THE ESTIMATION OF STRUCTURAL SHIFTS
BY SWITCHING REGRESSIONS

Stephen M. Goldfeld
Richard E. Quandt

Econometric Research Program
Research Memorandum No. 147
May 1973

The research described in this paper was supported by NSF Grant GS 32003X.
1. **Introduction**

In recent years, increasing attention has been devoted to problems of parameter variation in regression models. This variation has been modeled in two principal ways. The first of the approaches typically allows for an infinite number of possible parameter values and for random parameter variations. In this case the appropriate econometric technique is the random coefficients regression model or one of its particular varieties, such as the error-components model or the linear dynamic recursive model ([8], [12], [22], [32], [37]).

Alternatively, the number of possible parameter changes may be finite (usually small) where we may call each possible state of the parameter vector a regime. In time series applications these regimes may be associated with such things as the state of the business cycle or other more fundamental structural changes. In cross section work different regimes may be posited to hold for behavioral units with different characteristics (e.g., asset size, income, and whether or not rationing is imposed on the unit in a particular market). In either event the appropriate econometric technique is the switching regression model.

The switching regressions model can be formulated as follows. Assume that n observations are available on a dependent variable y and on p independent variables x_1, \ldots, x_p. Denote the ith observation on the x's by the vector x_i. There may be reason to believe that the observations on y were generated by two distinct regression equations or regimes; i.e.,

$$y_i = x_i' \beta_1 + u_{1i} \quad i \in I_1 \quad (1-1)$$

and

$$y_i = x_i' \beta_2 + u_{2i} \quad i \in I_2 \quad (1-2)$$
where \(i \) indexes observations, \(I_1 \) and \(I_2 \) are the sets of indices for which the two different regression equations hold, \(u_{1i} \) and \(u_{2i} \) are error terms (customarily but not necessarily assumed to be distributed as \(N(0, \sigma_1^2) \) and \(N(0, \sigma_2^2) \)) and finally where the \(\beta_1, \beta_2 \) are the vectors of regression coefficients. In the most general case one would assume that \((\beta_1, \sigma_1^2) \neq (\beta_2, \sigma_2^2) \), although in particular instances one or more of the parameters may be thought to have identical values in the two regimes.\(^1\)

The circumstance which makes the estimation of (1-1) and (1-2) nontrivial and which makes testing the null hypothesis that no switch occurred (i.e., that there is only one regime) also nontrivial is that the investigator is assumed to have no exact prior knowledge about how to classify data points with respect to the two regimes (1) and (2).\(^2\) In the absence of such knowledge, clearly one must impose some further structure on the problem if it is to be tractable. As we shall see below this may be accomplished in a variety of ways both deterministically and in the spirit of the random coefficients model. However, before describing these methods we shall indicate some substantive applications of the switching model.

Some Applications. Several recent econometric models have posited the existence of a switch in a regression equation. The manner in which the sample of observations was separated into subsamples corresponding to the two regimes varies from case to case. We describe three such models.\(^3\)

\(^1\)Special constraints are imposed on the problem if it is assumed that the equations representing the two regimes intersect at some particular point. See Ando [1], Hudson [25], Hinkley [23], [2h], and Gallant and Fuller [16].

\(^2\)With such knowledge, hypothesis testing can be accomplished, at least under certain circumstances, by the Chow test [6]. The corresponding estimation problem is solved by obtaining the least squares regression from the pooled data if the Chow test produces insignificant results and by obtaining separate least squares regressions in the opposite case.

