Flow control
From quiet airplanes to robotic fish

Prof. Clancy Rowley
Mechanical and Aerospace Engineering
Princeton University

Science on Saturday
February 21, 2004
Overview

• What is flow control?
 • What is a fluid?
 • What is control?

• Quieter airplanes
 • Controlling sound waves

• Robotic fish
 • Controlling underwater vehicles

• Engineering in elementary school?
 • Princeton Engineering Education for Kids (PEEK) and LEGO engineering
What is flow control?

- What is a fluid?
 - A liquid or a gas
 - Water and air are both fluids
 - Fluid mechanics is the study of how fluids behave

- What is control?
 - Using sensors and actuators to alter the behavior of a system

- What is flow control?
 - Using sensors and actuators to change how a fluid behaves
Control: examples

• Example 1: cruise control on a car

Sensing + computation + actuation = Feedback

Actuate
Gas pedal

Sense
Speedometer

Compute
Control action
Control: early examples

• Watt governor (1788)
 • Regulate speed of steam engine
 • Reduce effects of variations in load

Balls fly out as speed increases, closing valve
Main idea of feedback

• Concept 1:
 • Feedback can reduce the effect of external disturbances
 • Cruise control: uphill, downhill
 • Steam engine: load on engine, temperature of boiler producing steam

```
Disturbances

Actuate
Gas pedal

S Sense
Speedometer

Compute
Control action
```

Other examples

• Balancing a stick

• Concept 2: Feedback can stabilize an unstable system

Actuate
Move hand

stick

hand

Sense
Eye/hand

Compute
Brain

Question: which is easier to balance, a short stick or a long stick?
Other examples

- Standing up

 All three components are critical: degrading any one hurts the system
Control: more examples

- **Aircraft** auto-pilot, auto-land
 - Commercial aircraft with auto-land are required to land on autopilot at least 1/3 of the time
 - **Sensors**: altitude, heading, airspeed, GPS
 - **Actuators**: engine throttle, ailerons, elevators, rudder

Boeing 777-200
From www.boeing.com
Controls course at Princeton

- MAE 433: Automatic control systems
- Princeton juniors

Pendulum (stick) Ramp Ball Underpass
Cart
Cart
How do they do it?

• How do you design the controller?

 Actuate
 Gas pedal

 Sense
 Speedometer

• Need a mathematical description of how the system behaves: need a model
• Modeling concepts: state and dynamics
Modeling terminology

- **State**
 - Independent physical quantities that completely determine the future evolution (absent external excitation)

- **Inputs** describe external excitation
 - Inputs are extrinsic to the system (externally specified)

- **Dynamics** describes state evolution
 - Update rule for the system state
 - Function of current state and external inputs

- **Outputs** describe measured quantities
 - Outputs are functions of state and inputs -- not independent variables
 - Outputs are often a subset of state

State: position and velocities of each mass: \(q_1, q_2, \dot{q}_1, \dot{q}_2 \)

Input: position of spring at right end of chain: \(u \)

Dynamics: physics

Output: measured positions of the masses: \(q_1, q_2 \)
Modeling example

- Cart-pendulum
 - State:
 \[x = (x, \theta, \dot{x}, \dot{\theta}) \]
 - Dynamics:
 \[
 \begin{bmatrix}
 \dot{x} \\
 \dot{\theta} \\
 \end{bmatrix} =
 \begin{bmatrix}
 \frac{-mg \sin \theta \cos \theta + ml \dot{\theta}^2 \sin \theta + F}{M + m (1 - \cos^2 \theta)} \\
 \frac{(M + m) g \sin \theta - ml \dot{\theta}^2 \sin \theta \cos \theta - F \cos \theta}{Ml + ml (1 - \cos^2 \theta)} \\
 \end{bmatrix}
 \]

4 differential equations for how the 4 states evolve
Control of fluids

• What is the state of a fluid?
 • Position/velocity of all fluid particles
 • Turns out only need to keep track of velocity since all fluid particles are the same
 • Infinite number of states!

• Dynamics for a fluid
 • Partial differential equations
 • Equivalent to an infinite number of ordinary differential equations
 • Usual tools for controls do not apply

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u}
\]

Conservation of momentum

\[
\nabla \cdot \mathbf{u} = 0
\]

Conservation of mass
Modeling of fluids

- **Key idea:**
 - We don’t necessarily care about the velocity of every single fluid particle.
 - Look for **patterns** (e.g. eddies, swirls), and make these patterns the new states. Write **dynamics** for how the patterns evolve.
 - **Reduce a huge problem** (millions of states) to a manageable one:

 Model reduction
Problem: reduce sound from a cavity

- **Motivation**: control of intense pressure fluctuations
 - Examples: car sunroof, aircraft landing gear, weapons bays

- **Previous strategies**
 - Passive (spoilers, etc): Effective at certain flow conditions
 - Can make things *worse* for other flow conditions

