Testing the ‘home market effect’ in a multi-country world: A theory-based approach

Kristian Behrens* Andrea R. Lamorgese†
Gianmarco I.P. Ottaviano‡ Takatoshi Tabuchi§

November 22, 2004

Abstract

We propose a theory-based approach to testing the presence of the ‘home market effect’ in a multi-country world. Our framework extends Krugman’s (1980, Am. Econ. Rev. 70(5), 950-959) model, in which the appeal of a country as a production site depends on both the relative size of its domestic market (‘attraction’) and its relative proximity to foreign markets (‘accessibility’). We show that the extended model predicts a home market effect only after the actual production and trade data have been corrected for the impact of countries’ differential access to world markets. This can be achieved through a simple theory-based linear filter.

We propose a series of non-parametric sign- and rank-tests that are closely related to those used in factor proportions theory. When applied to a cross-section...
of OECD and non-OECD countries, the filtered data performs better than the raw one and our results strongly support the presence of home market effects.

Keywords: home market effect; new trade theory; multi-country models; market potential; economic geography

JEL Classification: D58; F12; F17; R12

We wish to thank A. Anas, M. Brülhart, D. Davis, G. Grossman, K. Head, E. Helpman, T. Mayer, C. Michelot, S. Redding, F. Trionfetti, J. Suedekum, and D. Weinstein, as well as seminar participants at CORE Université catholique de Louvain, the University of Osaka, FEMES 2004, ERWIT 2004, HWWA Hamburg, and the RSAI 2004 North-American Meeting for helpful comments and discussions.

We also particularly wish to thank T. Mayer and S. Zignago for letting us use the production, trade, and distance database developed at CEPII.

The first author acknowledges financial support from the Japanese Ministry of Education and Science (Grant-in-Aid for Science Research 13851002) and CORE Université catholique de Louvain. The third author acknowledges financial support from MIUR and the University of Bologna.

The views expressed in this paper are those of the authors and do not necessarily reflect those of the Bank of Italy.

The usual disclaimer applies.
1 Introduction

What determines the structure of world trade? Two main explanations have been put forth in the literature (see, e.g., Helpman, 1998). The first one highlights the role of relative cost differences between countries: a country exports the goods that it is able to produce at relatively lower costs. The uneven international distribution of technology (Ricardian model) and/or relative factor endowments (Heckscher-Ohlin model) would generate those differences (Dixit and Norman, 1980). The second explanation stresses the role of increasing returns to scale, product differentiation, and market structure: a country exports the goods for which it offers a relatively large local demand, an outcome known as the ‘home market effect’ (henceforth, HME; Krugman, 1980). Although some kind of imperfect competition is needed for an industry to possibly exhibit a HME, both oligopoly and monopolistic competition may serve the purpose, provided entry and exit of firms are unrestricted (Feenstra et al., 2001; Head et al., 2002; Feenstra, 2003).

As shown by Helpman and Krugman (1985), the two explanations are not incompatible. Yet, the first seems better fit for explaining inter-sectoral trade between somewhat different countries, whereas the second looks more suited to account for intra-sectoral trade between similar countries. In particular, it has been argued that the former would explain North-South trade, whereas the latter would account for North-North trade, together more than 80 per cent of world trade flows. Nonetheless, the relative merits of the two explanations are still largely debated, as highlighted by recent empirical works (see, e.g., Davis and Weinstein, 1996, 1999, 2003; Trionfetti, 2001; Antweiler and Trefler, 2002; Brülhart and Trionfetti, 2004). The reason is that relative costs matter also for North-North flows, and product differentiation is relevant also for North-South flows.

A major obstacle to assessing the empirical relevance of explanations based on economies
of scale, product differentiation, and market structure is the fact that the inherent richness of the corresponding models has not yet been much explored (Helpman, 1998). A recent example of how theory still lags behind empirics is provided by the investigation of the HME by Davis and Weinstein (2003). Their point of departure is the framework developed by Krugman (1980), which portrays a two-country economy with one factor of production (labor) and two sectors. One sector supplies a freely-traded homogeneous good under constant returns to scale and perfect competition, whereas the other sector produces a horizontally differentiated good under increasing returns and monopolistic competition à la Dixit and Stiglitz (1977). For each differentiated variety, fixed and marginal input requirements are constant and international trade is hampered by frictional trade costs of the ‘iceberg’ type. Preferences are Cobb-Douglas across the two goods and symmetric CES between varieties of the differentiated good. Due to the fixed input requirement, the larger country supports in equilibrium the production of a more than proportionate number of differentiated varieties, thus being a net exporter of this good (Helpman and Krugman, 1985). In other words, Krugman’s (1980) model displays a HME.

Trionfetti (2001) and Davis and Weinstein (2003) point out that no HME would arise instead in a Ricardian or Heckscher-Ohlin world. Specifically, when there are trade costs, increases in market size map into a less than proportional increase of industry, since a fraction of the additional demand is served by imports from the rest of the world. Accordingly, Davis and Weinstein suggest to compare the predictive power of the two alternative explanations by estimating the impacts of aggregate demand on the output of different sectors. A more than proportional causation from demand to supply would support the HME as a driving force for specialization and trade, whereas a less than proportional causation would support relative cost and/or endowment driven patterns.

The problem with applying the foregoing idea to real data is that Krugman’s clear-cut
result has been derived in a two-country setup only. Hence, the question arises as to whether this result generalizes to the case of multiple countries. As recently argued by Head and Mayer (2004, p. 2634, our emphasis), this issue is difficult to tackle and poses some important problems:

“How do we construct demand measures in the presence of more than two countries?
Indeed how does one even formulate the home market effect hypothesis? The ratios and shares of the theoretical formulations neglect third country effects.”

The main reason why it is hard to formulate the HME hypothesis in a multi-country world is that the appeal of a country as a production site seems to depend on both the relative size of its domestic market (‘attraction’) and its relative proximity to all other foreign markets (‘accessibility’). This is highlighted by the empirical results in Davis and Weinstein (2003) who show that firms are attracted towards countries exhibiting larger values of a composite index of attraction and accessibility. This index is called ‘IDIODEM’ and is a heuristic measure of the idiosyncratic demand facing producers in a certain country that takes into account not only local demand but also demand from neighboring countries. Davis and Weinstein (2003) try to interpret such finding in the light of Krugman’s (1980) model. Specifically, by analogy with the two-country case, they conjecture that a larger than one estimate of the elasticity of output to the IDIODEM index would provide evidence of the presence of the HME.¹

The aim of the present paper is to take the theory one step further by proposing a theory-based approach to testing the HME prediction. By extending Krugman’s (1980) model to many countries, we show that the appeal of a country as a production site for

¹Analogously, building on the observation that home-biased demand plays an important role in the real world (see, e.g., Treﬂer, 1995), Trionfetti (2001) as well as Brülhart and Trionfetti (2004) argue that the HME should be identified as a disproportionate output reaction to idiosyncratic home-biased demand.
firms indeed depends on both attraction and accessibility. This happens because in equilibrium the endogenous international distribution of firms is such that better attraction and accessibility are offset by fiercer competition (‘repulsion’), until operating profits are equalized across countries. Some properties of the two-country setup survive the multi-country extension. The so-called ‘dominant market effect’ and the ‘magnification effect’ (see, e.g., Head et al., 2002; Baldwin et al., 2003) remain valid, thus suggesting that several of the underlying mechanisms are quite robust. Yet, the HME itself may not arise in the multi-country setting, thus refuting the ‘Davis-Weinstein conjecture’. This is due to the fact that, once ‘third country effects’ are taken into account, an increase in one country’s expenditure share may well map into a less than proportionate increase in its output share as other countries ‘drain away’ some firms. In more extreme cases, an increase in the expenditure share may even lead to a decrease in industry share (‘HME shadow’).

These results suggest a different route for testing the HME that focuses on a definition in terms of ‘country rankings’, which seems to be the only one that generalizes from a two-country to a multi-country setting. In particular, we show that, according to the extended model, the HME should be observed in reality only after correcting the actual industry distribution from the impact of accessibility. We further show that such a correction can be achieved through a simple theory-based linear filter. When applied to a cross-section of OECD and non-OECD countries, the filter does improve the performance of HME predictions in terms of both ‘sign’ and ‘rank’ tests.

All this is reminiscent of old debates in HOV theory: “the Heckscher-Ohlin theorem is derived from a model of only two of each of goods, countries, and factors of production. It is unclear what the theorem says should be true in the real world where there are many of all three” (Deardorff, 1984, p. 468, our emphasis). This inevitably affects applied work, since most “papers that claim to present tests of the hypothesis have used intuitive but
inappropriate generalizations of the two × two model to deal with a multidimensional reality” (Bowen et al., 1987, p. 791). As a solution, some authors have indeed suggested to use ‘sign’ and ‘rank’ tests of the predictions based on comparative advantage and factor proportions (see, e.g., Bowen et al., 1987; Feenstra, 2003; Choi and Krishna, 2004).

Our contribution should be seen as complementary to these works in that our main objective is not to discriminate between ‘old’ and ‘new’ trade theory. Indeed, it is our contention that, in order to discriminate between competing paradigms, one first needs to test the predictive power of each paradigm per se. While this has been abundantly done in the case of the factor proportions model (see, e.g., Deardorff, 1984; Bowen et al., 1987; Trefler, 1995; Antweiler and Trefler, 2002), we still lack clear theory-based tests of new trade theory. One could argue that the estimation of so-called gravity equations provides strong support in favor of the latter, but this is hardly so since many alternative models will lead to gravity-like relationships (Deardorff, 1998; Anderson and van Wincoop, 2004). Further, it should be kept in mind that imperfect competition and increasing returns to scale may generate an uneven spatial distribution of production factors, which themselves then generate a pattern of trade consistent with HOV predictions (see, e.g., Amiti, 1998). Put differently, it may be quite hard to determine from ex post trade data alone whether ‘old’ or ‘new’ theories explain the observed flows.²

The remainder of the paper is divided into five sections. The first presents the multi-country extension of the model by Krugman (1980) and characterizes the spatial equilibrium. The second provides a definition of the multi-country HME, first in a dynamic

²Several empirical studies have shown that “the standard HOV theory performs miserably” (Davis and Weinstein, 2001, p. 1444; see also Bowen et al., 1987; Trefler, 1995). Although a modified version allowing for differences in technologies and tastes performs better (Trefler, 1995; Davis and Weinstein, 2001; Antweiler and Trefler, 2002; Choi and Krishna, 2004), tests discriminating between ‘old’ and ‘new’ trade theory remain inconclusive until now.
and then in a static sense. We show that only the static definition generalizes appropriately to the multi-country setting. The third relates the multi-country HME to the concepts of market potential and market size. We discuss the effects of geography and present a methodology that allows us to separate ‘attraction’ from ‘accessibility’. The fourth presents some preliminary empirical results that support the existence of HME and highlight the importance of correcting for accessibility. The fifth finally concludes.

