Theoretical Equivalence and the Semantic View of Theories

Abstract

Halvorson (2012) argues through a series of examples and a general result due to Myers (1997) that the “semantic view” of theories has no available account of formal theoretical equivalence. De Bouvere (1963) provides criteria overlooked in Halvorson’s paper that are immune to his counterexamples and to the theorem he cites. Those criteria accord with a modest version of the semantic view, sometimes assumed in Halvorson’s arguments, that rejects some of van Fraassen’s apparent claims while retaining the core of Patrick Suppes’ proposal (1967). I do not endorse any version of the semantic view of theories.
1. Introduction

Halvorson (2012) argues that the “semantic view” of theories, (Suppes, 1967; van Fraassen, 1980), has, and can have, no account of theoretical equivalence—indeed, it “fails miserably” to be amenable to any such account. He considers three model theoretic criteria for theoretical equivalence—identity, equicardinality of model classes, and 1-1 onto mapping of models of one class to isomorphic models of the other class. He produces counterexamples to each of them, and claims the three possibilities exhaust the plausible alternatives. I have no brief for the semantic view, but whatever its faults, Halvorson’s objections on this score need not be among them. The reasons reveal aspects of the semantic view that some of its advocates appear to have contradicted or at least chosen not to display, and suggest that, despite the rhetoric of its advocates, in important respects a tenable version of the semantic view is not much different from the “syntactic” view that, whatever more it may be, a theory is something that is said in a language.

Halvorson also criticizes van Fraassen’s claims that for philosophical purposes model theory has more explanatory resources than logical syntax, but I shall not be concerned with those comments. Halvorson’s broader point is that the rhetoric of the semantic view regrettably eschews the full resources of logic and mathematics that are needed to understand the properties of theories, and I agree, but I will not elaborate. My argument is entirely with his claim
that no plausible account of the structural equivalence of theories is available to the semantic view that defeats his criticisms. Such an account has been available for almost half a century.

2. Syntax and the Semantic View of Theories

Halvorson’s strategy is to examine three model theoretic mappings that might correspond to interdefinability relations of syntactical objects—sentences or formulae—and finding that all three succumb to his counterexamples, infers that no account of theoretical equivalence is possible on the semantic view of theories. I will dispute Halvorson’s contention that his counterexamples refute all possible accounts of theoretical equivalence compatible with the semantic view, but, first, two lacunae in his argument need to be addressed, gaps that might be thought to invalidate his argument (and mine) without the necessity of considering the details of his examples or offering an alternative to his three possible criteria for theoretical equivalence. I think one of the gaps can be filled, and the other is sufficiently vague that it is worth considering Halvorson’s arguments without trying fully to fill the hole.

First, it can be objected that Halvorson’ strategy begs the question against the semantic view. The objection goes like this: Many of Halvorson’s examples are model classes characterized as the models of a first-order theory in the ordinary linguistic sense of “theory,” and he requires that different formulations of the same theory be “interdefinable” by a mutual interpretability relation. But according to the semantic view a theory just is a
class of relational structures, and therefore interdefinability relations among syntactical objects are irrelevant.

That is not among my objections to Halvorson’s arguments because I think the objection is quite wrong, obviously wrong, for the following reasons: On the semantic view, to present a theory is to specify a class of relational structures. That can only be done through a description, in a language, of the class of structures.

Patrick Suppes (1967), for example, says that a theory is a set theoretic predicate, and a predicate is something linguistic. Van Fraassenseems to take exception: “The impact of Suppes’ innovation is lost if models are defined, as in many standard logic texts, to be partially linguistic entities, each yoked to a particular syntax. In my terminology here the models are mathematical structures, called models of a given theory only by virtue of belonging to the class defined to be the models of the theory” (1989, 366). Other writers (e.g., Lloyd, 1984), perhaps influenced by van Fraassen, suggest that model classes are directly given with the use of a language. What they, and van Fraassen, unlike Suppes, say cannot be taken entirely seriously because it yields a conception of theories that makes them ineffable and their characterization magical. Newton, Einstein, Schrodinger, etc., had no way of specifying the class of relational structures they intended except indirectly as those structures satisfying their theoretical claims. Nor do we today. The “yoke” to language may be neglected, but it remains.

