ELE539A: Optimization of Communication Systems
Lecture 2: Convex Optimization and Lagrange Duality

Professor M. Chiang
Electrical Engineering Department, Princeton University

February 7, 2007
Lecture Outline

- Convex optimization
- Optimality condition
- Lagrange dual problem
- Interpretations
- KKT optimality condition
- Sensitivity analysis

Thanks: Stephen Boyd (some materials and graphs from Boyd and Vandenberghe)
Convex Optimization

A convex optimization problem with variables x:

minimize $f_0(x)$

subject to $f_i(x) \leq 0, \ i = 1, 2, \ldots, m$

$a_i^T x = b_i, \ i = 1, 2, \ldots, p$

where f_0, f_1, \ldots, f_m are convex functions.

- Minimize convex objective function (or maximize concave objective function)

- Upper bound inequality constraints on convex functions (\Rightarrow Constraint set is convex)

- Equality constraints must be affine
Convex Optimization

- Epigraph form:

 minimize t
 subject to $f_0(x) - t \leq 0$
 $f_i(x) \leq 0, \ i = 1, 2, \ldots, m$
 $a_i^T x = b_i, \ i = 1, 2, \ldots, p$

- Not in convex optimization form:

 minimize $x_1^2 + x_2^2$
 subject to $\frac{x_1}{1+x_2} \leq 0$
 $(x_1 + x_2)^2 = 0$

Now transformed into a convex optimization problem:

 minimize $x_1^2 + x_2^2$
 subject to $x_1 \leq 0$
 $x_1 + x_2 = 0$
Locally Optimal \Rightarrow Globally Optimal

Given x is locally optimal for a convex optimization problem, i.e., x is feasible and for some $R > 0$,

$$f_0(x) = \inf\{f_0(z)|z \text{ is feasible}, \|z - x\|_2 \leq R\}$$

Suppose x is not globally optimal, i.e., there is a feasible y such that $f_0(y) < f_0(x)$

Since $\|y - x\|_2 > R$, we can construct a point $z = (1 - \theta)x + \theta y$ where $\theta = \frac{R}{2\|y - x\|_2}$. By convexity of feasible set, z is feasible. By convexity of f_0, we have

$$f_0(z) \leq (1 - \theta)f_0(x) + \theta f_0(y) < f_0(x)$$

which contradicts locally optimality of x

Therefore, there exists no feasible y such that $f_0(y) < f_0(x)$
Optimality Condition for Differentiable f_0

x is optimal for a convex optimization problem iff x is feasible and for all feasible y:

$$\nabla f_0(x)^T(y - x) \geq 0$$

$-\nabla f_0(x)$ is supporting hyperplane to feasible set

Unconstrained convex optimization: condition reduces to:

$$\nabla f_0(x) = 0$$

Proof: take $y = x - t\nabla f_0(x)$ where $t \in \mathbb{R}_+$. For small enough t, y is feasible, so $\nabla f_0(x)^T(y - x) = -t\|\nabla f_0(x)\|^2_2 \geq 0$. Thus $\nabla f_0(x) = 0$
Unconstrained Quadratic Optimization

Minimize $f_0(x) = \frac{1}{2} x^T P x + q^T x + r$

P is positive semidefinite. So it's a convex optimization problem

x minimizes f_0 iff (P, q) satisfy this linear equality:

$$\nabla f_0(x) = Px + q = 0$$

• If $q \notin \mathcal{R}(P)$, no solution. f_0 unbounded below
• If $q \in \mathcal{R}(P)$ and $P \succ 0$, there is a unique minimizer $x^* = -P^{-1} q$
• If $q \in \mathcal{R}(P)$ and P is singular, set of optimal x: $-P^\dagger q + \mathcal{N}(P)$
Duality Mentality

Bound or solve an optimization problem via a different optimization problem!

We’ll develop the basic Lagrange duality theory for a general optimization problem, then specialize for convex optimization
Lagrange Dual Function

An optimization problem in standard form:

minimize \(f_0(x) \)

subject to \(f_i(x) \leq 0, \ i = 1, 2, \ldots, m \)
\(h_i(x) = 0, \ i = 1, 2, \ldots, p \)

Variables: \(x \in \mathbb{R}^n \). Assume nonempty feasible set

Optimal value: \(p^* \). Optimizer: \(x^* \)

Idea: augment objective with a weighted sum of constraints

Lagrangian \(L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \)

Lagrange multipliers (dual variables): \(\lambda \succeq 0, \nu \)

Lagrange dual function: \(g(\lambda, \nu) = \inf_x L(x, \lambda, \nu) \)
Lower Bound on Optimal Value

Claim: \(g(\lambda, \nu) \leq p^*, \ \forall \lambda \succeq 0, \nu \)

Proof: Consider feasible \(\tilde{x} \):

\[
L(\tilde{x}, \lambda, \nu) = f_0(\tilde{x}) + \sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{x}) \leq f_0(\tilde{x})
\]

since \(f_i(\tilde{x}) \leq 0 \) and \(\lambda_i \geq 0 \)

