ELE539A: Optimization of Communication Systems
Lecture 3B: Network Flow Problems

Professor M. Chiang
Electrical Engineering Department, Princeton University

February 12, 2007
Lecture Outline

- Network flow problems
- Problem 1: Maximum flow problem
- Ford Fulkerson algorithm
- Problem 2: Shortest path routing
- Bellman Ford algorithm
- Simple IP routing: RIP
- Dynamic Programming
Graph Theory Notation

$G = (V, E)$: directed graph with vertex set V and edge set E

b_i: external supply to each node $i \in V$

u_{ij}: capacity of each edge $(i, j) \in E$

c_{ij}: cost per unit flow on edge $(i, j) \in E$

$I(i) = \{j \in V | (j, i) \in E\}$: set of start nodes of incoming edges to i

$O(i) = \{j \in V | (i, j) \in E\}$: set of end nodes of outgoing edges from i

Sources: $\{i | b_i > 0\}$. Sinks: $\{i | b_i < 0\}$

Feasible flow f:

- Flow conservation: $b_i + \sum_{j \in I(i)} f_{ji} = \sum_{j \in O(i)} f_{ij}$, $\forall i \in V$
- Capacity constraint: $0 \leq f_{ij} \leq u_{ij}$
Network flow problem:

\[
\begin{align*}
\text{minimize} & \quad \sum_{(i,j) \in E} c_{ij} f_{ij} \\
\text{subject to} & \quad b_i + \sum_{j \in I(i)} f_{ji} = \sum_{j \in O(i)} f_{ij}, \quad \forall i \in V \\
& \quad 0 \leq f_{ij} \leq u_{ij}
\end{align*}
\]

In matrix notation as a LP:

\[
\begin{align*}
\text{minimize} & \quad c^T f \\
\text{subject to} & \quad Af = b \\
& \quad 0 \leq f \leq u
\end{align*}
\]

where \(A \in \mathbb{R}^{|V| \times |E|} \) is defined as

\[
A_{ik} = \begin{cases}
1, & \text{if } i \text{ is the start node of edge } k \\
-1, & \text{if } i \text{ is the end node of edge } k \\
0, & \text{otherwise}
\end{cases}
\]
Special Cases

- Maximum flow problem (this lecture)
- Shortest path problem (this lecture)
- Transportation problem (uncapacitated bipartite graph)

Minimize \[\sum_{i,j} c_{ij} f_{ij} \]
subject to
\[\sum_{i=1}^{m} f_{ij} = d_j, \quad j = 1, \ldots, n \]
\[\sum_{j=1}^{n} f_{ij} = s_i, \quad i = 1, \ldots, m \]
\[f_{ij} \geq 0, \quad i = 1, \ldots, m, j = 1, \ldots, n \]

Variables \(f_{ij} \). Constants \(d_j, s_i, c_{ij} \)

- Assignment problem (homework):
 \(m = n, d_j = s_i = 1 \) in transportation problem
Maximum Flow Problem

maximize \[b_s \]
subject to \[Af = b \]
\[b_t = -b_s \]
\[b_i = 0, \ \forall i \neq s, t \]
\[0 \leq f_{ij} \leq u_{ij} \]

Reformulated as network flow problem:

- Costs for all edges are zero
- Introduce a new edge \((t, s)\) with infinite capacity and cost \(-1\)
- Minimize total cost is equivalent to maximize \(f_{ts}\)
Ford Fulkerson Algorithm

1. Start with feasible flow \(f \)
2. Search for an augmenting path \(P \)
3. Terminate if no augmenting path
4. Otherwise, if flow can be pushed, push \(\delta(P) \) units of flow along \(P \) and repeat Step 2
5. Otherwise, terminate

Q: How to find augmenting path?

Q: How much flow can be pushed?
Augmenting Path

Idea: find a path where we can increase flow along every forward edge and decrease flow along backward edge by the same amount. Still satisfy constraints. Increase objective function

Augmenting path: a path from \(s \) to \(t \) such that \(f_{ij} < u_{ij} \) on forward edges and \(f_{ij} > 0 \) on backward edges

Augmenting flow amount along augmenting path \(P \):

\[
\delta(P) = \min \left\{ \min_{(i,j) \in F} (u_{ij} - f_{ij}), \ min_{(i,j) \in B} f_{ij} \right\}
\]

Can search for augmenting path by following possible paths leading from \(s \) and checking conditions above
Example
Example
Example
Max Flow Min Cut Theorem

Theorem: If optimal value is finite, Ford Fulkerson algorithm terminates with an optimal flow.

Theorem: If edge capacities u_{ij} are integers, edge flow variables remain integer.

Definition: cut S is a subset of V such that $s \in S$ and $t \notin S$.

