Networks are based on electronic circuits, whose name derives from the Latin word for a circle or loop. As you probably already know, the simplest form of circuit consists of a generator, line and resistor, such as a battery, wire and lightbulb. The schematic representation of this is as follows:

Ohm’s Law

All components of a circuit are described by a simple principle known as Ohm’s Law. It simply states that voltage across a resistor equals the current through it times a quantity known as resistance.

\[V = IR \]

Voltage is measured in volts (V), current in amps (A) and resistance in ohms (Ω). (These units are named after the scientists Volta, Ampere and Ohm)

Kirchhoff’s Law

Voltage:
The total voltage in a circuit must add up to zero. This means that voltage at the source must be equal to the total voltage drop across the resistors in a circuit. Ohm’s law \(V = IR \) also governs the magnitude of the voltage drop across each resistive element in a circuit. (note: short wires also have a resistance, however, this is insignificant compared to the R of a resistor – we will address long wires later)

Current:
The sum of the currents flowing to any one point in a circuit, known as a node, must be zero.

\[I_1 + I_2 + I_3 = 0 \]

This means that if \(I_1 \) is +1 amp, and \(I_2 \) is +2 amps then \(I_3 \) must be –3 amps (in other words, \(I_3 \) is 3 amps flowing away from the node)

Determining Resistance

If you have more than one resistor in a circuit, they can be combined into a single equivalent resistance, \(R_T \). The method for combining depends on whether resistors are in series or in parallel.
If resistors are in *series*:

\[R_{\text{Total}} = R_1 + R_2 + R_3 \]

Current, \(I \), is the same through each resistor, and equal to: \(I = \frac{V_{\text{Source}}}{R_{\text{Total}}} \)

If resistors are wired in *parallel*:

\[\frac{1}{R_{\text{Total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \]

Voltage, \(V \), is the same across each resistor and equal to \(V_S \).

If you have a combination, convert the parallel portion of the circuit to one resistance, and then add the resistors as if they were in series.

EXAMPLE

\[V_{\text{Source}} = 12V \]
\[R_1 = 1000\Omega \quad R_2 = 400\Omega \quad R_3 = 400\Omega \]

First convert \(R_2 \) and \(R_3 \) to a single resistance, \(R_{\text{parallel}} \):

\[\frac{1}{R_{\text{parallel}}} = \frac{1}{R_2} + \frac{1}{R_3} \]
\[\frac{1}{R_{\text{parallel}}} = \frac{1}{400\Omega} + \frac{1}{400\Omega} \]
\[\frac{1}{R_{\text{parallel}}} = \frac{2}{400\Omega} \]
\[R_{\text{parallel}} = 200\Omega \]

Now add \(R_1 \) and \(R_{\text{parallel}} \):

\[R_1 + R_{\text{parallel}} = R_{\text{Total}} \]
\[1000\Omega + 200\Omega = 1200\Omega \]

Use \(R_{\text{Total}} \) to determine the current through the loop:

\[V_{\text{Source}} = I_{\text{Total}}R_{\text{Total}} \]
\[12V = I_{\text{Total}} \times 1200\Omega \]
\[I_{\text{Total}} = .01A \]

Because \(R_1 \) and \(R_{\text{parallel}} \) were in series, this is the current that passes through each of them. To find the voltage through each resistor, use Ohm’s Law:

\[V_1 = I_{\text{Total}}R_1 \]
\[V_1 = .01A \times 1000\Omega \]
\[V_1 = 10V \]

\[V_{\text{parallel}} = I_{\text{Total}}R_{\text{parallel}} \]
\[V_{\text{parallel}} = .01A \times 200\Omega \]
\[V_{\text{parallel}} = 2V \]

notice that the voltage drops add up to 12V = \(V_{\text{Source}} \).

To find the current through and voltage across \(R_2 \) and \(R_3 \) you must use what you know about the voltage, \(V_{\text{parallel}} \), across the two of them. Because they are wired in parallel, the voltage across each of them is the same. It is also equal to \(V_{\text{parallel}} \):

\[V_2 = V_3 = V_{\text{parallel}} \]
\[V_2 = 2V \]
\[V_3 = 2V \]
To find the current through each, again use Ohm’s law:

\[V_2 = I_2 R_2 \]
\[2V = I_2 \times 400\Omega \]
\[I_2 = .005 \, \text{A} \]

\[V_3 = I_3 R_3 \]
\[2V = I_3 \times 400\Omega \]
\[I_3 = .005 \, \text{A} \]

Resistance of a device can be a function of different properties, such as temperature. In a wire, resistance is dependent upon the material used, the length of the wire, and its cross-sectional area:

\[R = \frac{\text{resistivity of the material} \times \text{length of wire}}{\text{cross-sectional area of the wire}} \]

Joule’s Law

Another important equation relating to all circuits is Joule’s Law. It states:

\[P = VI \]

And, knowing that \(V = IR \), we can substitute to create another relationship:

\[P = I \times (IR) \]

\[P = I^2 R \]

From this, one is able to determine power losses due to resistance at different current levels.

Thomas Edison worked with these equations to help him develop his vision of a great New York network of electricity.

Electromagnetism

Faraday observed that when current flows through a wire that is in a magnetic field, this wire experiences a force in a direction perpendicular to both the magnetic field and the current flow. The magnitude of the force on this wire is:

\[F = iLB \]

Where \(F \) is the force on the wire, \(i \) is the current running through the wire, \(L \) is the length of wire that is in the magnetic field, and \(B \) is the magnetic field strength.

This observation serves as the fundamental basis for many electromagnetic devices including motors, loudspeakers and electromagnetic meters.