2 The model

The world economy consists of M countries, indexed by $i = 1, 2, \ldots, M$. Country i hosts an exogenously given mass of L_i consumers, each of them supplying one unit of labor inelastically. Hence, both the world population and the world endowment of labor are given by $L = \sum_{i=1}^{M} L_i$. Labor is the only factor of production and it is assumed to be internationally immobile.

2.1 Preferences and technologies

Preferences are defined over a homogeneous good and a set of varieties of a horizontally differentiated good. The preferences of a typical resident of country i are given by the following utility function:

$$U_i = D_i^\mu H_i^{1-\mu}$$

with $0 < \mu < 1$ and

$$D_i = \left[\int_{\omega \in \Omega_i} d_i(\omega)^{(\sigma-1)/\sigma} \ d\omega \right]^{\sigma/(\sigma-1)}.$$

In the above expressions H_i is the consumption of the homogeneous good, $d_i(\omega)$ is the consumption of variety ω, and Ω_i is the set of varieties available in country i. The parameter $\sigma > 1$ measures both the own- and cross-price elasticities of demand for any
variety.

The production of the homogeneous good is carried out by perfectly competitive firms under constant returns to scale. The unit labor requirement is set to one by choice of units and trade in the homogeneous good is assumed to be free. The production of any variety of the differentiated good takes place under internal increasing returns to scale by a set of monopolistically competitive firms. This set is endogenously determined by free entry and exit. We denote by n_i the mass of firms located in country i and by $N = \sum_i n_i$ the total mass of firms in the world economy. The production technology of each variety requires a fixed and a constant marginal labor requirements, labeled F and c respectively. Increasing returns to scale and costless product differentiation yield a one-to-one relationship between firms and varieties, so we will use the two terms interchangeably. As to trade barriers, the international trade of any variety is subject to ‘iceberg’ trade costs. Specifically, $\tau_{ij} > 1$ units have to be shipped from country i to country j for one unit to reach its destination.

2.2 Market equilibrium

In the homogeneous sector, perfect competition implies pricing at marginal cost, which, given the normalization of the unit input coefficient, is equal to the wage. As long as some homogeneous production takes place in all countries, free trade then generates factor price equalization (henceforth, FPE) across all countries. The formal conditions for this to happen are established in Appendix 1 and require that the expenditure share μ on the differentiated good is not too large. We choose the homogeneous good as the numéraire, which implies that not only its price but also the wage equals one in all countries.

 Turning to the differentiated sector, the symmetric setup of the model implies that, in equilibrium, firms differ only by the country they are located in. Accordingly, to simplify
notation, we will drop the variety label from now on. Then, the maximization of utility (1) yields the following demand in country \(j \) for a variety produced in country \(i \):

\[
d_{ij} = \frac{p_{ij}^\sigma}{P_j^{1-\sigma}} \mu E_j,
\]

(2)

where \(p_{ij} \) is the delivered price of the variety, \(E_j \) is expenditures in country \(j \), and \(P_j \) is such that

\[
P_j = \left(\sum_i n_i p_{ij}^{1-\sigma} \right)^{\frac{1}{\sigma}}
\]

(3)

which is the CES price index in country \(j \). Expression (2) reveals the essence of monopolistic competition: firms do not engage in strategic interaction but react to changes in aggregate variables (such as \(P_j \) and \(E_j \)) only, on which no individual firm has any impact on its own due to the continuum assumption.

Because of the iceberg trade costs, a typical firm in country \(i \) has to produce \(x_{ij} = d_{ij} \tau_{ij} \) units to satisfy final demand \(d_{ij} \) in country \(j \). The firm takes (2) into account when maximizing its own profit:

\[
\Pi_i = \sum_j (p_{ij} d_{ij} - c x_{ij}) - F
\]

(4)

\[
= \sum_j (p_{ij} - c \tau_{ij}) \frac{p_{ij}^\sigma}{P_j^{1-\sigma}} \mu E_j - F.
\]

Profit maximization with respect to \(p_{ij} \), taking \(P_j \) as given, then implies that the price per unit delivered is:

\[
p_{ij} = \frac{\sigma}{\sigma - 1} c \tau_{ij}.
\]

(5)

Since, due to free entry and exit, profits have to be non-positive in equilibrium, (4) and (5) also imply that firms’ equilibrium scale of operation satisfies:

\[
x_i \leq \frac{F(\sigma - 1)}{c},
\]

where \(x_i = \sum_j d_{ij} \tau_{ij} \) is total firm production inclusive of the amount of output lost in transit. Using the market clearing condition, we can write the condition for non-positive
profits for a typical variety produced in country i as follows:

$$\sum_j d_{ij} \tau_{ij} \leq \frac{F(\sigma - 1)}{c}. \quad (6)$$

Replacing (2) and (3) into (6), multiplying both sides by $p_{ii} > 0$, and using (5), we get:

$$\sum_j \phi_{ij} L_j \leq \frac{\sigma F}{\mu}, \quad i = 1, 2, \ldots, M, \quad (7)$$

where $\phi_{ik} \equiv \tau_{ik}^{-1-\sigma}$ is a measure of trade freeness, valued one when trade is free (i.e. $\tau_{ik} = 1$) and limiting zero when trade is inhibited (i.e. $\tau_{ik} \to \infty$). In (7) we have used the fact that, since profits are non-positive in equilibrium, expenditures equal labor income (i.e. $E_j = L_j$).

Note that if (7) holds as a strict inequality for country j, $n_j^* = 0$ in equilibrium since no firm can break even there, whereas $n_j^* \geq 0$ when (7) holds as an equality. Multiplying both sides of (7) by the positive n_j’s and summing across countries, we get $N = \mu L / F \sigma$: in equilibrium the world mass of firms is constant and proportional to world population.

This allows us to rewrite (7) in terms of shares. In particular, after defining $\theta_i \equiv L_i / L$ and $\lambda_i \equiv n_i / N$, condition (7) for non-positive profits becomes:

$$\sum_j \frac{\phi_{ij} \theta_j}{\sum_k \phi_{kj} \lambda_k} \leq 1, \quad i = 1, 2, \ldots, M. \quad (8)$$

Following Head and Mayer (2004), we define the real market potential (henceforth, RMP) in country i associated with the industry distribution λ as follows:

$$\text{RMP}_i \equiv \sum_j \frac{\phi_{ij} \theta_j}{\sum_k \phi_{kj} \lambda_k} \quad i = 1, 2, \ldots, M. \quad (9)$$

The equilibrium conditions (8) are then given by:

$$\text{RMP}_i = 1 \quad \text{if} \quad \lambda_i^* > 0,$$

$$\text{RMP}_i \leq 1 \quad \text{if} \quad \lambda_i^* = 0. \quad (10)$$

11
which shows that the RMP is equalized across all countries hosting a positive measure of firms. The reason is that, in equilibrium, entry and exit make sure that the cross-country variations in attractiveness to firms in terms of distance-weighted demand are exactly capitalized in the cross-country variations of local price indices.\(^3\) Specifically, in (9) the expenditures in countries \(j = 1, \ldots, M\) that can be tapped from country \(i\) are assigned weights that decrease with bilateral distance (inversely measured by \(\phi_{ij}\)) and with the intensity of local competition (directly measured by \(\sum_k \phi_{kj} \lambda_k\), itself an inverse transformation of the local price index defined in (3)). Therefore, (9) and (10) show that in equilibrium lower local price indices (i.e. tougher local competition) offset any locational advantage in terms of proximity to consumer demand.\(^4\)

\[\text{2.3 Matrix notation and spatial equilibrium}\]

An equilibrium is characterized by \(M\) conditions, given by (10). The firm shares \(\lambda_i\) are \(M\) endogenous unknowns whereas the expenditure shares \(\theta_i\), as well as the trade freeness measures \(\phi_{ij}\), are exogenous parameters. From now on, we set \(\phi_{ii} = 1\) meaning that trade is free within countries. We also set \(\phi_{ij} = \phi_{ji}\), thus implying that trade flows between any

\(^3\)For any (interior) equilibrium distribution \(\lambda^*\), firms have no incentive to relocate because the RMP is the same everywhere. Yet, the RMP differs across countries for off-equilibrium distributions. In this case, firms relocate from low to high RMP countries, which is the usual adjustment dynamics used in new economic geography (see, e.g., Fujita et al., 1999).

\(^4\)In empirical studies, proximity to demand is often measured by the nominal market potential (see Head and Mayer, 2004, for a recent survey). For country \(i\) that is defined as \(\text{NMP}_i \equiv \sum_j p_{ij} \tilde{d}_{ij} = \sum_j \phi_{ij} \theta_j \) where \(\tilde{d}_{ij} = d_{ij} P_j^{1-\sigma}\) is the demand for country \(i\)'s varieties in country \(j\) when one does not correct for the price index. One can show that the NMP belongs to Weibull's (1976) class of 'attraction-accessibility measures', of which the gravity potentials used in spatial interaction theory are a special instance. Such measures are rather bad predictors of industry share in general equilibrium. In particular, it is easy to find examples in which \(\text{NMP}_i < \text{NMP}_j\) but \(\lambda_i^* > \lambda_j^*\).
given pair of countries are subject to the same frictions in both directions.