\(^3\)Also see models by Sengupta and Tintner [33, 3h], Gordon [20], and Fair and Jaffee [13].
Hamermesh [21] is concerned with estimating a wage equation according to which the negotiated annual wage change for the ith firm in the tth period, W_{it}, is a linear function of the inverse of the unemployment rate U_t and the annual percentage change in the consumer price index c_t. He assumes that a threshold effect is present and manifests itself at $c = 2.0$. Hence he posits two regimes given by

$$W_{it} = \beta_1 + \beta_2 U_t^{-1} + \beta_3 c_t + u_t \quad \text{if} \quad c_t \leq 2$$

$$W_{it} = \gamma_1 + \gamma_2 U_t^{-1} + \gamma_3 c_t + v_t \quad \text{if} \quad c_t > 2$$

The mechanism by which the two regimes are separated is given here a priori; in principle it would be desirable to estimate an unknown c^* such that the first regime holds when $c_t \leq c^*$ and the second in the converse case.

Davis, Dempster and Wildavsky [9], [10] attempt to explain the budgetary process of U.S. government agencies. Letting x_t represent the appropriation requested by the Bureau of the Budget and y_t the appropriation passed by Congress, the simplest of their models takes the form

$$x_t = \beta y_{t-1} + u_t$$

$$y_t = \gamma x_t + v_t$$

where u_t and v_t are normally distributed errors. Because of the change in administrations over time and other possible causes of changes in decision structures they posit the possibility of two regimes, i.e.,

$$(\beta, \gamma) = (\beta_1, \gamma_1) \quad \text{if} \quad t \leq t^*$$

$$(\beta, \gamma) = (\beta_2, \gamma_2) \quad \text{if} \quad t > t^*$$

They identify the unknown t^* by an examination of the residuals from the equations and the Chow F-statistic for varying t^*.

Silber [35] is concerned with explaining the spread between the interest rate on federal agency securities and comparable maturity Treasury securities as a function of the size of the agency issue. He posits a model of the form
\[y_t = a_1 + b_1 s_t + c x_t + u_t \quad s_t \leq s^* \]
\[y_t = a_2 + b_2 s_t + c x_t + v_t \quad s_t > s^* \]

where \(y \) is the spread, \(x \) is a set of other variables (whose coefficients remain constant), \(s \) is the size of the issue and \(s^* \) is the critical size. Silber estimated this model by use of a variant of a technique to be described below and found strong support for the switching hypothesis.

2. Theoretical Results

Several econometric approaches have been introduced to deal with switching regressions under a variety of conditions. The principal difference among conditions is whether nature's choice between the two regimes is assumed to be stochastic, i.e., depend on unknown probabilities \(\lambda \) and \(1-\lambda \) respectively or deterministic in the sense that it depends on the comparison of an observable variable \(z \) with an unknown threshold or cutoff value \(z_0 \), where \(z \) may either be one of the regressors or an entirely extraneous variable. A special case of this latter mechanism is one in which the variable \(z \) is the time index of the observations.

Deterministic Switching Based on Time Index. Assume that (1-1) holds for \(i < i^* \) and (1-2) holds \(i > i^* \). Quandt has proposed ([28], [31]) that the two regimes be estimated by first maximizing the likelihood conditional on \(i^* \)

\[
L(y|i^*) = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} \sigma_1^{-i^*} \sigma_2^{-(n-i^*)} \exp\left[-\frac{1}{2\sigma_1^2} \sum_{i=1}^{i^*} (y_{ix} - x_i \beta_1)^2 - \frac{1}{2\sigma_2^2} \sum_{i=i^*+1}^{n} (y_{ix} - x_i \beta_2)^2\right]
\]

and then choosing as the estimate for \(i^* \) that value which maximizes the maximal likelihoods \(L(y|i^*) \). For testing the null hypothesis that no switch took place a likelihood ratio test is suggested with the likelihood ratio being given by

This example is one in which it seems desirable to impose a 'meeting condition,' i.e., that at \(s = s^* \) the two regimes should give the same \(y_t \). Silber did not do this but his unconstrained estimates nearly satisfied the condition. See also footnote 1.
\[u = \frac{\hat{\sigma}^2}{\hat{\sigma}^2_{1}} \hat{\sigma}^{(n-i^*)} \] where \(\hat{\sigma} \) is the estimated standard deviation of the residuals from a single regression over the entire sample. 5