To be at all plausible, the semantic view must distinguish between the content
of a theory—its class of models—and the means of characterizing that class—
the theory expressed in some language. That specification is only possible if
predicates in the language denote specific relations in each model for the
theory—otherwise the very notion of a theory—even construed as a complex
predicate—specifying the class of models it is true of or satisfied by makes no
sense. Advocates of the semantic view implicitly agree in giving examples
implying that the models constituting the content of a theory are described by
open formulae or equations, often with the qualifying conditions of the usual
formulations of the theory removed. Thus Lloyd (1984) describes population
genetics models by various sets of equations, and van Fraassen describes
theories as given by dynamic laws among variables ranging in value over
some “state space,” so that, for example, the models of Newtonian
gravitational theory are described as the solutions to the dynamical equations,
eliminating “force” between the second law of motion and the gravitational
force law, with the third law as a constraint. *Equations are sentences or
formulas in a language.* (If the models were construed to be relational
structures that satisfy claims with qualifiers such as “If all forces are
gravitational...” or “If all non-gravitational forces cancel....”, or with the
corresponding suppositions, the model structures would have to be more
elaborate than van Fraassen proposes, but my point would remain.)

The space of models of, say, Newtonian theory cannot be directly indicated by
pointing, or looking in a magic closet, or through a magical looking class. Van
Fraassen may be slippery, but he is not silly. Like it or not, on the semantic
view language and logical syntax are indispensable tools for the presentation
of theoretical content, and that being so, there is no reason why proposed
syntactical equivalence relations corresponding to model theoretic
equivalence relations should not be considered, and no reason why the fact
that relations in different models are co-denoted by the same expression in a
language should not be taken into account. It is a familiar point that one and
the same theory can be specified in different languages, and we expect some
interdefinability relations between the sentences of the theory in two or more
such presentations. Halvorson is correct in assuming that what the semantic
view requires is an account of theoretical equivalence in which
interdefinability relations between linguistic presentations of theories are
somehow accommodated by relations among models or classes of models of
the theories, and vice versa. It’s just that Halvorson has the
wrong interdefinability relations and the wrong model theoretic relations.

A tenable semantic view, as I construe it, also requires that there is a model
theoretic relation that establishes a common content to different
presentations of a theory in different languages. Invariance over alternative
linguistic presentations is of course not the same as having no suppositions
about relations between structures and languages; it is not the same as being
entirely a-lingual. It is a weaker requirement, but one that I will argue can be
met. Ideally, equivalences characterized by interdefinability of languages and
theories would perfectly correspond with the appropriate model theoretic
equivalences, and I will argue that that, too, can be satisfied.

A second objection to Halvorson’s argument is that he does not consider
observational constraints. At least on van Fraassen’s version of the semantic
view, an equivalence relation among theories ought to preserve observational
equivalence: the equivalent theories should make the same observational claims. Two theories might be equivalent by the kinds of structural relations among models that Halvorson considers, or others, but nonetheless be inequivalent because they make different observational claims, or because the observational fragments of their models are distinct. According to van Fraassen (2006), what counts as observational adequacy of a theory for a body of data is that a “data model” can be “embedded” in a model of the theory. I am not sure what a “data model” is, for example whether it is a collection of instances of relations or values of a function, or whether it is a general relation—e.g., a collection of records of the positions of a planet versus an orbit for the planet. No matter: to take but one of Halvorson’s criteria for equivalence, isomorphism, if two models are isomorphic then any relational structure (i.e., any “data model”) than can be isomorphically embedded in one can be isomorphically embedded in the other. It would seem therefore than some purely formal model theoretic equivalence relation should be necessary and sufficient for observational equivalence on the semantic view of theories. Even if some further invariance were required— for example, if substructures of all modelswere somehow designated as “observational,” (although that, too, could only be specified in a language) and relations among model classes sufficient for theoretical equivalence had also to map “observational substructures” to isomorphic “observational substructures” -- a formal equivalence relation of some kind between model classes would be at least necessary for theoretical equivalence.

3. Isomorphisms and Objections
Halvorson offers three possible criteria of equivalence, identity of model sets, equicardinality of model sets, and 1-1 correspondence of isomorphic models, of which only the last is minimally plausible: two sets of models are equivalent if and only if there is a bijection taking models to isomorphic models. Without defining “isomorphism,” Halvorson gives two examples to show that his isomorphism criterion makes inequivalent theories equivalent, an example to show that it leaves equivalent theories inequivalent, and a general argument. Other examples show that identity and equicardinality proposals would make obviously inequivalent theories equivalent. Since these latter criteria are patently in disagreement with the criteria for theoretical equivalence I will describe, I will ignore them and the examples addressed to them.