Let us make notation of (10) more compact by recasting it in matrix form. Specifically, let

$$
\Phi \equiv \begin{pmatrix}
\phi_{11} & \phi_{12} & \cdots & \phi_{1M} \\
\phi_{21} & \phi_{22} & \cdots & \phi_{2M} \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{M1} & \phi_{M2} & \cdots & \phi_{MM}
\end{pmatrix}
$$

and

$$
\lambda \equiv \begin{pmatrix}
\lambda_1 \\
\lambda_2 \\
\vdots \\
\lambda_M
\end{pmatrix}
$$

and

$$
\theta \equiv \begin{pmatrix}
\theta_1 \\
\theta_2 \\
\vdots
\end{pmatrix},
$$

where $$\lambda^T \mathbf{1} = \theta^T \mathbf{1} = 1$$ (in what follows, $$\mathbf{1}$$ stands for the $$M$$-dimensional vector whose components are all equal to one). Further, we denote by $$\Delta$$ the unit simplex of $$\mathbb{R}^M$$ and by $$\text{ri}(\Delta)$$ its (relative) interior:

$$
\text{ri}(\Delta) = \left\{ x \in \mathbb{R}^M, \sum_i x_i = 1, \ x_i > 0, \ \forall i \right\}.
$$

We assume that $$\theta \in \text{ri}(\Delta)$$ so that all countries have at least some expenditure share. Using these definitions, the $$M$$ equilibrium conditions (10) can be expressed in matrix notation as follows:

$$
\text{RMP} = \Phi \text{diag}(\Phi \lambda)^{-1} \theta \leq \mathbf{1}, \tag{11}
$$

with the complementary slackness conditions

$$
(R\text{MP}_i - 1)\lambda_i = 0 \quad i = 1, 2, \ldots, M.
$$

In (11) the ‘numerator’ term $$\Phi \theta$$ highlights the role of the distance-weighted expenditure that can be served from each country. This measure is our counterpart to Davis and Weinstein’s (2003) IDIODEM index. The ‘denominator’ term $$\text{diag}(\Phi \lambda)$$ captures the role of the distance-weighted supply that can serve each national market, which is a measure of the intensity of local competition. Then, in equilibrium, the cross-country distribution of firms is such that endogenous average supply exactly matches exogenous
average expenditure for all countries hosting some firms, whereas the latter falls short of the former for countries hosting no firms.5

In Appendix 2, we show that the equilibrium is characterized as follows:

Proposition 1 (existence, uniqueness and stability) Assume that factor prices are equalized (see Appendix 1). Then a unique and globally stable equilibrium exists for all admissible values of θ and Φ.

Note that Proposition 1 encompasses both interior and corner equilibria. To the best of our knowledge, such a result has not been formally shown to hold for Krugman’s (1980) model until now.

Since any general characterization of the corner equilibria leads to a prohibitively complex taxonomy, even in ‘low dimensional’ cases, in what follows we focus on interior equilibria only (i.e. equilibria in which $\lambda^*_i > 0$ for all countries $i = 1, 2, \ldots M$). Thus, condition (11) holds as an equality. In order to simplify some of the subsequent developments, problem (11) is most conveniently decomposed into an outer and an inner step. The outer step consists in finding φ such that

$$\Phi \varphi = 1. \quad (12)$$

Note that this problem depends on the trade cost matrix Φ only and is hence independent of the expenditure distribution θ. In the following, we assume that Φ is non-singular (as shown in Appendix 3, a sufficient condition is that distance between countries is measured by the euclidian norm).6 Hence, there is a unique $\varphi = \Phi^{-1}1$ satisfying equation (12). The

5In (11), the ‘numerator’ term is the nominal market potential expressed in matrix notation, $\text{NMP} = \Phi \theta$. Hence, we have $\text{RMP} = \Phi \text{diag}(\Phi^{-1}1_i/\theta_i)\Phi^{-1}(\text{NMP})$, which shows that the effect of competition on firm location is captured by $\Phi \text{diag}(\Phi^{-1}1_i/\theta_i)\Phi^{-1}$.

6This theoretical requirement turns out to be unnecessarily restrictive in empirical applications, where the matrix Φ is almost always non-singular.
inner step consists then in finding λ^* such that

$$\text{diag}(\Phi \lambda^*)^{-1} \theta = \varphi.$$ \hspace{1cm} (13)

Note that this inner step involves both Φ (directly, and indirectly via φ) and θ. Equation (13) can also be expressed as

$$\theta = \text{diag}(\varphi)\Phi \lambda^*.$$ \hspace{1cm} (14)

If we denote by f_{ij} the cofactor of ϕ_{ij} and by $|\Phi|$ the determinant of Φ, (14) can finally be written component by component as

$$\theta_i = \varphi_i \sum_j \phi_{ij} \lambda_j^* = \sum_k f_{ik} \sum_j \phi_{ij} \lambda_j^*;$$ \hspace{1cm} (15)

which is simply the i-th row of expression (14).

A necessary condition for an interior solution to exist can be obtained by rewriting (15) as:

$$\theta_i = \varphi_i \sum_j \phi_{ij} \lambda_j^* < \varphi_i \sum_j \lambda_j^* = \varphi_i,$$

where the inequality results from $\phi_{ij} \in (0, 1)$ and where the last equality is due to the fact that the λ_j^*’s sum up to one. This implies that

$$\theta_i < \varphi_i, \quad i = 1, 2, \ldots, M$$ \hspace{1cm} (16)

is a necessary condition for an interior equilibrium to exist. Provided such an equilibrium exists, the equilibrium distribution of firms is given by

$$\lambda^* = \left[\text{diag}(\Phi^{-1}1)\Phi\right]^{-1} \theta,$$ \hspace{1cm} (17)

or, component by component, by

$$\lambda_i^* = \sum_j \frac{f_{ij}}{\sum_k f_{jk}} \theta_j.$$ \hspace{1cm} (18)
Since Φ is by assumption a symmetric matrix, $f_{ij} = f_{ji}$ holds for all i and j. Observe that (18) shows that the relationship between λ^* and θ is linear for any interior solution. Since we focus on the case of FPE, combining (18) with (39) in Appendix 1 shows that a necessary and sufficient condition for the interior equilibrium with FPE to exist is given by

$$0 < \mu \sum_j \frac{f_{ij}}{\sum_k f_{jk}} \theta_j < \theta_i, \quad i = 1, 2, \ldots, M. \tag{19}$$

In the following, we assume that (19) always holds, which amounts to choose a sufficiently small value of μ. Since the sum of the right-hand sides of (18) is 1, inequality (19) guarantees that $\lambda^*_i \in (0, 1)$ for all i. Note that condition (19) depends on both Φ and θ, so the effects of ‘geography’ (Φ) and of ‘expenditure’ (θ) cannot be clearly separated.

Condition (16), although only necessary and not sufficient, allows to separate partly the impact of ‘geography’ from the impact of ‘expenditure’. Indeed, using (18) we have

$$\frac{\partial \lambda^*_i}{\partial \theta_j} \theta_j = \frac{f_{ij}}{\sum_k f_{kj}} \theta_j = \frac{f_{ij} \theta_j}{|\Phi| \varphi_j} < \frac{f_{ij}}{|\Phi|}$$

for all indices i and j, where the last inequality results from (16). Therefore, summing across all j we have

$$\sum_j \frac{\partial \lambda^*_i}{\partial \theta_j} \theta_j < \frac{\sum_j f_{ij}}{|\Phi|}, \quad i = 1, 2, \ldots, M$$

and, hence, by definition

$$\lambda^*_i < \varphi_i, \quad i = 1, 2, \ldots, M \tag{20}$$

or $\lambda^* < \varphi$ in vector notation. Conditions (16) and (20) can be interpreted as follows. Consider a given ‘geography’ of trade costs Φ (hence the φ_i’s are given). Under autarky (i.e. Φ is equal to the identity matrix I_d), $\lambda^* = \theta$, so that condition (20) reduces to condition (16). Hence, condition (16) can be interpreted as the least stringent necessary condition on the couple (θ, Φ) to be met for an interior equilibrium to arise (note that the condition $\varphi_i > 0$ involves only Φ and not θ). This is because, once there is some trade
(finite trade costs), at least one country \(i \) is such that \(\lambda_i^* > \theta_i \), so that condition (20) is more stringent. Condition (20) captures the trade-off between centrality (low values of \(\varphi_i \)) and expenditure (high values of \(\theta_i \)). When a country is centrally located, it must have a ‘disproportionally smaller expenditure share’ for an interior equilibrium to be feasible. On the other hand, when a country is remotely located (large value of \(\varphi_i \)), it can have a large expenditure share \(\theta_i \) that may remain compatible with an interior equilibrium.

The impact of geography is clear from the following proposition, the proof of which is relegated to Appendix 4.

Proposition 2 (Magnification Effect) Consider a given expenditure distribution \(\theta \in \text{ri}(\Delta) \). When trade is sufficiently restricted, there always exists an interior equilibrium, whereas when trade becomes sufficiently free, such an equilibrium never exists.

Proposition 2 shows that freer trade leads to a more uneven spatial distribution of the differentiated sector even in an asymmetric multi-country world. This has come to be known as the ‘magnification effect’ (see Head *et al.*, 2002; Ottaviano and Thisse, 2004).

3 Defining the multi-country HME

The idea that market size matters for the location of industry dates at least back to the ‘early days of gravity theory’ (see, e.g., Harris, 1954; Tinbergen, 1962). During the 1980s, new trade theory re-discovered the importance of market size for explaining the pattern of industry location and trade. Although the concept of HME has been widely used in both theory and applications since then, *we still lack a clear and general definition of what exactly a HME is in a multi-country context*. In Krugman’s (1980, p. 955) own words, in sectors characterized by Dixit-Stiglitz monopolistic competition “countries will tend to export those kinds of products for which they have relatively large domestic
demand”. This property is neatly implied by two-country models. Indeed, Helpman and Krugman (1985) show that, in a two-country economy, the larger country hosts a more than proportional share of the monopolistically competitive industry. Given preferences that are homothetic and identical across countries, such a pattern of production makes the larger country a net exporter of the differentiated good.