The previous technique provides a method for both estimation and testing. There are several other techniques which just address the testing problem. Brown and Durbin [6] have introduced a test based on recursive residuals defined in the following way. Let \(\hat{\beta}_i \) be the least squares estimate of \(\beta \) based on the first \(i \) observations and let \(X_i \) be the matrix having as its rows the vectors
\[x_1, x_2, \ldots, x_i. \] Then, defining
\[w_i = \frac{y_i - x_i^T \hat{\beta}_{i-1}}{[1 + x_i^T (x_i^T X_{i-1} X_{i-1}^T)^{-1} x_i]^{1/2}} \quad i = p+1, \ldots, n \]
it can be shown that under the null hypothesis of no switch, \(w_i \sim N(0, \sigma^2) \). The test for shifting \(\beta \) is based on departures from zero of the cumulative sums
\[c_i = \frac{1}{n} \sum_{j=p+1}^{n} w_j \quad i = p + 1, \ldots, n \]
where \(s^2 = \frac{\sum_{j=p+1}^{n} w_j^2}{n-p} \). At the .05 level of significance the null hypothesis is rejected if the sequence of \(c_i \)'s crosses either the line connecting \((p, .948\sqrt{n-p})\) and \((n, 2.84\sqrt{n-p})\) or the line connecting \((p, -.948\sqrt{n-p})\) and \((n, -2.84\sqrt{n-p})\).

Farley and Hinich [14] and Farley, Hinich and McGuire [15] devise an alternative specification based on the assumption that the unknown switching point is equally likely to have occurred at each value of the index \(i \). If \(i^* \) were known, the null hypothesis that the regression coefficients before and after \(i^* \) are the same could be tested by estimating the regression
\[y_i = x_i^T \beta + z_i^T \delta + u_i \]

5 The evidence in [31] suggested some problems with this test but more recently it has been found to be of use for certain ranges of the true value of \(i^* \) [15]. We have found, and it is also reported in [15] that a Chow-test, used with caution and as if \(i^* \) were known a priori, is also satisfactory.
where \(z_i = x_i \) if \(i > i^* \) and \(z_i = 0 \) otherwise and testing the hypothesis \(\delta = 0 \). Since \(i^* \) is unknown, they propose replacing \(z_i \) by the sum of all possible \(z_i \)'s; hence \(z_i \) becomes \(i x_i \). The null hypothesis then is that \(\delta = 0 \) in the regression

\[
y_i = x_i'(\beta + i\delta) + u_i.
\]

Some finite sample comparisons of this test with the likelihood ratio test proposed by Quandt and with the Chow test based on the assumption that \(i^* = i/2 \) are reported in [15].

Deterministic Switching Based on Other Variables. Each of the previous three procedures can be adapted to the situation in which the switching mechanism is controlled by a single variable with observations \(z_1 \), provided that there is no serial correlation of the disturbances and there are no lags present. One simply rearranges the observations in increasing (or decreasing) order of \(z_i \) and applies the previous techniques with no essential change.

A recent and more general formulation, due to Goldfeld and Quandt [19] assumes that there exist variables with observations \(z_{i1}, \ldots, z_{is} \) \((i=1, \ldots, n) \) and that nature selects between regimes 1 and 2 according to whether

\[
\sum_{i=1}^{s} \pi_i z_{i} \leq 0 \quad \text{or} \quad > 0
\]

where the \(\pi_i \) are unknown coefficients. (The simplest possible case of this type is when \(s = 2 \), \(z_{i2} = -1 \) and \(\pi_1 = 1 \) a priori. In that case the classification depends on the comparison of a single \(z \)-variable, \(z_{i1} \), with an (unknown) cutoff point \(\pi_2 \) and is formally the same as the problems of Hamermesh or Silber). Letting \(D_i = 0 \) if \(\sum_{i=1}^{s} \pi_i z_{i} \leq 0 \) and \(D_i = 1 \) otherwise, the two regimes may be combined by multiplying \((1-1) \) by \((1-D_i) \), \((1-2) \) by \(D_i \) and adding, which yields