- **Low-order models**
 - Use numerical simulations to extract the patterns in the flow
Comparison of DNS with experiment

Schlieren photographs
(Karamchetti 1955)

Density gradients from DNS

M = 0.6 M = 0.7 M = 0.8
Movie: short cavity

Vorticity

Dilatation
Movie: long cavity

Vorticity

Dilatation
Proper Orthogonal Decomposition

- Given an ensemble of data $u(x, t)$, approximate by an expansion in basis functions φ_k:
 \[\hat{u}(x, t) = \sum_{k=1}^{n} a_k(t) \varphi_k(x) \]

- **Goal:** Given $u(x, t)$, find **optimal** orthonormal functions $\varphi_k(x)$, called **POD modes**, which minimize the time average of $\|u - \hat{u}\|_2$, for fixed n.

- **Low order models** may be obtained via **Galerkin projection** onto the basis functions: given a PDE $\dot{u} = D(u)$, where D is a spatial differential operator,
 \[\dot{a}_k = \langle D(\hat{u}), \varphi_k \rangle, \quad k = 1, \ldots, n. \]
POD modes (patterns)

- Vector-valued modes
 - Energy-based inner product
 - Kinematic and thermodynamic variables (u,v,a)
 - Weight both kinetic energy and internal energy
 - Vorticity and dilatation shown
 - Shear layer structures
 - Acoustic waves
- Over 90% of energy captured in the first 2 modes
 - Very low-dimensional!

Mode 1 (47.15%)
Mode 2 (44.67%)
Mode 3 (3.50%)
Mode 4 (3.42%)
4-mode Galerkin model

- **Vorticity**
- **Dilatation**

- 410,112 gridpoints
- 1,640,448 states

4-mode model
Control model

Using this model, design a controller to reduce the sensitivity to disturbances (noise that gets amplified by the cavity flow)
It works!

- Experiment at US Air Force Academy
- Large subsonic wind tunnel
- 20 dB noise reduction
Other applications

- Airplanes
 - Quieter
 - More efficient
 - Less emissions

Use active control to achieve these goals

- Rotating stall
- Combustion instabilities
- Mixing of cooling air
- Jet noise

Pratt & Whitney PW-4000
Swimming fish

- **Problem**
 - Easy to build a fish
 - Hard to build a fish that goes where you want it to go

- **Fluid mechanics**
 - Unsteady separation
 - Standard lift/drag models for aircraft not applicable

- **Controls**
 - Don’t care about details, just care about the effect of the flow on the motion of the fish/vehicle

Modeling

- For a potential flow, problem becomes finite-dimensional (Kirchhoff models)
- Add point vortices/vortex sheet: include lift, drag in a finite-dimensional way

Student: Juan Melli-Huber
Fish turning

- How do reef fish turn around so quickly?
- Falling cat problem
 - If you drop a cat upside down, with zero angular momentum, it is able to right itself before it lands
 - Angular momentum remains exactly zero the whole time! (No external forces)
 - This phase shift is called geometric phase
Experiment

- Experiment to model fish swimming
Part 2: Engineering in Elementary School

with lots of help from
Chris Rogers, Tufts University
What is the ultimate teaching goal?

- Curiosity
- Enthusiasm for learning
- How to find answers
- Test validity of answers
- Self-confidence
Learning Styles

- Learn by memory: Learn by doing
- Ability to focus: Ability to combine experiences
- Sits quietly: Cannot sit still
- Self-confident: Feels “it is above me”
Learning styles (cont’d)

<table>
<thead>
<tr>
<th>Cooperative</th>
<th>Competitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detail oriented</td>
<td>Zero in on one thing</td>
</tr>
<tr>
<td>Like to work in groups</td>
<td>Like to work alone</td>
</tr>
<tr>
<td>Design then build</td>
<td>Build then design</td>
</tr>
<tr>
<td>Like investigating</td>
<td>Know it all</td>
</tr>
</tbody>
</table>

Goal: Teach both cooperation and competition
What we teach

- Graphing
- Numeracy
- Statistics
- Decimals
- Modeling
- Reading
- Writing
- Estimation
- Engineering
- Science
PEEK
Princeton Engineering Education for Kids

- Princeton undergraduates help out in classrooms
- Started by Jim McQuade (P’03)
- Two models
 - Undergraduates teach engineering concepts in classrooms, and facilitate engineering projects
 - Teachers teach concepts, undergraduates facilitate projects
Benefits of PEEK program

- Helps teachers overcome technical hurdles
- Undergraduates learn about elementary education
- Kids get early exposure to engineering, before stereotypes set in
- Everybody has fun!
Example projects

Tug of war

Learn:
Engineering
Torque
Center of gravity
Friction
Teamwork
Stop-action movie

Harry Potter movie

Learn:
Reading
Writing
Engineering
Creativity
Acting!
The End

Thank you!