The disproportionate positive causation from demand to supply has become the standard definition of the HME (see, e.g., Head et al., 2002). Thus, in identifying the multi-country HME, we adopt such a definition and we see whether it can be generalized from both a dynamic (i.e., time-series) and a static (i.e., cross-sectional) point of view. As we will show, only the static definition can be readily generalized when there are more than two countries.

3.1 Dynamic definition

A dynamic definition of the HME is often presented in the literature dealing with two countries only. It builds on the observation that changes in expenditure shares map into more than proportional changes in industry shares. Assume that country \(i\) hosts an industry share at period \(t\) that is proportional to its expenditure share, which can be expressed as \((\lambda^*_i)^t = k^t\theta_i^t\). Assume that in the following period \(t+1\), all \(\theta_j^*\)'s have changed such that

\[
\theta_i^{t+1} - \theta_i^t > 0 \quad \text{and} \quad \sum_j (\theta_j^{t+1} - \theta_j^t) = 0,
\]

so that the new industry share is given by \((\lambda^*_i)^{t+1} = k^{t+1}\theta_i^{t+1}\). In the presence of a dynamic HME, the disproportionate positive causation from demand to supply requires

\[\text{Note that the ‘dynamic’ definition is also frequently used in the empirical literature. For example, Davis and Weinstein (2003, p. 7) define the HME as “a more than one-for-one movement of production in response to idiosyncratic demand”}.

18
that \(k^{t+1} > k^t \) whenever \(\theta_i^{t+1} > \theta_i^t \). Hence,

\[
\frac{(\lambda_i^*)^{t+1}}{\theta_i^{t+1}} = k^{t+1}, \quad \frac{(\lambda_i^*)^t}{\theta_i^t} = k^t \quad \text{and} \quad k^{t+1} > k^t \implies \frac{(\lambda_i^*)^{t+1}}{\theta_i^{t+1}} > \frac{(\lambda_i^*)^t}{\theta_i^t}.
\]

Switching to differential notation, the last condition can be expressed as

\[
\frac{\lambda_i^* + d\lambda_i^*}{\theta_i + d\theta_i} > \frac{\lambda_i^*}{\theta_i} \quad \Rightarrow \quad \frac{d\lambda_i^*}{\theta_i} \frac{\theta_i}{\lambda_i^*} > 1.
\]

This suggests quite naturally the following definition for the dynamic HME (henceforth, DHME):

Definition 1 (Dynamic Home Market Effect) The monopolistically competitive industry exhibits a DHME in country \(i \) at the distribution \(\theta \in \rho_i(\Delta) \) and for the perturbation \(d\theta \) if and only if

\[
\frac{d\lambda_i^*}{\theta_i} \frac{\theta_i}{\lambda_i^*} > 1,
\]

where \(d\theta \) is a small variation satisfying \(d\theta_i > 0 \) and \(\sum_j d\theta_j = 0 \).

It is interesting to note that the DHME requires the industry share \(\lambda_i^* \) of country \(i \) to be sufficiently elastic with respect to the expenditure share \(\theta_i \), which clearly captures the idea that changes in expenditure map into disproportionate changes in industry.

Differentiating the equilibrium industry share of country \(i \) yields

\[
d\lambda_i^* = \sum_j \frac{\partial \lambda_i^*}{\partial \theta_j} d\theta_j,
\]

so that (21) can be expressed equivalently as follows:

\[
\sum_j \frac{\partial \lambda_i^*}{\partial \theta_j} \frac{d\theta_j}{d\theta_i} \frac{\theta_i}{\lambda_i^*} > 1.
\]

Unfortunately, condition (22) represents an inappropriate definition of the HME since there always exists a perturbation \(d\theta \) of expenditure such that it does not hold. Stated differently, as shown by our next proposition, it is generally ‘impossible’ to define the HME in terms of changes in expenditure shares when there are more than two countries.
Proposition 3 (Third country effects) Assume that trade costs are not pairwise symmetric. Then, for every distribution $\theta \in \text{ri}(\Delta)$, there exists a perturbation $d\theta$, with $d\theta_i > 0$ and $\sum_j d\theta_j = 0$, such that the disproportionate causation from demand to supply does not hold.

Proof. Because $\lambda^*_i > 0$, $\theta_i > 0$, and $d\theta_i > 0$, a necessary condition for (21) to hold requires $d\lambda^*_i$ to be strictly positive. However, by linearity,

$$d\lambda^*_i = \lambda^*_i(\theta + d\theta) - \lambda^*_i(\theta) = \sum_j g_{ij} d\theta_j = \sum_{j \neq i} (g_{ij} - g_{ii}) d\theta_j$$

where the g_{ij}’s are coefficients as given in (18), and where the last equality stems from the constraint that the perturbations sum-up to zero. When trade costs are not pairwise symmetric, we can always find perturbations $d\theta_j$ such that (23) is negative, in which case the DHME does not hold for all perturbations satisfying $d\theta_i > 0$ and $\sum_j d\theta_j = 0$. It is sufficient to note that in the general asymmetric case $\min_j \{g_{ij}\} < \max_j \{g_{ij}\}$ and that at least one $d\theta_j, j \neq i$, must be strictly negative. ■

Proposition 3 shows that the DHME need not hold for some variations $d\theta$ unless trade costs are pairwise symmetric across all countries (i.e., $\phi_{ij} = \phi, \forall i \neq j$). This condition obviously holds in the two-country setting but it is an untenable assumption in the real multi-country world. Hence, the disproportionate causation from demand to supply does not generally hold. For example, as expenditure shares change between two periods, a ‘HME shadow’ may arise, in the sense that even if country i gains expenditure share, it may actually gain a less than proportional industry share if another country j also gains some expenditure share. In some cases, this effect may be so strong that country i simply loses industry, despite its increase in expenditure share. Thus, being impossible to define the HME in terms of changes in expenditure shares, its dynamic definition must be discarded in a multi-country world.
3.2 Static definition

While the DHME relates to the *time-series disproportionality* between two periods in the same country, the static HME (henceforth, SHME) relates to the *cross-sectional disproportionality* between two countries at the same time. Head *et al.* (2002) have shown that the static and dynamic definitions are equivalent in the symmetric 2×2-setting, thus making the choice immaterial in this case. As proved in the previous section, things are no longer that simple in the multi-country world with an arbitrary trade cost matrix. Hence, the need to focus more closely on an alternative definition arises.

We may derive the static definition in a way analogous to the one used in the previous section. Assume that countries i and j host an industry share that is proportional to their expenditure share, which can be expressed as follows:

$$\lambda^*_i = k_i \theta_i \quad \text{and} \quad \lambda^*_j = k_j \theta_j,$$

where k_i and k_j are positive coefficients. In the presence of a HME, the disproportionate positive causation from demand to supply requires that $k_i \geq k_j$ whenever $\theta_i \geq \theta_j$. Hence,

$$\frac{\lambda^*_i}{\theta_i} = k_i, \quad \frac{\lambda^*_j}{\theta_j} = k_j \quad \text{and} \quad k_i \geq k_j \quad \Rightarrow \quad \frac{\lambda^*_i}{\theta_i} \geq \frac{\lambda^*_j}{\theta_j}.$$

This suggests the following definition:

Definition 2 (Static Home Market Effect) The monopolistically competitive industry exhibits a SHME in country i at the expenditure distribution $\theta \in \text{ri}(\Delta)$ if and only if

$$\theta_i \geq \theta_j \quad \Rightarrow \quad \frac{\lambda^*_i}{\theta_i} \geq \frac{\lambda^*_j}{\theta_j}, \quad \forall j = 1, \ldots, M$$ \hspace{1cm} (24)

with $\lambda^*_i/\theta_i > \lambda^*_j/\theta_j$ if and only if $\theta_i > \theta_j$.

In what follows, we say that the global economy exhibits a SHME if condition (24) holds for all countries $i = 1, 2, \ldots, M$. Specifically, assuming, without loss of generality,
that country labels are ordered such that $\theta_1 \geq \theta_2 \geq \ldots \geq \theta_M$, the global economy exhibits a SHME when

$$\frac{\lambda_1^*}{\theta_1} \geq \frac{\lambda_2^*}{\theta_2} \geq \ldots \geq \frac{\lambda_M^*}{\theta_M} \quad (25)$$

Stated differently, under a SHME there is no ‘industrial leap-frogging’ in the global economy, in the sense that smaller countries always host a relatively smaller share of the monopolistically competitive industry. This implies that the ordering in terms of industry shares reflects the ‘natural’ ordering in terms of countries’ economic sizes.\(^8\) Note that conditions (24) and (25) do not rely on changes in expenditure shares and, therefore, can be observed at any given moment in time. Thus, provided we possess some convenient measure of θ and λ, (24) and (25) can be checked with the help of cross-sectional data only. This is what we do in Section 5.

4 ‘Attraction’ and ‘accessibility’

In the multi-country setting with a general trade cost matrix, three distinct effects generate the HME: the market size effect, driving firms towards high-expenditure countries; the hub effect, driving firms to centrally-located countries; and the competition effect, driving firms away from markets hosting a large mass of competitors.\(^9\) Those three effects have their counterparts in spatial interaction theory under the respective labels ‘attraction’,

\(^8\)A similar ‘no leap-frogging property’ has been used in tests of the factor proportions theory. As noted by Bowen et al. (1987, p. 795), “for each country and factor, the ranking of adjusted net factor exports should conform to the ranking of factors by their abundance”. Quite surprisingly, this formal analogy between ‘classical’ and ‘new’ trade theory has not been noticed until now.