\[
y_i = x_i'[1(1-D_i)\beta_1 + D_i\beta_2] + (1-D_i)u_{i1} + D_iu_{i2}
\]

in which the \(\beta \)'s, \(\sigma \)'s and \(D \)'s must be estimated. In order to render this problem tractable, \(D_i \) may be approximated by a continuous function. One approximation
that has been successful is given by\(^6\)

\[
D_i = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\xi^2}{2\sigma^2}\right) d\xi
\]

(2-3)

The loglikelihood function is

\[
\log L = -\frac{n}{2} \log 2\pi - \frac{1}{2} \sum_{i=1}^{n} \log \left(\sigma_i^2 (1-D_i)^2 + \sigma_{D_i}^2 \right) - \frac{1}{2} \sum_{i=1}^{n} \frac{(x_i - \bar{x}_i [\hat{\beta}_1 (1-D_i) + \hat{\beta}_2 D_i])^2}{\sigma_i^2 (1-D_i)^2 + \sigma_{D_i}^2}
\]

(2-4)

Replacing \(D_i\) by (2-3) in (2-4), the likelihood function may be maximized with respect to the \(\beta\)'s, \(\pi\)'s and the \(\sigma\) introduced in (2-3) which has been interpreted to measure the goodness of the discrimination between the regimes. Unless discrimination is perfect, some of the estimated \(\hat{D}_i\) will not be exactly 0 or 1.

One variant of the above D-method which handles this problem is to estimate in a second stage separate regressions as in (1-1) and (1-2) where the sets \(I_1\) and \(I_2\) are defined by\(^7\)

\[
I_1 = \{i | \Sigma \hat{\pi}_i z_{il} < 0 \}
\]

\[
I_2 = \{i | \Sigma \hat{\pi}_i z_{il} > 0 \}
\]

Let the maximum of the likelihood function (the logarithm of which is (2-4)) be denoted by \(L(\hat{\beta}_1, \hat{\beta}_2, \hat{\sigma}_1, \hat{\sigma}_2, \hat{\pi})\). and the maximum under the null hypothesis by \(L(\hat{\beta}, \hat{\sigma})\). The natural likelihood ratio test statistic is

\(^6\)Alternatives are the Cauchy integral \(D_i = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} \left(\Sigma_{l=1}^{s} \pi_l z_{il} \right) \) or the logistic \(D_i = (1 + \exp(-\Sigma_{l=1}^{s} \pi_l z_{il}))^{-1}\) where the scale parameter corresponding to \(\sigma\) in (2-3) has been suppressed. See Bacon and Watts [2]. In some cases it is possible to dispense with the approximation of \(D_i\). See, for example, Gallant and Fuller [16].

\(^7\)An alternative in either case is not to estimate \(\sigma\) in the approximation (2-3) but to fix it as some small value.
\[
\mu = \frac{L(\hat{\beta}, \hat{\sigma})}{L(\hat{\beta}_1, \hat{\beta}_2, \hat{\sigma}_1, \hat{\sigma}_2, \pi)}
\]

and $-2 \log \mu$ appears in finite samples to be well approximated by the χ^2 distribution with $p+s+2$ degrees of freedom.

