researchers have adapted the conflict analysis engine to some deduction rules
other than the unit clause rule in previous work (e.g. [33, 37]). However, because the
unit clause rule is usually the only rule that is incorporated in most SAT solvers, we
will describe the learning algorithm that works with such a deduction engine. In such
a solver, when a variable is implied by a unit clause, the clause is called the
antecedent of the variable. Because the unit clause rule is the only rule in the
deduction engine, every implied variable will have an antecedent. Decision variables,
on the other case, have no antecedents.

In conflict driven learning, the learned clauses are generated by resolution.
Resolution is a process to generate a clause from two clauses analogous to the process
of consensus in the logic optimization domain (e.g. [40]). Resolution is given by

(x + y ) (y’ + z) ≡ (x + y ) (y’ + z)(x + z)
The term (x + z) is called the resolvent of clause (x + y) and (y’ + z). Because of this,
we have

(x + y ) (y’ + z) → (x+z)
Similar to the well-known consensus law (e.g. [40]), the resulting clause of

resolution between two clauses is redundant with respect to the original clauses.
Therefore, we can always generate clauses from original clause database by resolution
and add the generated clause back to the clause database without changing the
satisfiability of the original formula. However, randomly choosing two clauses and
adding the resolvent to the clause database will not generally help the solving process.
Conflict-driven learning is a way to generate learned clauses with some direction in
the resolution process.

The pseudo-code for conflict analysis is shown in Fig. 4. Whenever a conflicting
clause is encountered, analyze_conflict() will be called. Function
choose_literal() will choose a literal from the clause. Function
resolve(cl1, cl2, var) will return a clause that contains all the literals in
cl1 and cl2 except for the literals that corresponds to variable var. Note that one of the
input clauses to resolve() is a conflicting clause (i.e. all literals evaluate to 0),
and the other is the antecedent of the variable var (i.e. all but one literal evaluate to 0).
Therefore, the resulting clause will have all literals evaluating to 0, i.e. it will still be
a conflicting clause.



The clause generation process will stop when some predefined stop criterion is
met. In modern SAT solvers, the stop criterion is that the resulting clause be an
asserting clause. A clause is asserting if the clause contains all value 0 literals; and
among them only one is assigned at current decision level. After backtracking, this
clause will become a unit clause and force the literal to assume another value (i.e.
evaluate to 1), thus bringing the search to a new space. We will call the decision level
of the literal with the second highest decision level in an asserting clause the
asserting level of that clause. The asserting clause is a unit clause at its asserting
decision level.

In addition to the above asserting clause requirement, different learning schemes
may have some additional requirements. Different learning schemes differ in their
stop criterion and the way to choose literals. Notice the stop criterion can always be
met if function choose_literal() always chooses the literal that is assigned last
in the clause. If that is the case, the resolution process will always resolve the
conflicting clause with the antecedent of the variable that is assigned last in the
clause. After a certain number of calls to resolve(), there will always be a time
when the variable that is assigned last in the clause is the decision variable of the
current decision level. At this time, the resulting clause is guaranteed to be an
asserting clause. The SAT solver rel_sat [18] actually uses this stop criterion, i.e. it
requires that the variable that has the highest decision level in the resulting clause be a
decision variable. The literal corresponding to this variable will be a unit literal after
backtracking, resulting in essentially flipping the decision variable.

In [39], the authors discussed a scheme called the FirstUIP scheme. The FirstUIP
scheme is quite similar to the rel_sat scheme but the stop criterion is that it will stop
when the first asserting clause is encountered. In [17], the authors of GRASP use a
similar scheme as the FirstUIP, but add extra clauses other than the asserting clause
into the database. If function choose_literal() does not choose literals in
reversed chronological order, then extra mechanisms are needed to guarantee that the
stop criterion can be met. Some of the schemes discussed in [39] may need function
choose_literal() to choose literals that are not in the current decision level.