\(^9\)Some authors prefer the term ‘market crowding effect’ to ‘competition effect’ in the Dixit-Stiglitz CES model (see, e.g., Baldwin et al., 2003; Ottaviano and Thisse, 2004). The reason is that constant elasticity of demand and no strategic interactions give rise to equilibrium mark-ups that are independent from the mass and the spatial distribution of competing firms.
‘accessibility’ and ‘repulsion’. Indeed, the interplay between attraction and accessibility is central to gravity models and spatial interaction theory (see, e.g., Harris, 1954; Smith, 1975). These have recently raised renewed interest in international trade studies, which have added an explicit treatment of the repulsive nature of price competition (see, e.g., Fujita et al., 1999; Head and Mayer, 2004; Anderson and van Wincoop, 2004). In the present section, we look at the implications of the foregoing effects in detail. The corresponding results will guide the empirical investigation carried out in Section 5.

4.1 The impact of market size (‘attraction’)

In (11), the ‘numerator’ term $\Phi \theta$ combines attraction and accessibility (the NMP), whereas the ‘denominator’ term $\text{diag}(\Phi \lambda)$ combines repulsion and accessibility. Hence, at any interior equilibrium, since the RMP’s are equalized to unity across all countries, accessibility-filtered attraction $\Phi \theta$ and accessibility-filtered repulsion $\text{diag}(\Phi \lambda)$ exactly offset each other. We use this property to highlight the presence of the SHME when trade costs are symmetric among countries, i.e., when we ‘sterilize’ the impact of accessibility and focus on attraction only.

Specifically, by (9) the real market potential difference between countries i and j is given by

$$RMP_i - RMP_j = \sum_k \frac{(\phi_{ik} - \phi_{jk}) \theta_k}{\sum_m \phi_{mk} \lambda_m}. \quad (26)$$

Assuming that trade costs are symmetric and equal to the average trade cost among all countries implies also that the trade freeness is symmetric and equal to the average trade freeness among all countries. Denoting the average freeness by ϕ and letting $\phi_{ij} = \phi$ for all $i \neq j$, all countries then have the same accessibility. In this case, expression (26) boils down to

$$RMP_i - RMP_j = \frac{(1 - \phi) \theta_i}{\lambda_i + \phi(1 - \lambda_i)} - \frac{(1 - \phi) \theta_j}{\lambda_j + \phi(1 - \lambda_j)},$$
which is equal to zero (both RMP’s being equal to one in equilibrium) if and only if

\[\theta_i \left[\lambda_j (1 - \phi) + \phi \right] = \theta_j \left[\lambda_i (1 - \phi) + \phi \right]. \]

Thus, because \(\phi < 1 \), \(\theta_i > \theta_j \) implies \(\lambda_i / \theta_i > \lambda_j / \theta_j \), which reveals the presence of the SHME, as given by Definition 2. This result is important for empirical application. Indeed, it suggests that *one should expect the (static) HME to appear in the data only after controlling for cross-country differences in accessibility.*

As a by-product, expression (26) allows us to show also the following result:

Proposition 4 (Dominant Market Effect) For every country \(i \), there exists an expenditure share \(\theta_i^{\text{sup}} < 1 \) such that \(\lambda_i^* = 1 \) for all \(\theta_i \geq \theta_i^{\text{sup}} \).

Proof. In order for country \(i \) to host all monopolistically competitive firms,

\[\text{RMP}_i - \text{RMP}_j \geq 0 \quad \forall j \quad (27) \]

must hold at the equilibrium distribution \(\lambda_i^* = 1 \) and \(\lambda_j^* = 0 \) for \(j \neq i \). Stated differently, country \(i \) offers a higher RMP than all other countries when \(\lambda_i^* = 1 \), which implies that no firm has any incentives to change its current location. Some straightforward calculations show that condition (27) is equivalent to

\[\theta_i \geq \max_{j \neq i} \frac{1}{1 - \phi_{ij}} \sum_{k \neq i} \left(\frac{\phi_{jk}}{\phi_{ik}} - 1 \right) \theta_k. \quad (28) \]

Clearly, when \(\theta_i = 1 \) and \(\theta_j = 0 \) for \(j \neq i \), condition (28) holds as a strict inequality. The desired result then follows by continuity of both sides of (28) with respect to \(\theta \). ■

Proposition 4 shows that a region with a sufficiently large expenditure share attracts the whole monopolistically competitive industry. In accordance with classical location theory, we will call such a region a *dominant market* (Weber, 1909). Note that expression (28) is highly reminiscent of a well-known result in location theory, namely the *Majority*
Theorem (Witzgall, 1964). When country i hosts an expenditure share that is larger than some weighted average of the expenditure shares of the other countries, all monopolistically competitive firms will agglomerate in country i. As far as we know, this formal connection between location theory and trade theory has been overlooked until now.

4.2 The impact of geography (‘accessibility’)

The key result of the previous subsection is that the static HME should appear in the data only after controlling for cross-country differences in accessibility. Now we discuss how accessibility should be controlled for in the light of the theoretical model. Once more there are surprisingly few results in the existing literature. For instance, although Baldwin et al. (2003) briefly discuss the HME when there are more than two countries, they disregard all complexities arising in the real world by focusing on symmetric trade costs only. In Krugman (1993) the lack of robustness of the symmetric trade cost case appears as a by-product in a three-country model aimed at challenging the common wisdom according to which everything interesting about international trade can be learned through two-country models. Yet, these ideas have not been really developed any further until now.

To develop a theory-based control strategy, the first step is to find a rigorous definition of the ‘hub effect’. According to Baldwin et al. (2003, p. 331), the hub effect arises when “superior market access favours the hub as a location of industry”, where ‘superior market access’ depends on both geography (i.e., Φ) and expenditures (i.e., θ). Since we need to observe accessibility net of attraction, such a definition does not work for our purpose. A better option builds on the approach used in the previous subsection to identify the SHME in a multi-country world. Specifically, consider a situation in which expenditures are equally spread across countries so that the location of firms is driven by trade cost considerations only. In such a situation $\theta_i = 1/M$ for all i, so by (18) the equilibrium
spatial distribution of firms is given by:

$$\lambda_i^{\text{hub}} = \frac{1}{M} \sum_j f_{ij} \frac{1}{\sum_k f_{jk}} = \frac{1}{M|\Phi|} \sum_j f_{ij} \varphi_j.$$ \hspace{1cm} (29)

Since λ_i^{hub} depends on the ϕ_{ij}'s only, we choose it as our theory-based definition of accessibility. It is the share of firms that would locate in country i were world expenditures evenly distributed across countries.

Expression (29) reveals that countries with a low value of φ_j (i.e. countries that offer on average a good access to world markets) have a strong impact on country i's industry share, whereas countries with a high value of φ_j (i.e. regions that offer on average a bad access to world markets) have a relatively small impact. Moreover, the sign of the impact depends on the sign of f_{ij}. Because $f_{ii} > 0$ when Φ is positive-definite (see Appendix 3), each country has a positive impact on itself. Stated differently, when country i is centrally located (i.e. low value of φ_i), it tends to attract a large share of industry. Yet, being closely located to other countries with high values of φ_j decreases λ_i significantly when the coefficient f_{ij} is negative. This effect stems from the competition effect and may explain why transportation hubs are sufficiently widely spaced in a spatial economy. We call it 'hub shadow' due to its analogy to a well known phenomenon in urban economics.10

4.3 Separating ‘attraction’ from ‘accessibility’

As argued in Subsection 4.1, the SHME can be identified by sterilizing the impact of geography. Using expression (18) with $\phi_{ij} = \phi$ for all $i \neq j$, we readily have

$$\lambda_i^{\text{size}} = \frac{1 + (M - 1)\phi}{1 - \phi} \theta_i - \frac{\phi}{1 - \phi},$$ \hspace{1cm} (30)

10Fujita and Thisse (2002, p. 363) refer to such phenomenon as \textit{urban shadow}. The existence of such shadow yields many counterintuitive results. For example, improving a country’s access to the other countries may lead to either inflow or outflow of industry, depending crucially on the overall access of the other countries.

26
where, as already mentioned, \(\phi \) is the average freeness of trade in the global economy. Since \(\lambda_i^{\text{size}} \) does not depend on differences in the \(\phi_{ij} \)'s, we choose it as our theory-based definition of attraction. It is the share of firms that would locate in country \(i \) were all countries evenly spaced at the same average distance from one another.\(^{11}\) It is readily verified that, as pointed out in our discussion in Section 4.1, \(\theta_i > \theta_j \) implies \(\lambda_i^{\text{size}}/\theta_i > \lambda_j^{\text{size}}/\theta_j \). The reason is that expression (30) does not depend on \(\theta_j \) for \(j \neq i \). Stated differently, the way the remaining expenditure share \(1 - \theta_i \) is distributed across countries does not matter. Thus, the case with symmetric trade costs can be seen as a ‘country \(i \) vs. the rest of the world’ scenario.\(^{12}\)

We are now equipped to decompose the equilibrium distribution of firms in terms of accessibility \(\lambda^{\text{hub}} \) and attraction \(\lambda^{\text{size}} \). In so doing, let

\[
W \equiv [\text{diag}(\Phi^{-1})\Phi]^{-1} \quad \text{and} \quad \beta \equiv \frac{1 - \phi}{1 + (M - 1)\phi}.
\]

Then, since \(\lambda^* = W\theta \) and

\[
\lambda^{\text{size}} = \frac{1}{\beta} \left(\theta - \frac{1 - \beta}{M} \mathbf{1} \right) \quad \text{and} \quad \lambda^{\text{hub}} = \frac{1}{M} W\mathbf{1},
\]

\(^{11}\)It is easy to show that \(\lambda^{\text{size}} \) may be rewritten as:

\[
\lambda^{\text{size}} = \theta + \frac{M\phi}{1 - \phi} \left(\theta - \frac{1}{M} \mathbf{1} \right)
\]

which is reminiscent of the estimating equation (3) by Davis and Weinstein (2003, p. 7). The first term stands for the autarky share of industry, whereas the second term captures the idiosyncratic component of local demand. Note, however, that the coefficient capturing the idiosyncratic impact \(M\phi/(1 - \phi) \), though positive, need not be larger than one in theory (see also Brühlhart and Trionfetti, 2004, for further developments). This undermines the restriction proposed by Davis and Weinstein (2003, p. 8) to identify the HME.