Hence, \(g(\lambda, \nu) \leq L(\tilde{x}, \lambda, \nu) \leq f_0(\tilde{x}) \) for all feasible \(\tilde{x} \)

Therefore, \(g(\lambda, \nu) \leq p^* \)
Lagrange Dual Function and Conjugate Function

- Lagrange dual function $g(\lambda, \nu)$
- Conjugate function: $f^*(y) = \sup_{x \in \text{dom}} f(y^T x - f(x))$

Consider linearly constrained optimization:

$$\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad Ax \preceq b \\
& \quad Cx = d
\end{align*}$$

$$
\begin{align*}
g(\lambda, \nu) &= \inf_x \left(f_0(x) + \lambda^T (Ax - b) + \nu^T (Cx - d) \right) \\
&= -b^T \lambda - d^T \nu + \inf_x \left(f_0(x) + (A^T \lambda + C^T \nu)^T x \right) \\
&= -b^T \lambda - d^T \nu - f_0^*(-A^T \lambda - C^T \nu)
\end{align*}
$$
Example

We’ll use the simplest version of entropy maximization as our example for the rest of this lecture on duality. Entropy maximization is an important basic problem in information theory:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) = \sum_{i=1}^{n} x_i \log x_i \\
\text{subject to} & \quad Ax \preceq b \\
& \quad 1^T x = 1
\end{align*}
\]

Since the conjugate function of \(u \log u \) is \(e^{y-1} \), by independence of the sum, we have

\[
f_0^*(y) = \sum_{i=1}^{n} e^{y_i-1}
\]

Therefore, dual function of entropy maximization is

\[
g(\lambda, \nu) = -b^T \lambda - \nu - e^{-\nu-1} \sum_{i=1}^{n} e^{-a_i^T \lambda}
\]

where \(a^i \) are columns of \(A \)
Lagrange Dual Problem

Lower bound from Lagrange dual function depends on \((\lambda, \nu)\). What’s the best lower bound that can be obtained from Lagrange dual function?

\[
\begin{align*}
\text{maximize} & \quad g(\lambda, \nu) \\
\text{subject to} & \quad \lambda \succeq 0
\end{align*}
\]

This is the Lagrange dual problem with dual variables \((\lambda, \nu)\)

Always a convex optimization! (Dual objective function always a concave function since it’s the infimum of a family of affine functions in \((\lambda, \nu)\))

Denote the optimal value of Lagrange dual problem by \(d^*\)
Weak Duality

What’s the relationship between d^* and p^*?

Weak duality always hold (even if primal problem is not convex):

$$d^* \leq p^*$$

Optimal duality gap:

$$p^* - d^*$$

Efficient generation of lower bounds through (convex) dual problem
Strong Duality

Strong duality (zero optimal duality gap):

\[d^* = p^* \]

If strong duality holds, solving dual is ‘equivalent’ to solving primal. But strong duality does not always hold.

Convexity and constraint qualifications \(\Rightarrow \) Strong duality

A simple constraint qualification: **Slater’s condition** (there exists strictly feasible primal variables \(f_i(x) < 0 \) for non-affine \(f_i \))

Another reason why convex optimization is ‘easy’
Example

Primal optimization problem (variables x):

minimize $f_0(x) = \sum_{i=1}^{n} x_i \log x_i$

subject to $Ax \preceq b$

$1^T x = 1$

Dual optimization problem (variables λ, ν):

maximize $-b^T \lambda - \nu - e^{-\nu} - 1 \sum_{i=1}^{n} e^{-a_i^T \lambda}$

subject to $\lambda \succeq 0$

Analytically maximize over the unconstrained $\nu \Rightarrow$ Simplified dual optimization problem (variables λ):

maximize $-b^T \lambda - \log \sum_{i=1}^{n} \exp(-a_i^T \lambda)$

subject to $\lambda \succeq 0$

Strong duality holds
Saddle Point Interpretation

Assume no equality constraints. We can express primal optimal value as

\[p^* = \inf_x \sup_{\lambda \geq 0} L(x, \lambda) \]

By definition of dual optimal value:

\[d^* = \sup_{\lambda \geq 0} \inf_x L(x, \lambda) \]

Weak duality (max min inequality):

\[\sup_{\lambda \geq 0} \inf_x L(x, \lambda) \leq \inf_x \sup_{\lambda \geq 0} L(x, \lambda) \]

Strong duality (saddle point property):

\[\sup_{\lambda \geq 0} \inf_x L(x, \lambda) = \inf_x \sup_{\lambda \geq 0} L(x, \lambda) \]
Economics Interpretation

- Primal objective: cost of operation
- Primal constraints: can be violated
- Dual variables: price for violating the corresponding constraint (dollar per unit violation). For the same price, can sell ‘unused violation’ for revenue
- Lagrangian: total cost
- Lagrange dual function: optimal cost as a function of violation prices
- Weak duality: optimal cost when constraints can be violated is less than or equal to optimal cost when constraints cannot be violated, for any violation prices
- Duality gap: minimum possible arbitrage advantage
- Strong duality: can price the violations so that there is no arbitrage advantages
Complementary Slackness

