PARTIAL (INDUSTRY) COMPETITIVE EQUILIBRIUM

DEMAND

Comes from final consumers, or downstream producers
Horizontal sum of individual demands if no externalities
\(P = D(Q) \) “inverse demand curve”
Other prices, incomes, preferences ... “shift variables”

SUPPLY

Horizontal sum of firms’ supply curves if no externalities
Other prices, technology ... shift variables
Different time-frames:
 Short run # of firms fixed; some sunk costs for each
 Long run no sunk costs, free entry and exit
Longer the time-frame, the greater the supply response
 (industry supply curve more elastic)

EQUILIBRIUM

Intersection of supply and demand
May be modified by taxes etc.
May not be achieved or changed instantly
 can have disequilibrium dynamics
COMPARATIVE STATICS
Change in some exogenous variable
Shift of one curve, causes movement along the other
Compare new equilibrium with old

EXAMPLE – TAX INCIDENCE

ECO 102 PICTURE

\[P_d = \text{price paid by consumers} \]
\[P_s = \text{price received by firms} \]
\[t = \text{tax per unit of the good} \]

With “normal” \(D \) and \(S \)
\(P_d \) rises by less than \(t \)
\(P_s \) falls by less than \(t \)
\(Q \) decreases
CALCULUS METHOD

\[P_d = D(Q), \quad P_s = S(Q), \quad P_d - P_s = t \]

Everything is a function of \(t \). Differentiate:

\[\frac{dP_d}{dt} = D'(Q) \frac{dQ}{dt}, \quad \frac{dP_s}{dt} = S'(Q) \frac{dQ}{dt}, \]

and

\[\frac{dP_d}{dt} - \frac{dP_s}{dt} = 1 \]

Substitute and solve (eqns. linear in derivatives)

\[\frac{dQ}{dt} = \frac{1}{D'(Q) - S'(Q)} \]

\[\frac{dP_d}{dt} = \frac{D'(Q)}{D'(Q) - S'(Q)}, \quad \frac{dP_s}{dt} = \frac{S'(Q)}{D'(Q) - S'(Q)} \]

In "normal" case \(D'(Q) < 0, \ S'(Q) > 0 \), and

\[\frac{dQ}{dt} < 0, \quad 0 < \frac{dP_d}{dt} < 1, \quad -1 < \frac{dP_s}{dt} < 0 \]

Enables more precise quantitative calculations

CS and PS
CONSUMER SURPLUS

Utility: \(U(x, y) = y + F(x) \)
Budget: \(px + y = M \)
FONC: \(p = F'(x) \)
SOSC: \(F''(x) < 0 \)

When quantity \(q \) consumed,

\[F(q) = F(0) + \int_0^q F'(x) \, dx \]

Spending \(E = pq = q \, F'(q) \)

CS(q) = \([F(q) - F(0)] - E\)

PRODUCER SURPLUS

Cost: \(C(x) \)
Profit: \(\Pi(x) = px - C(x) \)
FONC: \(p = C'(x) \)
SOSC: \(C''(x) > 0 \)

When quantity \(q \) produced,

\[C(q) = FC + \int_0^q C'(x) \, dx \]

Revenue \(R = pq \)

PS(q) = \(R - [C(q) - FC] \)

Social optimum: \(F''(q^*) = C''(q^*) = p^* \)
Achieved in competitive equilibrium