\(^{12}\)This particular result is a by-product of homothetic preferences and is unlikely to hold in less specific models.
we get the following exact theoretical decomposition:

\[\lambda^* = \beta W \lambda^{\text{size}} + (1 - \beta) \lambda^{\text{hub}}. \] (31)

Since \(\beta \) is a decreasing function of \(\phi \), going from 1 to 0 when \(\phi \) goes from 0 to 1 respectively, expression (31) suggests that lower average trade costs could make accessibility increasingly more important than attraction for the location decisions of firms. This suffices to show that, as argued by Anderson and van Wincoop (2004, p. 691), “the death of distance is exaggerated”.

Expression (31) is particularly appealing from an empirical point of view. Since \(W \) depends on the freeness of trade only, it can be interpreted as a spatial weight matrix capturing the complex interrelations between national market sizes. The crucial difference between (31) and a proper spatial autoregressive specification is that the former lacks any spatially lagged explanatory variable. Nevertheless, (31) can be seen as providing some theoretical foundation to the so far ad-hoc inclusion of spatial weight matrices in empirical models. Another interesting feature of our theoretical decomposition is that the underlying theory implies that \(\beta \in (0, 1) \). In other words, the equilibrium firm distribution \(\lambda^* \) is a convex combination of spatially discounted attraction \((W \lambda^{\text{size}})\) and pure accessibility \((\lambda^{\text{hub}})\). Whereas the first term captures the ‘gravity part’ of the model, the second term has not been really used in applied work so far.

The decomposition (31) can be used to control for cross-country differences in accessibility. Indeed, by inversion, we obtain that the value of \(\lambda \) predicted by the model after correcting for differential accessibility is:

\[\lambda^{\text{size}} = (\beta W)^{-1} \left[\lambda^* - (1 - \beta) \lambda^{\text{hub}} \right]. \] (32)

Together with (29), expression (32) can be seen as a theory-based linear filter to be applied to the observed \(\lambda^* \). Stated differently, before testing for the SHME, which is predicted by
the model only in terms of the unobserved λ^{size}, we have to filter the effect of differential accessibility.

5 Qualitative tests of the HME

In this section, we bring our theoretical results to data. Our aim is to provide a preliminary assessment of the explanatory power of new trade theory in the wake of Helpman (1984, p. 84): “If certain restrictions are empirically testable they can be used for preliminary testing of the theory before a more thorough examination is undertaken, or they can be used to reject the theory”.

5.1 The dataset

Our data comes from two sources. First, we use the dataset developed at CEPII to obtain bilateral trade flows as well as intra-country absorption at the 3-digit level.\[^{13}\] Second, we use the World Bank Trade and Production Database to obtain industry specific value-added for 67 developing and developed countries at the 3-digit ISIC level for the year 1990.\[^{14}\]

From these datasets, we extract two samples of countries. The first one consists of 20 countries than were members of the OECD in 1990: Australia, Austria, Canada, Denmark, Spain, Finland, France, Great Britain, Germany, Greece, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Sweden, Turkey, and the United States.

\[^{13}\]See Mayer and Zignago (2004) for more details on the CEPII dataset. It can be obtained at: http://team.univ-paris1.fr/teamperso/mayer/data/data.htm

\[^{14}\]Although the World Bank dataset covers the period until 1999, production data for most countries is missing after 1992. We thus settle on the year 1990 for our cross-sectional analysis, since both trade and production data are available for all major countries in both the World Bank and CEPII datasets.
The second set consists of 20 newly industrializing and developing countries that were not members of the OECD in 1990: Argentina, Bangladesh, Chile, China, Columbia, Egypt, Hong Kong, Hungary, India, Indonesia, Korea, Mexico, Pakistan, Peru, Philippines, Poland, Romania, Thailand, Taiwan, and Venezuela. Following Hanson and Xiang (2004), we call the two sets of countries treatment and control groups respectively. Our empirical strategy is to implement two analyses: (i) one focusing on the treatment group; and (ii) one focusing on the control group. The underlying logic is the following. Countries in the treatment group are characterized by roughly similar high levels of economic development and relative factor endowments. According to the theory (see, e.g. Dixit and Norman, 1980; Helpman and Krugman, 1985), trade flows between them should mostly be of the intra-industry type and thus better explained by increasing returns and imperfect competition as featured by the model developed in the previous sections. The countries of the control group exhibit both a lower average level of development and higher heterogeneity in terms of relative factor endowments and per-capita GDP. Thus, with respect to the treatment group, the importance of inter-industry trade in the control group should rise and the explanatory power of our model should fall as this neglects the effects of comparative advantage and factor endowments.

As to industries, we focus on 25 3-digit ISIC manufacturing industries (see Tables 1 to 3 for the industry list). This makes our results comparable with previous works on the HME such as Trionfetti (2001), Head and Ries, (2001), and Brülhart and Trionfetti (2004). The chosen level of aggregation also minimizes the potential impacts of intersectoral cross-price elasticities that may distort the analysis.\[16\]

\[15\]To compare the results between the treatment and control groups more easily, we choose equal-sized samples. Furthermore, we include only countries which have positive trade flows in at least half of the industries in our samples.

\[16\]See Davis and Weinstein (2003) for a discussion of possible aggregation biases.
5.2 Constructing the variables

The construction of the variables we need for our analysis requires only few data: value-added or some other measure to construct the firm distribution λ; production, absorption and import/export data for all countries and industries to construct the expenditure distribution θ and the trade cost matrix Φ. We use value-added (henceforth, VA) as an indicator of the distribution of production and industry across countries.\footnote{Using employment data, instead, leads to substantial bias since differences in countries’ labor productivities and capital-labor ratios cannot be easily controlled for.} More precisely, we proxy country i’s industry share as follows:

$$
\lambda_i = \frac{VA_i}{\sum_j VA_j} \tag{33}
$$

Let Y_i, M_i and X_i stand for country i’s total value of production, imports and exports to the world respectively. The expenditure share can then be expressed as follows:

$$
\theta_i = \frac{Y_i + M_i - X_i}{\sum_j (Y_j + M_j - X_j)}
$$

which is domestic absorption in country i relative to world absorption. Note that since intermediate goods are included, both firms and consumers are buyers. Let

$$
X_{ij}^k \equiv n_i^k p_{ij}^k x_{ij}^k
$$

stand for the trade cost inclusive value of industry-k goods produced in country i and shipped to country j. To alleviate notation, we drop the industry index k when no confusion arises. The values X_{ii} for intra-country trade flows (i.e., own-absorption) are directly taken from the CEPII database.\footnote{An alternative is to construct them from the World Bank database as the total value of production of country i, minus its exports to the world:}

$$
X_{ii} = Y_i - X_i
$$
Finally, we need an estimate of the trade cost matrix Φ. This can be obtained as in Head and Mayer (2004, p. 2618). Specifically, given (2) and (5), the theoretical model implies that
\[
\frac{X_{ij}X_{ji}}{X_{ii}X_{jj}} = \frac{\phi_{ij}\phi_{ji}}{\phi_{ii}\phi_{jj}}.
\]
Assuming that bilateral trade barriers are symmetric and internal trade costs $\hat{\phi}$ are the same across countries, the estimate of $\phi_{ij}/\hat{\phi}$ is given by
\[
\frac{\phi_{ij}}{\hat{\phi}} = \sqrt{\frac{X_{ij}X_{ji}}{X_{ii}X_{jj}}}.
\]
Note that although Head and Mayer (2004) assume that intra-country trade is costless (i.e. $\hat{\phi} = 1$), this assumption is unnecessary because (8) can be rewritten as follows:
\[
\sum_j \frac{(\phi_{ij}/\hat{\phi})\theta_j}{\sum_m (\phi_{mj}/\hat{\phi})\lambda_m} = \sum_j \frac{\phi_{ij}\theta_j}{\sum_m \phi_{mj}\lambda_m} \leq 1, \quad i = 1, 2, \ldots M
\]
thus showing that the equilibrium conditions do not change even when $\hat{\phi} < 1$. Using (34), we can construct the $M \times M$ trade cost matrix Φ.

The implementation of (32) requires one last piece of information in that to calculate β we need to know ϕ. This is the ‘average trade cost’ in the industry. In what follows, for $i = 1, 2, \ldots M$. Our results do not significantly change when using this alternative approach. In both cases the measure of X_{ii} does not correct for re-exports. Although the problem of re-exports is well-known in the literature (see, e.g., Feenstra and Hanson, 2004), only few countries actually have good aggregate indicators of re-export shares. Yet, even these countries generally do not provide detailed information at the industry level. To complicate things, re-exports need to be corrected for re-export mark-ups, which are even more difficult to obtain. Given the lack of quality data, we choose to disregard the re-export problem in our analysis. Accordingly, in some rare cases total exports may actually exceed domestic production for some countries and industries. This feature of small open economies in the data is well-known. Following Head and Ries (2001), we exclude countries with negative values of domestic absorption from our industry-level analysis.
we approximate ϕ as:

$$
\phi \equiv \frac{1}{M(M-1)} \sum_{i=1}^{M} \sum_{j \neq i} \phi_{ij}.
$$

Note that (35) is not entirely satisfactory since, from a theoretical point of view, ϕ should be the geometric mean of the ϕ_{ij}’s (see Appendix 3). Unfortunately, it is impossible to compute ϕ meaningfully this way because of a significant proportion of zero flows between countries in the sample. This stresses the relevance of the ‘Haveman and Hummels criticism’, which points out that although the CES model implies trade among all countries for each sector, the reality is largely dominated by zero flows (see Anderson and van Wincoop, 2004, p. 732).