Halvorson’s first isomorphism example reveals a fundamental ambiguity in the notion of “isomorphism.” That argument is as follows:

“Let $L(T)$ be the language with a countable infinity of 1-place predicate symbols $P_1; P_2; P_3;...$ and let T have a single axiom $\exists = 1x(x = x)$ [there is exactly one thing]. Let $L(T_0)$ be the language with a countable infinity of 1-place predicate symbols $Q_0; Q_1; Q_2;...$, and let T_0 have axioms $\exists = 1x(x = x)$ as well as $Q_0x \rightarrow Q_1x$ for each i in N.

“...every model of T is isomorphic to a model of T_0 and vice versa. Indeed, a model of T has a domain with one object that has a countable infinity of monadic properties, and model of T_0 also has a domain with one object that has a countable infinity of monadic properties. Therefore, T and T_0 are...
equivalent according to [the isomorphism] criterion... And yet, T and T₀ are intuitively inequivalent. We might reason as follows: the first theory tells us nothing about the relations between the predicates; but the second theory stipulates a non-trivial relation between one of the predicates and the rest of them. Again, our intuition is backed up by the syntactic account of equivalence: the theories T and T₀ are not definitionally equivalent....”

Halvorson does not define what he means by “isomorphism,” and that turns out to be crucial. In footnote 5 of his paper he claims that there is no notion of isomorphism between models of different theories, which seems flatly to contradict the argument he gives above. Since I cannot make his text consistent, I will defend the argument rather than the footnote and offer an interpretation of “isomorphism” that makes sense of the quoted text. I take it from the example that his idea is something like this: M₁ = <D₁; Q₀...>, M₂ = <D₂; P₀...>, where the Qs and Ps are relations of any orders, are isomorphic if and only if there is a 1-1 map f from D₁ onto D₂ and a 1-1 map g from the Qs onto the Ps taking each n-order relation to an n-order relation, and for all nth order Q and all d₁..dₙ in D₁, (f(d₁)....f(dₙ)) ∈ g(Q) if and only (d₁..., dₙ) ∈ Q, and (to be redundant) inversely. Halvorson might have had in mind a relation that is in some respects more general than this, for example allowing appropriate expansions by new relations of models in various model classes. I cannot tell from his text. But in any case the notion of isomorphism Halvorson uses in the example is purely structural—any nth order relation can be mapped to any other nth order relation. Thus, in his example, if M₁ is a relational structure for the P language of his example in which all P properties hold except P₀, and M₂ is a structure in which all P properties hold except P₁, Halverson would count
(indeed have to count) as an isomorphism the map that interchanges P_0 to P_1
and leaves all other P properties unchanged. That P_0 is the interpretation of
the predicate P_0 and P_1 the interpretation of the predicate P_1 is ignored by the
isomorphism. The relations become merely placeholders. That is a natural
enough notion of isomorphism but it is not the standard notion of model
theory, and, I claim, since Halvorson is considering mappings for relational
structures for definite languages, it is the standard notion that is appropriate
for the semantic view and the one that the semantic view must adopt if it is to
allow a theory to be presented at all.

The more restricted notion of model isomorphism standard in model theory
requires that isomorphic relational structures be elementarily equivalent, and
so the maps Halvorson to which refers in his example are not always model
isomorphisms. More exactly, let L be a first order language, and M_1, M_2 be
relational structures for L. An isomorphism between M_1, and M_2 is a 1-1 map f
of the domain of M_1 onto the domain of M_2 such that for each nth order M_1
relation R_1, and nth order relation R_2, that are respectively interpretations in
M_1 and M_2 of a predicate R in L, and for each a_1, ..., a_n elements of the domain of
M_1, $<a_1$, ..., $a_n> \in R_1$ if and only if $<f(a_1)$..$f(a_n)> \in R_2$. For brevity I will sometimes
refer to the notion of isomorphism I impute to Halvorson as “H-isomorphism”
and the standard model theoretic notion as “M-isomorphism.”

Although Halvorson’s example assumes the model classes he considers are
generalized elementary i.e., the class of all models of a first-order theory in the
language of the theory, the sense of isomorphism I impute to Halvorson’s
example is more general than that. It presumes no syntactic structure, no language, whereas the more restricted notion of isomorphism implies that each class of structures considered for equivalence is generalized elementary and isomorphism preserves elementary equivalence. On the one side, in his notion of isomorphism Halvorson has taken very strictly untenable claims that theories are entirely language free; on the other side, he presumes that theories include sentences that must be intertranslatable for theoretical equivalence. Some of his examples turn on that misfit. Halvorson’s examples are reasons that advocates of the semantic view had better want the more restricted model theoretic notion of isomorphism, and had better ‘fess up to the linguistic requirements of their view. They can do so, I think, without surrendering the claim that the content of a theory is its model class, but van Fraassen’s phrasing, quoted above, of what a theory must be cannot be sustained.