Definition: capacity of cut $C(S)$ is sum of edge capacities on edges that cross from S to its complement:

$$C(S) = \sum_{(i,j) \in E | i \in S, j \notin S} u_{ij}$$

Theorem: Value of maximum flow $\max b_s$ equals minimum cut capacity $\min_S C(S)$.
Shortest Path Routing

Given a directed graph with vertex set V and edge set E

Each edge (i,j) has cost or length c_{ij}

Allow negative length edges, but no negative length cycles

Our development follows DP algorithm

Other approaches (e.g., duality) and algorithms (e.g., Dijkstra) possible

Consider all-to-one shortest path routing with destination vertex n
Bellman Ford Algorithm

Let $p_i(t)$ be length of shortest path from i to n using at most t edges, with $p_i(t) = \infty$ if no such path exists.

Let $p_n(t) = 0$, $\forall t$ and $p_i(0) = \infty$, $\forall i \neq n$.

$p_i(t + 1)$ consists of two parts:

- cost of getting from i to a neighboring k
- cost of getting from k to destination n

Pick the minimum total cost:

$$p_i(t + 1) = \min_{k \in \mathcal{O}(i)} \{c_{ik} + p_k(t)\}$$
Example
Example

Graph with labeled edges:
- Edge 0 to 6: 8
- Edge 6 to 7: -2
- Edge 0 to 7: 7
- Edge 6 to 7: -3
- Edge 0 to 6: 5
- Edge 7 to 7: 2
- Edge 7 to 7: -4
- Edge 7 to 7: 7
- Edge 7 to 7: 9
Example
Example
Example
IP Routing

Basic versions:

- **IGP (e.g., RIP)**: distance-vector based
- **IGP (e.g., OSPF, IS-IS)**: link-state based
- **EGP (e.g., BGP4)**: across Autonomous Systems

Extensions:

- Multicast routing
- Mobile IP
- Mobile wireless ad hoc routing
- QoS routing
RIP Routing

Simple example (homework):

```
       A
       1
      / \
   B   C
   2  5
 /   \
D  6  E
```

Practical concerns:
- Loop avoidance
- Stability
- Speed of convergence
- Scalability
Sequential Optimization

Additive cost in discrete time dynamic system:

\[x_{k+1} = f_k(x_k, u_k, w_k), \quad k = 0, \ldots, N - 1 \]

State: \(x_k \in S_k \)

Control: \(u_k \in U_k(x_k) \)

Random disturbance: \(w_k \in D_k \) with distribution conditional on \(x_k, u_k \)

Admissible policies:

\[\pi = \{\mu_0, \ldots, \mu_{N-1}\} \]

where \(\mu_k(x_k) = u_k \) such that \(\mu_k(x_k) \in U_k(x_k) \) for all \(x_k \in S_k \)

Given cost functions \(g_k, k = 0, \ldots, N \), expected cost of \(\pi \) starting at \(x_0 \):

\[J_\pi(x_0) = \mathbb{E} \left(g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right) \]

Optimal policy \(\pi^* \) minimizes \(J \) over all admissible \(\pi \), with optimal cost:

\[J^*(x_0) = J_{\pi^*}(x_0) = \min_{\pi \in \Pi} J_\pi(x_0) \]
Principle of Optimality

Given optimal policy \(\pi^* = \{\mu_0^*, \ldots, \mu_{N-1}^*\} \). Consider subproblem where at time \(i \) and state \(x_i \), minimize cost-to-go function from time \(i \) to \(N \):

\[
E \left(g_N(x_N) + \sum_{k=i}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right)
\]

Then truncated optimal policy \(\{\mu_i^*, \ldots, \mu_{N-1}^*\} \) is optimal for subproblem

Tail of an optimal policy is also optimal for tail of the problem
DP Algorithm

For every initial state \(x_0 \), \(J^*(x_0) \) equals \(J_0(x_0) \), the last step of the following backward iteration:

\[
J_N(x_N) = g_N(x_N)
\]

\[
J_k(x_k) = \min_{u_k \in U_k(x_k)} E(g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, u_k, w_k))) , \quad k = 0, \ldots, N - 1
\]

If \(\mu_k^*(x_k) = u_k^* \) are the minimizers of \(J_k(x_k) \) for each \(x_k \) and \(k \), then policy

\[
\pi^* = \{\mu_0^*, \ldots, \mu_{N-1}^*\}
\]

is optimal

Proof: induction and Principle of Optimality
Deterministic Finite-State DP

- No stochastic perturbation:
 \[x_{k+1} = f_k(x_k, \mu_k(x_k)) \]

- Finite state space: \(S_k \) are finite for all \(k \)

Deterministic finite-state DP is equivalent to shortest path problem in trellis diagram
Lecture Summary

• Network flow problems are special cases of LP that model a wide range of problems in networking and problems modelled by graphs.

• Maximum flow problems and shortest path problems are two important special cases of network flow problems that can be efficiently solved by special purpose distributed algorithms.

• DP principle is extremely powerful for sequential optimization.

• We will later study powerful generalizations of Network, Flow Problems to Network Utility Maximization.

• Practical issues in IP routing (IGP and BGP) to be taught in Rexford guest lecture.

Reading: Section 7.1, 7.2, 7.5, and 7.9 in Bertsimas and Tsitsiklis