Assume strong duality holds:

\[f_0(x^*) = g(\lambda^*, \nu^*) \]

\[= \inf_x \left(f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{p} \nu_i^* h_i(x) \right) \]

\[\leq f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*) + \sum_{i=1}^{p} \nu_i^* h_i(x^*) \]

\[\leq f_0(x^*) \]

So the two inequalities must hold with equality. This implies:

\[\lambda_i^* f_i(x^*) = 0, \quad i = 1, 2, \ldots, m \]

Complementary Slackness Property:

\[\lambda_i^* > 0 \quad \Rightarrow \quad f_i(x^*) = 0 \]

\[f_i(x^*) < 0 \quad \Rightarrow \quad \lambda_i^* = 0 \]
KKT Optimality Conditions

Since x^* minimizes $L(x, \lambda^*, \nu^*)$ over x, we have

$$\nabla f_0(x^*) + \sum_{i=1}^{m} \lambda^*_i \nabla f_i(x^*) + \sum_{i=1}^{p} \nu^*_i \nabla h_i(x^*) = 0$$

Karush-Kuhn-Tucker optimality conditions:

$$f_i(x^*) \leq 0, \ h_i(x^*) = 0, \ \lambda^*_i \geq 0$$

$$\lambda^*_i f_i(x^*) = 0$$

$$\nabla f_0(x^*) + \sum_{i=1}^{m} \lambda^*_i \nabla f_i(x^*) + \sum_{i=1}^{p} \nu^*_i \nabla h_i(x^*) = 0$$

- Any optimization (with differentiable objective and constraint functions) with strong duality, KKT condition is necessary condition for primal-dual optimality
- Convex optimization (with differentiable objective and constraint functions) with Slater’s condition, KKT condition is also sufficient condition for primal-dual optimality (useful for theoretical and numerical purposes)
Waterfilling

maximize \(\sum_{i=1}^{n} \log(\alpha_i + x_i) \)

subject to \(x \succeq 0, \ 1^T x = 1 \)

Variables: \(x \) (powers). Constants: \(\alpha \) (noise)

KKT conditions:

\[
x^* \succeq 0, \ 1^T x^* = 1, \ \lambda^* \succeq 0 \\
\lambda_i^* x_i^* = 0, \ -1/(\alpha_i + x_i) - \lambda_i^* + \nu^* = 0
\]

Since \(\lambda^* \) are slack variables, reduce to

\[
x^* \succeq 0, \ 1^T x^* = 1 \\
x_i^* (\nu^* - 1/(\alpha_i^* + x_i^*)) = 0, \ \nu^* \geq 1/(\alpha_i + x_i^*)
\]

If \(\nu^* < 1/\alpha_i \), \(x_i^* > 0 \). So \(x_i^* = 1/\nu^* - \alpha_i \). Otherwise, \(x_i^* = 0 \)

Thus, \(x_i^* = [1/\nu^* - \alpha_i]^+ \) where \(\nu^* \) is such that \(\sum_i x_i^* = 1 \)
Global Sensitivity Analysis

Perturbed optimization problem:

minimize $f_0(x)$
subject to $f_i(x) \leq u_i$, $i = 1, 2, \ldots, m$
$h_i(x) = v_i$ $i = 1, 2, \ldots, p$

Optimal value $p^*(u, v)$ as a function of parameters (u, v)

Assume strong duality and that dual optimum is attained:

$p^*(0, 0) = g(\lambda^*, \nu^*) \leq f_0(x) + \sum_i \lambda^*_i f_i(x) + \sum_i \nu^*_i h_i(x) \leq f_0(x) + \lambda^T u + \nu^T v$
$p^*(u, v) \geq p^*(0, 0) - \lambda^T u - \nu^T v$

• If λ^*_i is large, tightening ith constraint $(u_i < 0)$ will increase optimal value greatly
• If λ^*_i is small, loosening ith constraint $(u_i > 0)$ will reduce optimal value only slightly
Local Sensitivity Analysis

Assume that $p^*(u, v)$ is differentiable at $(0, 0)$:

$$
\lambda^*_i = -\frac{\partial p^*(0, 0)}{\partial u_i}, \quad \nu^*_i = -\frac{\partial p^*(0, 0)}{\partial v_i}
$$

Shadow price interpretation of Lagrange dual variables

Small λ^*_i means tightening or loosening ith constraint will not change optimal value by much.
Lecture Summary

- Convexity mentality. Convex optimization is ‘nice’ for several reasons: local optimum is global optimum, zero optimal duality gap (under technical conditions), KKT optimality conditions are necessary and sufficient

- Duality mentality. Can always bound primal through dual, sometimes solve primal through dual

- Primal-dual: where is the optimum, how sensitive it is to perturbations

Readings: Sections 4.1-4.2 and 5.1-5.6 in Boyd and Vandenberghe