Stochastic Choice of Regimes. On the assumption of normality of error terms the dependent variable y has the following probability density functions (pdf) in the two regimes:

\[
f_{1i} = \frac{1}{\sqrt{2\pi\sigma_1}} \exp\left\{-\frac{1}{2\sigma_1^2} (y_i - x_i'\beta_1)^2\right\} \quad (2-5)
\]

\[
f_{2i} = \frac{1}{\sqrt{2\pi\sigma_2}} \exp\left\{-\frac{1}{2\sigma_2^2} (y_i - x_i'\beta_2)^2\right\} \quad (2-6)
\]

It has been suggested by Quandt ([29], [30]) that one may think of nature choosing regimes 1 and 2 with unknown probabilities λ and $1-\lambda$. The pdf of y_i then is

\[
h(y_i) = \lambda f_{1i} + (1-\lambda)f_{2i} \quad (2-7)
\]

and the appropriate loglikelihood function is

\[
\log L = \sum_{i=1}^{n} \log[\lambda f_{1i} + (1-\lambda)f_{2i}] \quad (2-8)
\]

which is to be maximized with respect to the parameters of (2-5), (2-6) and λ.

Tests of the null hypothesis again may employ the natural likelihood ratio.

3. **Extensions of the Analysis**

Simple Extensions. Both the D-method and the λ-method may be extended to the case of more than two regimes. If r regimes are postulated, the pdf corresponding to (2-7) in the λ-method becomes

\[
h(y_i) = \sum_{j=1}^{r} \lambda_j f_{ji}
\]

8The formulation is closely related to the question of mixture distributions. See [4], [11], [38]. It is obviously also spiritually close to the random coefficients model with only two possible values for the coefficient vector.
with \(\sum_{j=1}^{r} \lambda_j = 1 \). For the \(D \)-method we define \(r-1 \) sets of variables \(D_i^j \) \((j = 1, \ldots, r-1) \) similarly to (2-3). For convenience also define \(D_i^0 = 1 \) and \(D_i^r = 0 \). The equation representing the \(k \)th regime is then multiplied by

\[
\prod_{j=0}^{k-1} D_i^j \prod_{j=k}^{r} (1-D_i^j)
\]

and the resulting equations are added together to form a composite equation.

Another straightforward generalization is to assume that the probability \(\lambda \) in the \(\lambda \)-method is itself a function of some variable \(z \). The resulting procedure is a hybrid between the \(D \)-method and the \(\lambda \)-method. The likelihood function is as before.\(^9\)

A Markov Model. It is an essential feature of the \(\lambda \)-method that the probability that nature selects regime 1 or 2 at the \(i \)th trial is independent of what state the system was in on the previous trial. Goldfeld and Quandt [19] recently relaxed this assumption by positing that the transitions of the system between the two states is governed by the constant transition matrix \(T \). If \(\lambda'_i = (\lambda_{1i}, 1-\lambda_{1i}) \) denotes the vector of probabilities that regimes 1 or 2 will be chosen at the \(i \)th trial, we have

\[
\lambda'_i = \lambda'_{i-1} T
\]

and

\[
\lambda'_i = \lambda'_0 T^i
\]

It is straightforward to express the elements of \(\lambda'_i \) in terms of the elements of \(T \). The loglikelihood function (2-6) is then written as

\[\text{For more detail see [17].}\]
\[
\log L = \sum_{i=1}^{n} \log [\ln f_{1i} + (1-\ln) f_{2i}]
\]

which needs to be maximized with respect to \(\beta_1, \beta_2\), the \(\sigma^2\)'s and the elements of \(T\). A further extension is possible if one assumes that the elements of \(T\) are themselves functions of some extraneous variable \(z\).\(^{10}\)

Serial Correlation of Disturbances. None of the methods discussed so far has treated the case of error structures involving autocorrelation. In ordinary regression models it is customary to introduce autocorrelation by assuming a first-order (more rarely, a second-order) Markov process for the error term as in

\[
u_t = \rho u_{t-1} + \varepsilon_t
\]

In the present case more alternatives arise, partly because of the regime-switching mechanism and partly because one may wish to approach the problem either with the D-method or the \(\lambda\)-method.