How can M-isomorphism be used to explicate the equivalence of theories in different languages, and how can that be done purely model theoretically? It is done through the notions of common definitional extensions and common definitional expansions. A definitional extension of a language L by a new predicate R is a formula R(x) <-> Φ(x) in the language L + R of L extended with R, where x is a vector of variables and no other variables occur free in the formula, and Φ(x) is a well-formed formula of L. Common definitional extensions are mutual interpretations, but not all mutual interpretations are common definitional extensions. A definitional expansion by relation R of a model M of a theory T with language L_T enriches (or, in other terminology, expands) M with R to form a structure for the language L_{T+R} satisfying a
definition extension of \(L_T \) by \(R \). A definitional expansion by \(R \) of the class of models of \(T \) expands each model of \(T \) by \(R \) forming an expanded class of models such that there is a definition of \(R \) (in terms of \(L_T \)) in \(L_{T+R} \) that is satisfied by all models in the expanded class. Another way of putting the idea is *coalescence*: two theories \(T, T' \) in disjoint languages are coalescent if and only if their model classes can each be expanded to a class of relational structures for \(L_T \cup L_{T'} \) so that every \(M \)-isomorphism of a \(T \) model extends uniquely to an \(M \)-isomorphism of an expanded structure, and every \(M \)-isomorphism of a \(T' \) model extends uniquely to an \(M \)-isomorphism of an expanded structure, and the expanded model classes are identical. Now, two theories in disjoint non-logical vocabularies can be said to be formally equivalent if and only if they have a common definitional extension, or if there model classes have a common definitional expansion, or are coalescent. It turns out that these alternative criteria for equivalence are equivalent. The formalization and proof are due to de Bouvere. (1965). And so, we have, as advertised, an account of the formal aspects of theoretical equivalence that perfectly matches interdefinability with model theoretic relations and can be accommodated by a tenable version of the semantic view of theories.

Back to Halvorson’s example. Consider two models, \(M_1 \) and \(M_2 \), one in which \(P_1 \) and only \(P_1 \) does not hold of the unique individual in the \(M_1 \) domain, and another from his example in which \(P_2 \) and only \(P_2 \) does not hold of the unique individual in the \(M_2 \) domain, and a third model \(M_3 \) in which \(Q_0 \) and only \(Q_0 \) does not hold of the unique individual in \(M_3 \). Each of the first two models is \(H \)-isomorphic to the third, mapping \(Q_0 \) respectively to \(P_1 \) and to \(P_2 \). But since compositions of \(H \)-isomorphisms are \(H \)-isomorphisms, the map taking \(P_1 \) to \(Q_0 \)
composed with the map taking Q_0 to P_2 should be an H-isomorphism of M_1 and M_2. But M_1 and M_2 are not even elementarily equivalent. Halvorson’s argument is thus invalid for M-isomorphism.

Since T has no non-logical consequences, by Beth’s theorem so will any definitional extension of T, so no definition of Q predicates in terms of P predicates can entail the non-logical truths $Q_0(x) \rightarrow Q_i(x)$. So T_0 cannot be a consequence of a definitional extension of T. So the theories have no common definitional extension, and their model spaces are, by de Bouvere’s theorem, not coalescent.

Halvorson’s second example is the case of theories with no finite models that are categorical in every infinite cardinality.

“For this example, we recall that there is a pair of first-order theories T and T_0 each of which is k categorical for all infinite k, but they are not definitionally equivalent to each other. By categoricity, for each cardinal k, both T and T_0 have a unique model (up to isomorphism) with domain of size k. Thus, there is an invertible mapping that pairs the size-k model of T with the size-k model of T_0... for each cardinal number k, T has a unique model of cardinality k and T_0 has a unique model of cardinality k. Therefore, for each model m of T there is a model m_0 of T_0 and a bijection (isomorphism of sets). Thus, every model of T is isomorphic to a model of T_0... even though they fail to be definitionally equivalent.”

