Problem Set #5

1. **Discrete-time convolution (3pts).**
 Compute and plot \(y[n] = x[n] * h[n] \), where
 \[
 x[n] = \delta[n-2] + 2\delta[n-3] - 2\delta[n-4] - \delta[n-5]
 \]
 \[
 h[n] = \begin{cases}
 1 & \text{if } 3 \leq n \leq 7, \\
 0 & \text{otherwise}.
 \end{cases}
 \]

2. **Continuous-time convolution (6 pts).**
 Define the function \(x(t) \) by
 \[
 x(t) = \begin{cases}
 2 & \text{if } 0 \leq t < 1 \\
 -1 & \text{if } 1 \leq t < 2 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 Please recall the definition of the two continuous-time functions: unit step function \(u(t) \), and Rect function \(\text{rect}(t) \), and then sketch each of the following convolved signals:
 - (a) \(u(t) * u(t) \)
 - (b) \(x(t) * u(t) \)
 - (c) \(x(t) * \text{rect}(t) \)

3. **Convolution and the Fourier transform (3 pts).**
 What is the Fourier transform of \(\text{rect}(t) * \text{sinc}(t) \)? The convolution integral will not be the easiest way to do this.

4. **Averaging system (6 pts).**
 Suppose \(x[n] \) denotes the closing price of a stock on day \(n \). To smooth out fluctuations, a tool often used by technical analysts is the 30-day moving average of the stock price. Let \(y[n] \) denote this 30-day moving average, where the average at time \(n \) uses the closing price on day \(n \) together with the previous 29 days.
 - (a) Write an expression for \(y[n] \) in terms of \(x[\cdot] \).
 - (b) \(y[n] \) can be thought of as the output of an LTI system when the input is \(x[n] \). What is the impulse response of this system?
 - (c) How does the impulse response change if instead of the “lagging” average above we use \(x[n] \) together with 15 days in the past and 14 days in the future?
 - (d) What is a practical problem of using the average of part (c)?
5. System response (3 pts).
A continuous-time LTI system has impulse response $h(t)$ with Fourier transform $H(f)$. What is the output of the system when the input is $\sin(t)$?