The first possibility is to assume that

\[
u_{1t} = \rho_1 [(1-D_{t-1})u_{1t-1} + D_{t-1} u_{2t-1}] + \varepsilon_{1t}
\]

\[
u_{2t} = \rho_2 [(1-D_{t-1})u_{1t-1} + D_{t-1} u_{2t-1}] + \varepsilon_{2t}
\]

if the D-method is employed, where \(\varepsilon_{1t} \sim N(0,\sigma_1^2)\) and \(\varepsilon_{2t} \sim N(0,\sigma_2^2)\) and independent of each other.

The equivalent assumption for the \(\lambda\)-method is

\[
u_{1t} = \rho_1 u_{1t-1} + \varepsilon_{1t} \quad \text{with probability } \lambda^2
\]

\[
u_{1t} = \rho_1 u_{2t-1} + \varepsilon_{1t} \quad \text{with probability } \lambda(1-\lambda)
\]

\[
u_{2t} = \rho_2 u_{1t-1} + \varepsilon_{2t} \quad \text{with probability } \lambda(1-\lambda)
\]

\[
u_{2t} = \rho_2 u_{2t-1} + \varepsilon_{2t} \quad \text{with probability } (1-\lambda)^2
\]

\(^{10}\) Also contains several other switching models. One model allows the choice of a regime to depend on the temporal pattern of regime choices. Another allows for a hybrid transition regime between the two pure regimes. Wilton \(^{39}\) has also considered a special case of this last problem.
The essence of the assumption is that there are two autocorrelation coefficients each associated with one of the regimes, which are applied to the error term of the previous period, irrespective of which regime that error term came from. The appropriate likelihood functions can be derived but are not presented here because of their relative complexity.

An alternative specification, originally suggested to the authors by J. D. Sargan, posits that if in period t regime 1 operates and in $t-1$ regime 1 operated as well, the error term follows the usual Markov process; if in period $t-1$ regime 2 operated (i.e., a switch took place) then a nonautocorrelated error term is generated. Accordingly, for the D-method

$$u_{1t} = (1-D_{t-1})u_{1t-1} + \varepsilon_{1t} + D_{t-1}\varepsilon_{1t} = (1-D_{t-1})u_{1t-1} + \varepsilon_{1t}$$

$$u_{2t} = D_{t-1}(\rho_2u_{2t-1} + \varepsilon_{2t}) + (1-D_{t-1})\varepsilon_{2t} = D_{t-1}\rho_2u_{2t-1} + \varepsilon_{2t}$$

and for the λ-method

$$u_{1t} = \rho_1u_{1t-1} + \varepsilon_{1t} \quad \text{with probability } \lambda^2$$
$$u_{1t} = \varepsilon_{1t} \quad \text{with probability } \lambda(1-\lambda)$$
$$u_{2t} = \varepsilon_{2t} \quad \text{with probability } \lambda(1-\lambda)$$
$$u_{2t} = \rho_2u_{2t-1} + \varepsilon_{2t} \quad \text{with probability } (1-\lambda)^2$$

The corresponding likelihood functions can again be derived but are also omitted here. In either formulation estimates of all parameters can be obtained by maximizing the likelihood function.11

Switching in Simultaneous Equations. A two-regime problem may be said to exist in a system of simultaneous equations if

$$B_1y_i + \Gamma_1z_i = u_{1i}, u_{1i} \sim N(0,\Sigma_1), i \in I_1$$

and

$$B_2y_i + \Gamma_2z_i = u_{2i}, u_{2i} \sim N(0,\Sigma_2), i \in I_2$$

11For a related contribution to the autocorrelation problem see Maddala and Nelson [26].
where B_1, B_2, Γ_1, Γ_2 are the usual coefficient matrices, y_i and z_i the ith observation on the vectors of G endogenous and K exogenous variables respectively and I_1 and I_2 the index sets defined in (1-1) and (1-2). The formulation of (3-7) and (3-8) allows for various special cases such as the case in which only one equation in the system is subject to switching; in that event B_1 and B_2 are the same except for the row corresponding to the switching equation and similarly for Γ_1 and Γ_2.