5.3 Sign tests

In the empirical literature on international trade, non-parametric ‘sign tests’ have been repeatedly used to check the predictive power of the factor proportions theory, according to which countries export the goods that use relatively intensively their relatively abundant factors (see Bowen et al., 1987; Feenstra, 2003). As noted by Trefler (1995, p. 1029), the main conclusion that must be drawn is that the basic factor proportions theory “performs horribly [since] factor endowments predict the direction of factor service trade about 50 percent of the time, a success rate that is matched by a coin toss”. More recently, Choi and Krishna (2004) used another ‘sign test’ based on Helpman’s (1984) result that the bilateral pattern of trade should reflect the fact that countries, on average, import the factors that are relatively more expensive at home and export the factors that are relatively cheaper. Although the authors find some strong empirical support for this prediction, they acknowledge that their “tests provide only a statement regarding the direction and magnitude of trade flows on average” (Choi and Krishna, 2004, p. 895).

In this section, we show that a similar methodology to the one used by Bowen et al.
(1987) as well as by Choi and Krishna (2004) may be used to test the predictive power of new trade theory. Observe that, as shown in Sections 3 and 4, once we control for differences in accessibility

\[Z_{ij}^k \equiv \left(\frac{\lambda_{size}^k}{\theta_i^k} - \frac{\lambda_{size}^k}{\theta_j^k} \right) \left(\theta_i^k - \theta_j^k \right) \geq 0 \]

should hold for all country pairs \(i \) and \(j \) if industry \(k \) is subject to a SHME. The formal analogy of (36) with the sign tests used in factor proportions theory is striking. Quite surprisingly, this has been overlooked until now probably because all empirical work on the HME has focused on the disproportionate causation from demand to supply in terms of intertemporal variations. The use of condition (36) for a formal test offers two distinct advantages: (i) it circumvents the theoretical difficulties of the DHME highlighted in Section 3.1; and (ii) its results are more easily comparable with the ones established in the factor proportions literature. While this does not allow us, of course, to discriminate between the two paradigms, we may get a rough idea of how good their relative predictions are.

As a first indicator of the predictive power of the HME model, we use a similar approach to the one adopted by Choi and Krishna (2004).19 Building on condition (36), the weakest sign test of the HME theory is that

\[Z^k \equiv \sum_{i=1}^M \sum_{j=1}^M \left(\frac{\lambda_{size}^k}{\theta_i^k} - \frac{\lambda_{size}^k}{\theta_j^k} \right) \left(\theta_i^k - \theta_j^k \right) \geq 0 \]

should hold at the industry level. Stated differently, on average countries with larger expenditure shares on good \(k \) host more than proportionate shares of industry \(k \). We call the corresponding check the ‘world average \(Z \)-test’. We compute \(Z^k \) for all 25 industries using both the ‘unadjusted’ shares \(\lambda \) coming straight from (33) and the ‘adjusted’ shares \(\lambda_{size} \) calculated from (33) after controlling for accessibility as in (32). Results for both the

19See Appendix 6 for the distributional properties of all the test statistics we use.
treatment (OECD) and the control (DVLP) groups show that this weak prediction almost always holds when we control for differences in market access. Whereas Z^k is negative in 6 out of 25 cases when we use the unadjusted value of λ, it is only insignificantly negative in 1 out of 25 cases (for the ‘Beverages’ industry) when we use λ^size. The theory is therefore almost perfectly supported at such a weak test level.

A slightly stronger test of the HME prediction can be expressed as follows:

$$Z^k_i \equiv \sum_{j=1}^{M} \left(\frac{(\lambda^\text{size})^k_i}{\theta^k_i} - \frac{(\lambda^\text{size})^k_j}{\theta^k_j} \right) (\theta^k_i - \theta^k_j) \geq 0 \quad (37)$$

which states that on average, if country i has a larger expenditure share on good k than the other countries, then it hosts a more than proportionate share of industry k. We call the corresponding check the ‘country average Z-test’. The industry-level results for (37) are given in Table 1. As can be seen from columns 5 and 8, when we control for accessibility the trade weighted average percentage of correct signs is 86.3 per cent for the treatment group, while it drops to 68.5 per cent for the control group. Thus, in the case of OECD countries, there is strong support for the theoretical prediction that, on average, trade in manufactures flows from countries with relatively larger local demand to countries with relatively smaller local demand. Our percentages of correct signs are of the same order of magnitude as those in Choi and Krishna (2004). Thus, on average both factor proportions and HME theories deliver results that are roughly equally backed by the data at an aggregate level.

Unfortunately, the foregoing average sign tests are rather crude indicators of the explanatory power of the theory. This is because many small negative observations that violate it may be more than offset by a few large positive ones. To get rid of this potential problem, we push disaggregation one step further. As shown in Sections 3 and 4, the theory predicts that the observed industry distribution λ should reflect the country rankings in terms of expenditure θ once differential accessibility is appropriately controlled.
for. Hence, the strongest sign test of the HME prediction is
\[
Z_{ij}^{k} \equiv \left(\frac{(\lambda_{i}^{\text{size}})^{k}}{\theta_{i}^{k}} - \frac{(\lambda_{j}^{\text{size}})^{k}}{\theta_{j}^{k}} \right) (\theta_{i}^{k} - \theta_{j}^{k}) \geq 0, \tag{38}
\]
which is (36) for \(M(M-1)/2\) distinct country-combinations. It states that for each pair of countries, if one country has a larger expenditure share on good \(k\), then it hosts a more than proportionate share of industry \(k\). We call the corresponding check the ‘pairwise \(Z\)-test’. Notice that passing from the ‘country average \(Z\)-test’ (37) to the ‘pairwise \(Z\)-test’ (38) amounts to passing from average tests à la Choi and Krishna (2004) to disaggregated tests à la Bowen et al. (1987). The crucial question then becomes: Does the success rate of HME-based predictions exceed that of a coin toss?

Column 4 of Table 2 displays the industry-level results for the pairwise \(Z\)-tests (38) for our treatment group when we do not control for accessibility. Quite surprisingly, even without controlling, the average percentage of correct predictions is about 63.1 per cent for the arithmetic mean and about 67.6 per cent for the trade weighted mean. Therefore, it significantly exceeds the success rate of a coin toss. For 19 out of 25 industries, it is significantly greater at the 5 per cent level. Column 7 of Table 2 shows that, as expected, the share of correct predictions decreases for the control group. Indeed, the arithmetic and the trade weighted means decrease to 48.0 and 54.4 per cent respectively, which is very close to the coin-toss outcome. There are 8 industries in which the correct predictions exceed the 50 per cent threshold at a 5 per cent significance level. This shows that the average rate of correct predictions is lower for pairs of the type ‘DVLP - DVLP’, which probably reflects the relative importance of comparative advantage and relative factor endowments.

Table 2 also shows that the locational determinants differ clearly between industries. While industries like ‘Textiles’ (321), ‘Wearing apparel’ (322), ‘Leather products’ (323), and ‘Footwear’ (324) do seem to be governed by comparative advantage in the case of
developing countries and by the HME in case of developed countries, industries such as ‘Industrial chemicals’ (351), ‘Fabricated metal products’ (381), ‘Electrical and non-electrical machinery’ (382 and 383), and ‘Transport equipment’ (384) do seem to obey a HME rule in both developed and developing countries.

As can be finally seen from column 5 in Table 2, correcting for accessibility increases the number of correct matches between OECD countries. The average percentage of correct predictions is now about 71.3 per cent for the trade weighted mean. For 22 out of 25 industries, it significantly exceeds 50 per cent at the 1 per cent level. Stated differently, the HME model correctly predicts the direction of trade flows among our OECD sample countries in almost 3 out of 4 cases, which significantly exceeds the success rate of a coin toss that arises in the comparative advantage setting.

5.4 Rank tests

The strongest test of the SHME we develop in this paper goes beyond the sign tests by building on Definition 2 in Section 3.2: Does the ranking of relative industry shares \((\lambda_i/\theta_i)\) match the ranking of expenditure shares \((\theta_i)\) after controlling for differences in accessibility? To answer this question, we compute the Spearman rank-correlation coefficients between those two series for all 25 industries on both the treatment and the control samples. The results are summarized in Table 3.

As can be seen from column 5, for the OECD sample only two coefficients are slightly negative after controlling for accessibility. All other 23 rank-correlation coefficients are positive. Among them, 18 are statistically greater than zero at the 5 per cent level. In other words, the SHME prediction is strongly supported for OECD countries after controlling for accessibility. Column 7 is of particular interest: it shows that for the control group without controlling for accessibility, there is almost no correlation between
market-size and the pattern of trade. Column 8 of Table 3 shows that the prediction gets better once we control for accessibility. Yet, the correlations remain much weaker than for the treatment group: only 9 coefficients out of 25 are statistically greater than zero at the 5 per cent level, whereas 6 are even negative. Hence, expenditures predict the location of industry much less effectively in the control than in the treatment sample, which may again signal the role of comparative advantage and relative factor endowments.

6 Concluding remarks

We have started with what we called the ‘Davis-Weinstein conjecture’ (Davis and Weinstein, 2003). According to this conjecture, the HME uncovered in two-country models may be extended to a multi-country world in a fairly straightforward way. Specifically, with two countries, firms are disproportionately located in the country offering the larger local demand. With many countries, the same should happen with respect to some index of local ‘effective’ demand. Such index should take into account not only local demand per se but also demands derived from other countries, weighted by some adequate measure of distance.

By developing a multi-country model à la Krugman (1980), we have shown that things are unfortunately not that simple. In particular, as shown by Proposition 3, it is quite difficult, perhaps impossible, to build an index of ‘effective’ demand whose changes always generate disproportionate responses with respect to output. The reason being that, with many countries, the location of firms is determined by the interaction between spatial (‘accessibility’) and non-spatial (‘attraction’) effects, which are crucially influenced by what happens to the entire distribution of demand across all countries (‘third country effects’). These conceptual difficulties, however, do not imply the impossibility of assessing
the role of product differentiation and market structure in shaping the structure of world trade. We propose, indeed, a series of new theory-based non-parametric tests of the HME that are similar to the sign- and rank-tests used in applied the factor proportions literature. Our main finding is that the empirical evidence strongly backs the HME prediction: local market size crucially matters in explaining and predicting observed trade flows, especially between OECD countries.