Halvorson’s conclusion fails with M-isomorphism. It is possible for two
theories categorical in power to fail to have coalescent model classes or
common definitional extensions or expansions. For example, relations of a
countable model of theory 2 imposed by expansion on a countable model of
theory 1 may not be preserved by the (uncountable) infinity of automorphisms
of the model of theory 1 (see Ehrenfeucht, 1966).

To show that the H-isomorphism condition is too strong, treating equivalent
theories as inequivalent, Halvorson gives the following example:

“Example: Boolean Algebras. Let B be the class of complete atomic
Boolean algebras (CABAs); that is, an element B of B is a Boolean algebra such
that each subset $S \subseteq B$ has a least upper bound $\vee(S)$ and such that each
element $b \in B$ is a join $b = \lor b_i$, where the b_i are atoms in B. Now let S be the
class of sets.

“What does the semantic view say about the relation between the theories B
and S?... an arbitrary set S cannot be equipped with operations that make it a
Boolean algebra; for example, there is no Boolean algebra whose underlying
set has cardinality 3. Thus, there are structures in the class S that are not
isomorphic to any structure in the class B... I claim, however, that the “theory of
sets” is equivalent to the “theory of complete atomic Boolean algebras.”
Indeed, to each set S, we can associate a CABA, namely, its power set $F(S)$ with
the operations of union, intersection, and complement. Furthermore, the set
$G(F(S))$ of atoms of $F(S)$ is naturally isomorphic (as a set) to S. In the opposite
direction, to each CABA B we can assign a set, namely, the set $G(B)$ of its atoms, and it follows that B is isomorphic (as a Boolean algebra) to $F(G(B))$.
Tosummarize, there is a pair of mappings $F: S \rightarrow B$ and $G : B \rightarrow S$ that are inverse to each other, up to isomorphism."

It is difficult to know what to make of this argument because it changes the game. By Stone’s famous theorem, a set theoretic object—a field of sets—can be defined from a Boolean algebra, but only using set theoretic operations that are not Boolean operations, and for atomic algebras that object will be (or be isomorphic to) an object—a power set—that can be defined in a model of set theory as Halvorson says. In the example, he has not expanded the Boolean algebras by using only Boolean relations—he has used set theoretic relations in addition. In a model of set theory he has considered a set theoretic object and considered only isomorphism between that object and an object constructed via set theory—the power set of the set of atoms—from the Boolean algebra. He has shown only that there is an embedding of a set theoretic expansion of the Boolean model in a model of set theory. No mutual translation of all set theoretic statements into the language of Boolean algebra is on offer, let alone a common definitional extension. Halvorson’s conclusion, that set theory and the theory of complete, atomic Boolean algebra are the same theory, does not seem to follow at all.

The example does suggest that definability questions might be considered in the context of higher order logics that have some set theoretic expressivity without explicit set-theoretic axioms. Perhaps Halvorson’s argument could be reformulated in that way, but it does not seem promising. On the one hand, Beth’s theorem holds for second order logic with Henkin’s semantics. De Bouvere’s theorem is a consequence of Beth’s theorem for first-order logic,
and one expects that a similar result holds for second-order Henkin logic, although I know of no proof. On the other hand, if the logic is unformalizable second-order logic, models can only be distinguished up to isomorphism by the cardinalities of their domains.

Halverson’s general argument is as follows:

“Proposition. A definitional equivalence of theories does not necessarily entail that these theories have isomorphic models. In particular, there are first-order theories T and T' and a definitional equivalence $F: T \to T'$. Furthermore, for any definitional equivalence, $F: T \to T'$, there is a model m' of T such that the cardinality of m' is not equal to the cardinality of $F^*(m)$ [F^* is the contravariant model map induced by F from models of T' to models of T].

Proof. Let T be the empty theory formulated in a language with a single binary predicate R. Let T' be the empty theory formulated in a language with a single ternary predicate S. Myers (1997) proves that there is a definitional equivalence consisting of maps $F: T \to T'$ and $G: T' \to T$.

“Now we prove that there is no definitional equivalence $F: T \to T'$ such that for all models n of T, T', $\text{Card}(n) = \text{Card}(F^*(n))$ for all models n of T'. For this, we only need the simple fact that definitional equivalences are conservative with respect to isomorphisms between models; that is, if $F^*(n) = F^*(n')$ then $n = n'$. Now let A be the set of isomorphism classes of models m of T such that $\text{Card}(n) = 2$. Let B be the set of isomorphism classes of models m of T such that $\text{Card}(m) = 2$. Clearly B is a finite set that is larger than A. By
conservativeness, \(F^*(B) \) is larger than \(A \); hence, there is an \(n \in B \) such that \(F^*(n) \) [is not] \(\in A \). But then \(\text{Card}(n) = 2 \) and \(\text{Card}(F^*(n)) \) [is not] \(= 2 \). QED.”