Different learning schemes affect the SAT solver’s efficiency greatly. Experiments
in [39] show that among all the discussed schemes, FirstUIP seems to be the best on
the benchmarks tested. Therefore, recent SAT solvers (e.g. Chaff [20]) often employ
this scheme as the default conflict-driven learning scheme.

analyze_conflict(){
cl = find_conflicting_clause();
while (!stop_criterion_met(cl)) {

lit = choose_literal(cl);
var = variable_of_literal( lit );
ante = antecedent( var );
cl = resolve(cl, ante, var);

}
add_clause_to_database(cl);
back_dl = clause_asserting_level(cl);
return back_dl;

}

Fig. 4. Generating Learned Clause by Resolution



Conflict-driven learning will add clauses to the clause database during the search
process. Because added clauses are redundant, deleting some or all of them will not
affect the correctness of the algorithm. In fact, the added clauses will slow down the
deduction engine, and keeping all added clauses may need more memory for storage
than the available memory. Therefore, it is often required for the solver to delete some
of the less useful learned clauses and learned clauses that have too many literals.
There are many heuristics to measure the usefulness of a learned clause. For example,
rel_sat [18] proposes to use relevance to measure a clause’s usefulness, while
BerkMin [21] use the number of conflicts that involve this clause in the history to
measure a clause’s usefulness. These measures seem to work reasonably well.

3.4 Data Structure for Storing Clause Database

Current state-of-the-art SAT solvers often need to solve instances that are quite large
in size. Some instances generated from circuit verification problems may contain
millions of variables and several million clauses. Moreover, during the SAT solving
process, learned clauses are generated for each conflict encountered and may further
increase the dataset size. Therefore, efficient data structures for storing the clauses are
needed.

Most commonly, clauses are stored in a linear way (sometimes called sparse
matrix representation), i.e. each clause occupies its own space and no overlap exists
between clauses. Therefore, the dataset size is linear in the number of literals in the
clause database. Early SAT solvers (e.g. GRASP [25], rel_sat [18]) use pointer heavy
data structures such as linked lists and array of pointers pointing to structures to store
the clause database. Pointer heavy data structures, though convenient for
manipulating the clause database (i.e. adding/deleting clauses), are not memory
efficient and usually cause a lot of cache misses during the solving process because of
lack of access locality. Chaff [20] uses a data structure that stores clause data in a
large array. Because arrays are not as flexible as linked lists, some additional garbage
collection code is needed when clauses are deleted. The advantage of the array data
structure is that it is very efficient in memory utilization. Moreover, because an array
occupies contiguous memory space, access locality is increased. Experiments shows
that the array data structure has a big advantage compared with linked lists in terms of
cache misses that translates to substantial speed-up in the solving process.

Researchers have proposed schemes other than sparse matrix representation for
storing clauses. In [41], the authors of the solver SATO proposed the use of a data
structure called trie to store clauses. A trie is a ternary tree. Each internal node in the
trie structure is a variable index, and its three children edges are labeled Pos, Neg, and
DC, for positive, negative, and don't care, respectively. A leaf node in a trie is either
True or False. Each path from root of the trie to a True leaf represents a clause. A trie
is said to be ordered if for every internal node V, Parent(V) has a smaller variable
index than the index of variable V. The ordered trie structure has the nice property of
being able to detect duplicate and tail subsumed clauses of a database quickly. A
clause is said to be tail subsumed by another clause if its first portion of the literals (a
prefix) is also a clause in the clause database. For example, (a + b + c) is tail



subsumed by (a + b). Fig. 5 shows a simple clause database represented in a trie
structure.

An ordered trie has obvious similarities with Binary Decision Diagrams. This has
naturally led to the exploration of decision diagram style set representations. In [42]
and [43], the authors have experimented with using Zero-suppressed Binary Decision
Diagrams (ZBDDs) [44] to represent the clause database. A ZBDD representation of
the clause database can detect not only tail subsumption but also head subsumption.
Both authors report significant compression of the clause database for certain classes
of problems.

Based on current experimental data it does not seem that the data compression
advantages of the trie and ZBDD data structures are sufficient to justify the additional
maintenance overhead of these data structures compared to the sparse matrix
representation.

3.5 Preprocess, Restart and other techniques

Preprocess aims at simplifying the instances before the regular solving begins in order
to speed up the solving process. Usually the preprocessor of a SAT solver is just an
extra deduction mechanism applied at the beginning of the search. Because the
preprocessor will only be applied once in the solving process, it is usually possible to
incorporate some deduction rules that are too expensive to be applied at every node of
the search tree. The preprocessor can be applied on-line (within the solver) or off-line
(it produces an equivalent instance to be fed to a solver). In [45], the authors give an
overview of some of the existing preprocessing techniques and find that the result of
applying simplification techniques before the regular search is actually mixed.