Either the D-method or the λ-method may be applied to the problem, depending on the specification of the switching mechanism as described in Section 2. In the case of the D-method we define

$$B_i = (1-D_i)B_1 + D_iB_2$$
$$\Gamma_i = (1-D_i)\Gamma_1 + D_i\Gamma_2$$
$$\Sigma_i = (1-D_i)^2\Sigma_1 + D_i^2\Sigma_2$$

The joint pdf for the vector y_i then is

$$h(y_i) = (2\pi)^{-G/2} |\text{det} \Sigma_i|^{-1/2} |\text{det} B_i| \exp\left(-\frac{1}{2}(B_i y_i + \Gamma_i z_i)^t \Sigma_i^{-1}(B_i y_i + \Gamma_i z_i)\right) \quad (3-9)$$

from which the loglikelihood function is obtained as $\log L = \sum \log h(y_i)$. In the case of the λ-method we have

$$h(y_i) = \lambda h_1(y_i) + (1-\lambda)h_2(y_i) \quad (3-10)$$

where $h_1(y_i)$ and $h_2(y_i)$ are the joint pdf's for y_i under (3-7) and (3-8) respectively. The loglikelihood is again straightforward.\(^\text{12}\)

In the case of simultaneous equations, it is necessary to verify that in an econometric model incorporating switching between regimes the parameters are identified. It is plausible to assume that all parameters are identified separately.

\(^\text{12}\)Barten and Bronsard [3] have considered the application of two stage least squares when the shift points are known a priori. It is possible to combine a multivariate generalization of the technique described at the beginning of Section 2 with the Barten-Bronsard method to yield a two stage procedure with unknown shift points. This will be the subject of a forthcoming paper.
in (3-7) and (3-8). It can then be shown that the λ-combination leaves the composite system identified. It can also be shown that the composite system is identified under the D-method if (a) all D_i equal 0 or 1 exactly, or (b) if each equation in (3-7) satisfies the same a priori restrictions as the corresponding equation in (3-8).

Switching of Causal Directions. It is interesting to consider the possibility that the difference between two regimes may consist only in which variable is dependent (endogenous) and which is independent (exogenous). For simplicity we shall consider the single equation case.

Let the two regimes be given by

$$y_i = a_1 + b_1 x_i + u_{1i} \quad i \in I_1 \quad (3-11)$$

$$x_i = a_2 + b_2 y_i + u_{2i} \quad i \in I_2 \quad (3-12)$$

where, in the first regime x_i and in the second regime y_i is treated as nonstochastic and identical in repeated samples, and where $u_{1i} \sim N(0, \sigma^2_1)$, $u_{2i} \sim N(0, \sigma^2_2)$. A case in point might be where either x or y but not both could be chosen as an exogenous policy instrument and the policy maker shifts between instruments at unknown points of time. More realistically such a problem is likely to be found in the context of a macroeconometric model of the simultaneous equations variety.

It is obvious that if / were estimated on the assumption that all observations were generated by it, the estimates would not be consistent.

We have explored the possibility of estimating such a model by both the D and λ techniques but we have encountered conceptual problems in each instance.

Therefore, the proper method for estimating this rather interesting model remains an open question.
4. Concluding Remarks

Numerous approaches exist to the several specifications of switching regression equations. Some of these such as Quandt ([28], [31]), Brown and Durbin [6], and Farley and Hinich [14] can easily be incorporated in standard regression packages for computation. Others, namely the D and λ-methods and their variants, are designed to produce maximum likelihood estimates and invariably involve problems of numerical optimization. These problems have been found soluble both in sampling experiments and in realistic contexts. On the basis of fairly extensive Monte Carlo experiments in single-equation models and somewhat more restricted experiments in simultaneous equation models both the D and λ-method appear to have acceptable small sample properties. The Fair and Jaffee model of the housing market [12] was reestimated using both methods as well as the Markov generalization of the λ-method and yielded reasonable conclusions in each instance.
REFERENCES

