ASSURANCE

<table>
<thead>
<tr>
<th>Stag Hunt example</th>
<th>Barny</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stag</td>
</tr>
<tr>
<td>Fred</td>
<td>2 , 2</td>
</tr>
<tr>
<td>Rabbit</td>
<td>1 , 0</td>
</tr>
<tr>
<td>p-mix</td>
<td>2p+(1-p), 2 p</td>
</tr>
</tbody>
</table>

Barny’s best q-response to Fred’s p-mix
- Stag best (q = 1)
 - if \(2 p > 1 \), or \(p > 1/2 \)
- Rabbit best (q = 0) if \(p < 1/2 \)
- All q equally good if \(p = 1/2 \)

Fred’s best p-response to Barny’s q-mix
- Stag best (p = 1)
 - if \(2 q > 1 \), or \(q > 1/2 \)
- Rabbit best (p = 0) if \(q < 1/2 \)
- All p equally good if \(q = 1/2 \)

Three Nash equilibria -
- Two pure: (1) (p=1, q=1), payoffs (2 , 2) (2) (p=0, q=0), payoffs (1,1)
- One mixed: (p=1/2, q=1/2), with expected payoffs
 - \(= pq (2,2) + (1-p)(1-q) (1,1) + p(1-q) (0,1) + (1-p)q (1,0) \)
 - \(= 1/4 (2,2) + 1/4 (1,1) + 1/4 (0,1) + 1/4 (1,0) = (1,1) \)

In mixed-strategy equilibrium, each has correct belief
- about the probabilities with which the other will choose actions
- “Just right” subjective uncertainty about what the other might do
- keeps each objectively unsure about what he himself should do
Martin's best q-response to John's p-mix
Brunette best (q = 1) if
\[3p + 2(1-p) > 4p \]
\[2 - 2p > p, \quad p < \frac{2}{3} \]
Blonde best (q = 0) if p > \frac{2}{3}
All q equally good if p = \frac{2}{3}

John's best p-response to Martin's q-mix
Brunette best (p = 1) if q < \frac{2}{3}
Blonde best (p = 0) if q > \frac{2}{3}.
All p equally good if q = \frac{2}{3}

Three Nash equilibria -
Two pure: (1) (p=0, q=1), payoffs (4, 2), (2) (p=1, q=0), payoffs (2,4)
One mixed: (p=2/3, q=2/3), with expected payoffs
= \(pq (3,3) + p(1-q) (2,4) + (1-p) q (4,2) + (1-p)(1-q) (0,0) \)
= \(4/9 (3,3) + 2/9 (2,4) + 2/9 (4,2) + 1/9 (0,0) \)
= \((24/9,24/9) = (2.67,2.67) \)
Worse than (3,3) because of the 1/9 probability of "clash"
Better to do coordinated or correlated randomization based on some random event both can observe
COMMENTS ON MIXED STRATEGY EQUILIBRIA

1. For most mixtures of other player, your response is pure
 Thus you are willing to mix only for very special mix of other
 That is, probabilities in one player’s mix are determined
 by condition of keeping the other indifferent
 Probabilities in your mix change when other’s payoffs change,
 not when your own payoffs change!
 (Unless change is big enough to destroy mixed strat. eq’m.)
 This is difficult to grasp for actual players and for students

2. A mixing player is indifferent between all his pure strategies
 Willing to mix, but no positive incentive to choose
 exactly the equilibrium probabilities
 Therefore dynamic stability of the uncertain beliefs is unclear
 if mixed strategy equilibrium is perturbed by some change

3. In zero-sum-games there is genuine reason for mixing –
 other’s best response to your pure strategies is worse for you
 (This is why maximin / minimax are relevant in these games)
 And the condition of "keeping the other indifferent"
 is the same as being indifferent yourself

4. In non-zero-sum games, mixed strategy equilibria are sustained
 only by "just-right" subjective uncertainty about others’ actions
 Therefore their relevance is more doubtful
 especially because expected payoff can be low
 due to possibility of "clashing" choices
 Will see possible interpretation when doing evolutionary games
 In the assurance game, expect convergence to a pure eqm.
 In Chicken, mixture in population possible

5. Important to choose randomly at each occasion
 People tend to "alternate" too much
6. Mixture probabilities respond to payoff in apparently strange ways:

<table>
<thead>
<tr>
<th></th>
<th>Cops</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>City</td>
</tr>
<tr>
<td>Robbers</td>
<td>City</td>
</tr>
<tr>
<td></td>
<td>Suburb</td>
</tr>
</tbody>
</table>

\[20p + 80(1-p) = xp + 30(1-p), \quad p = \frac{50}{30+x}\]

Example: Old: \(x = 70, \quad p = 0.500\)
New: \(x = 90, \quad p = \frac{50}{120} = 0.417\)

As the Robbers’ City strategy becomes "better", they use it less. This seems paradoxical, but only apparently so.
Why? Cops, knowing that the Suburbs strategy is now worse for them, use the City strategy more. So Robbers should use it less. Not so strange, after all.
Also, equilibrium expected payoff = \((80x - 600)/(30+x)\) increases as \(x\) increases – "better" strategy is beneficial in payoff sense.