It is correct that the two isomorphism classes Halvorson considers (the difference between H-isomorphism and M-isomorphism does not matter here) have different cardinalities. The example also shows that the two sets of models—all models of a binary relation and all the models of a ternary relation—trivially are not coalescent since the cardinalities are different for isomorphism classes of models of the respective empty theories whose domains are equicardinal. There is no pair of definitional extensions of ternary predicate \(T(x, y, z) \) from formulas in terms of binary predicate \(B(u, w) \) (where \(u, w \) may be any of \(x, y, z \)) and of \(B(x, y) \) from formulas in terms of \(T(u, w, v) \) (where \(u, w, v \) may be either of \(x, y \)) that, added to the respective empty theories results in logically equivalent theories. If there were, then since both the binary and the ternary theories are empty, every first order theory with only a ternary primitive predicate would have a common definitional extension with a theory with only a binary primitive predicate, but Robinson (1959) shows that elementary first-order Euclidean and hyperbolic geometries, expressible with a ternary primitive, cannot be expressed equivalently with a single binary primitive.

Myers uses a notion of interdefinability, “isomorphic interpretability,” that is distinct from having a common definitional extension or coalescent model sets, but includes these as a special case, and, as Halvorson argues, is also distinct from H-isomorphic bijections of the model classes. The empty theory of the
binary relation and the empty theory of the ternary relation are interpretively isomorphic in that every binary structure can be paired with a ternary structure (for simplicity, on the same domain), and conversely in such a way that the collection of such structures is the elementary class of an axiomatizable theory and such that every (M) isomorphism of the binary reduct of a model in the class determines an isomorphism of the ternary reduct and conversely. There are maps from the binary language to the ternary language, and conversely, but as noted they do not determine a common definitional extension. Interpretive isomorphism guarantees that many important properties of theories are shared, but Myers remarks that some meta-mathematical properties one might think necessary for equivalence are not preserved by interpretive isomorphism, for example: having a one-element model; being logically equivalent to a theory whose axioms are equations; having a universal axiomatization (every substructure of a model of the theory is a model of the theory); and closure with respect to unions of chains of models. (I do not know of proofs that all of these properties are shared by theories with a common definitional extension, but I conjecture they are.)

Halvorson asserts that theoretical equivalence is a collective, or global property of the set of models of the theories, and that seems correct. Both coalescence and interpretive isomorphism are global in the sense that they require a quantification over all models of each theory and more than the existence of a 1-1 map taking models to H-isomorphs. Interpretive isomorphism offers an account of theoretical equivalence that the semantic view of theories could conceivably adopt: given that the semantic view must
allow syntactic structures as the means of presentation of scientific theories, I suppose it can allow the existence of syntactic structures (e.g., the axiomatizability required for interpretive isomorphism) as part of the means of defining or establishing theoretical equivalence. But then again, perhaps those advocates should have misgivings both because, as Myers proves, the empty theory of the binary relation is interpretively isomorphic to the empty theory of any n-ary relation, n greater than 2, and because, if, as I have suggested, the syntax of their model descriptions is in terms of equations, interpretive isomorphism does not preserve the property that a theory can be expressed in equational form.

4. Conclusion

Halvorson’s fundamental viewpoint is that the restrictions on mathematical analysis that advocates of the semantic view wish to impose would deny to investigators the full resources of logic and mathematics that are needed to understand the properties of theories, and I agree. For example, the differences between common definitional extensions and interpretive isomorphisms seems worth exploring, and there may be other interesting, alternative candidates for formal theoretical equivalence. Halvorson concludes with a hopeful reference to recent work in category theory for the promise of a deeper account of theoretical equivalence and perhaps other relations of methodological interest. I cannot, and would not, refute a hope, and I leave its development to him with good wishes but with this caveat: on the one hand, his arguments thus far do not show that a tenable version of the semantic view of theories has no available account of theoretical equivalence;
on the other hand, the account of theoretical equivalence that best fits the semantic view provides no grounds for insisting on a purely model theoretic conception of scientific theories utterly free of the fetters of language--a view untenable on its face the moment one considers how the space of models of a theory can possibly be indicated. And I think the second hand is the conclusion that should be drawn from Halvorson’s discussion of theoretical equivalence.

References