The time required for solving similar SAT instances often varies greatly for
complete algorithms. Two problems that are exactly the same except for the variable
order may require totally different times to solve by a certain SAT solver (e.g. one can
be solved in seconds while the other takes days). In [46], the authors proposed to use
random restart to cope with this phenomenon. Random restart randomly throws
away the already searched space and starts from scratch. This technique is applied in
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modern SAT solvers such as Chaff [20] and BerkMin [21]. In these cases, when
restart is invoked, even though the current search tree is abandoned, because the
solver still keeps some of the learned clauses, the previous search effort is not totally
lost. Experiments show that random restarts can increase the robustness of certain
SAT solvers.

Researchers have been extending the randomization idea of random restart to other
aspects of the SAT solving process as well. For example, portfolio design [47] aims at
using different solving strategies during one solving process in order to make the
solver robust. Some researchers [48] also propose to randomize backtracking. All in
all, it seems that randomization is quite important because of the heavy tail [49]
nature of SAT solving process.

4. Other techniques used in SAT solvers

In this section, we briefly discuss some of the other techniques used to solve SAT
problems besides the basic DPLL search.

The original Davis Putnam algorithm [5] was based on resolution. A well-known
problem of the resolution-based algorithm is that the solver tends to blow up in
memory. Because of this, resolution based algorithm is seldom employed in modern
SAT solvers. In [42], the authors propose the use of ZBDDs to represent clauses in a
resolution-based solver and utilize the compression power of decision diagrams to
control the memory blowup. Their experiment shows that for certain classes of SAT
problems, the resolution-based approach shows very good results.

Stalmärck’s algorithm [9] is a patented proprietary algorithm for solving SAT.
Stalmärck’s algorithm use breath-first search in contrast to the depth-first search
employed by DPLL. There are commercial implementations of SAT solvers based on
this algorithm [50]. HeerHugo [51] is a publicly available solver that claims to be
using an algorithm similar to the Stalmärk’s algorithm.

Another approach is to use stochastic algorithms. Stochastic algorithms cannot
prove a SAT instance to be unsatisfiable. However, for some hard satisfiable
instances, stochastic methods may find solutions very quickly. Currently, two of the
more successful approaches to the stochastic method are random walk based
algorithms such as walksat [7] and Discrete Lagrangian-Based global search methods
such as DLM [52].

For more about other SAT solving techniques, we refer the readers to a survey[10].

5. Conclusions and Future Works

In this paper, we briefly discussed some of the techniques employed in modern
Boolean Satisfiability solvers. In particular, we concentrated on the procedure based
on the DPLL search algorithm. In recent years, SAT solvers based on DPLL search
have made phenomenal progress. Efficient SAT solvers such as Chaff [20] are
deployed in industrial strength applications for hardware verification and debugging.
In these environments, the SAT solver routinely encounters instances with thousands



or even millions of variables. Therefore, it is of great importance to increase the
capacity and efficiency of the SAT solver.

Even though researchers have been working on SAT engines for quite a long time,
there is still a lot of work that remains to be done. First of all, the overall
understanding of SAT instances is still quite limited. For example, though there exist
some rough ideas about the difficulty of SAT problems (e.g. [53, 54]), it is still not
clear how can we estimate the hardness of a given problem without actually solving it.
Experimental evaluation of different SAT solving algorithms is more like an art than a
science because it is easy to tune a solver to a given set of benchmarks, but the
parameters may not work for the same benchmarks with some simple permutation
(e.g.[55]). On the application side, currently most of the applications use SAT solvers
as blackboxes and no interaction is possible between the applications and the SAT
solvers. Application specific knowledge can help a lot in the solving process as
demonstrated in [56]. For a particular application, custom implementation of a SAT
solver may also be helpful (e.g. [57]). All in all, we believe there are still many
research topics to be explored. As more and more applications utilize SAT solvers as
deduction and reasoning engine, we believe many new algorithms will emerge and
push the envelope for efficient implementations even further.
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