Our preliminary results do not allow us to reject the HME model as a possible explanation for the structure of world trade. The next logical step is to take the model to the data with the help of a more complete econometric analysis. In particular, our decomposition of the geographical distribution of firms into ‘attraction’ and ‘accessibility’ components may turn out to be useful for future econometric investigations.

References

Appendix 1: Factor price equalization

Factor price equalization requires any $M - 1$ dimensional subset of countries to be unable to satisfy world demand for the homogeneous good H (see, e.g., Baldwin *et al.*, 43)
Let ℓ_i be the amount of labor employed by a representative firm in country i. For the homogeneous production to take place everywhere, the total mass of workers in each country should be greater than total labor requirement in the modern sector, i.e.,

$$L_i > n_i \ell_i \quad \forall i.$$

Therefore, since $L_i = \theta_i L$ and

$$n_i \ell_i = \lambda^*_i N \left(F + c \sum_j x_{ij} \right) = \lambda^*_i \frac{\mu L}{F \sigma} \left[F + c \frac{F(\sigma - 1)}{c} \right] = \lambda^*_i \mu L$$

in equilibrium, the condition for factor price equalization reduces to:

$$\theta_i > \mu \sum_j \frac{f_{ij}}{\sum_k f_{jk}} \theta_j = \mu \lambda^* \quad \forall i. \quad (39)$$

Thus, the differentiated good expenditure share μ must be small enough for the homogeneous good to be produced everywhere.

Appendix 2: Existence of a unique equilibrium

Since all RMP$_i$’s are continuous functions of λ (and, therefore, of n), Proposition 1 in Ginsburgh *et al.* (1985) shows that an equilibrium always exists. Rewrite the profit function in country i as follows:

$$\Pi_i (n) = \sum_j \left(p_{ij} d_{ij} - c x_{ij} \right) - F$$

$$= \frac{\mu}{\sigma} \sum_i \frac{\phi_{ii} L_i}{\sum_k \phi_{ki} n_k} - F$$

$$= F \left[\text{RMP}_i - 1 \right].$$

Assume that firms relocate in response to profit differentials, so that n_i increases (resp. decreases) if $\Pi_i (n) > 0$ (resp. < 0). Hence, the dynamics of the relocation process is given by

$$\dot{n}_i = \xi_i \Pi_i (n), \quad (40)$$
where \(\dot{n}_i \equiv dn_i/dt \) and where \(\xi_i > 0 \) stands for the speed of the adjustment in country \(i \).

We first show that the Jacobian of \(\Pi \), denoted by \(J \), is negative definite. Note that

\[
\frac{\partial \Pi_i (n)}{\partial n_j} = -\frac{\mu}{\sigma} \sum_l \frac{\phi_{jl} \phi_{il} L_l}{(\sum_k \phi_{kl} n_k)^2},
\]

so that, by symmetry of the \(\phi_{ij} \)'s, the matrix \(J \) is symmetric. Then, for any nonzero vector \(x \), we have

\[
x^T J x = -\frac{\mu}{\sigma} \sum_i \sum_j \xi_i x_i \xi_j x_j \sum_l \frac{\phi_{jl} \phi_{il} L_l}{(\sum_k \phi_{kl} n_k)^2} \\
= -\frac{\mu}{\sigma} \sum_l \frac{\sum_i \xi_i \phi_{il} x_i \sum_j \xi_j \phi_{jl} x_j L_l}{(\sum_k \phi_{kl} n_k)^2} \\
= -\frac{\mu}{\sigma} \sum_l \frac{(\sum_i \xi_i \phi_{il} x_i)^2}{(\sum_k \phi_{kl} n_k)^2} L_l < 0,
\]

thus implying that \(J \) is negative definite. According to Rosen (1965, Theorem 8), if \(J \) is negative definite for every \(\lambda \in \Delta \), the system (40) is globally stable on \(\Delta \). Because existence and global stability of an equilibrium implies uniqueness, our result follows.

Appendix 3: Positive definiteness of \(\Phi \)

In order for expressions (17) and (18) to be defined, the trade cost matrix \(\Phi \) must be invertible. In this appendix, we derive sufficient conditions for this to hold. We especially show that \(\Phi \) is positive definite when distance is measured by the euclidian norm. Our first lemma provides a characterization of the iceberg trade cost in terms of the exponential function.

Lemma 1 Assume that \(r \) is a metric. Let \(r_{ij} = r(i, j) \) be the distance between countries \(i \) and \(j \), and let \(\phi(i, j) = \phi_{ij} \) be the associated freeness of trade. When trade costs are of the iceberg form, the relationship

\[
\phi \equiv e^{-r}
\]

must hold.
Proof. Consider three countries i, j and k and let $r_{ik} = r_{ij} + r_{jk}$, where r_{ik} is the distance between i and k. By definition of the iceberg trade cost, if one unit of the good is shipped from country i, only a fraction $1/\tau_{ij}$ arrives in country j, whereas only a fraction $(1/\tau_{ij})(1/\tau_{jk})$ arrives in country k. That is, $\tau_{ik} = \tau_{ij}\tau_{jk}$ holds for any i, j and k. Since trade costs depend on distance, i.e. $\tau_{ik} = \tau(r_{ik})$, it must be that
\[
\tau(r_{ij} + r_{jk}) = \tau(r_{ij})\tau(r_{jk}) \quad \forall r_{ij}, r_{jk}. \tag{42}
\]
Fix r_{jk}, differentiate (42) with respect to r_{ij} and evaluate it at $r_{ij} = 0$. This yields the condition $\tau'(r_{jk}) = \tau'(0)\tau(r_{jk})$. Solving this differential equation with the condition $\tau(0) = 1$ yields
\[
\tau(r_{jk}) \equiv \tau_{jk} = e^{\tau'(0)r_{jk}}.
\]
Because $\phi_{jk} = \tau_{jk}^{1-\sigma}$, we finally obtain
\[
\phi_{jk} = e^{-\tau_{0}r_{jk}},
\]
where $\tau_{0} = (\sigma - 1)\tau'(0) > 0$ which can be normalized to 1 by an appropriate choice of units for the metric r.\footnote{Note that if $\tau_{ik} = \tau_{ij} + \tau_{jk}$ for any i, j and k, we have $\tau(r_{ij} + r_{jk}) = \tau(r_{ij}) + \tau(r_{jk})$, which yields the linear trade costs $\tau(r_{jk}) = \tau'(0)r_{jk}$ as in Ottaviano et al. (2002).}

Observe that (41) ensures that trade costs between any two countries are pairwise symmetric (i.e. $\tau_{ij} = \tau_{ji}$ or $\phi_{ij} = \phi_{ji}$) and that direct trade costs between i and k do not exceed trade costs via a third country j ($\tau_{ik} \leq \tau_{ij}\tau_{jk}$ or $\phi_{ik} \geq \phi_{ij}\phi_{jk}$, due to the triangle inequality of the metric r).

Lemma 1 allows us to establish the following:

Lemma 2 Assume that r is the euclidian norm and that all countries are distinct. Given (41), Φ is then positive definite.
Appendix 4: Proof of Proposition 2

Denote by ϕ_i the i-th column vector of Φ, by ϕ_j^{-1} the j-th column vector of its inverse Φ^{-1}, by $\langle x, y \rangle \equiv x^T y$ the euclidian scalar product, and by $\|x\|$ the euclidian norm of x. Because Φ and Φ^{-1} are symmetric, by definition $\langle \phi_i, \phi_j^{-1} \rangle = 0$ for all $j \neq i$ and $\langle \phi_i, \phi_i^{-1} \rangle = 1$.

Assume that trade is sufficiently free so that $\phi_i \equiv 1 + t_i \xi_i$, where $\xi_i \in \mathbb{R}_+^M$ is a perturbation vector and $t_i \neq 0$ is a coefficient such that $\phi_i > 1$. Note that $\|t_i \xi_i\| \to 0$ when $t_i \to 0$, which implies that the perturbation can always be made sufficiently small with the help of t_i. Note also that it is always possible to choose the M vectors ξ_i such that the M vectors ϕ_i are linearly independent. We know from condition (16) that at any interior equilibrium $\varphi_j \equiv \langle \phi_j^{-1}, 1 \rangle > \theta_j$ must hold. Hence,

$$\langle \phi_i, \phi_j^{-1} \rangle = \langle 1 + t_i \xi_i, \phi_j^{-1} \rangle = \langle 1, \phi_j^{-1} \rangle + t_i \langle \xi_i, \phi_j^{-1} \rangle = 0$$

which implies that

$$\langle 1, \phi_j^{-1} \rangle = -t_i \langle \xi_i, \phi_j^{-1} \rangle > \theta_j > 0$$

must hold. Because $\theta_j > 0$ is fixed, we can always find $t_i \to 0$ sufficiently small such that this condition is violated (we can choose t_i either positive or negative, depending on the sign of $\langle \xi_i, \phi_j^{-1} \rangle$). We may hence conclude that there is no interior equilibrium no matter the value of $\theta \in \text{ri}(\Delta)$ when trade becomes sufficiently free.

When trade is prohibitive, $\Phi = \Phi^{-1} = I_d$ so that a proportionate equilibrium $\lambda^* = \theta$ prevails from (18). Let $\phi_i = e_i + t_i 1$, where e_i is the i-th vector of the canonical basis of \mathbb{R}^M and where t_i is defined as before. Again, at any interior equilibrium $\varphi_j \equiv \langle \phi_j^{-1}, 1 \rangle > \theta_j$ must hold. We have

$$\langle \phi_i, \phi_j^{-1} \rangle = \langle e_i + t_i 1, \phi_j^{-1} \rangle = \langle e_i, \phi_j^{-1} \rangle + t_i \langle 1, \phi_j^{-1} \rangle = 0$$
which implies that
\[\langle 1, \phi_j^{-1} \rangle = -\frac{1}{t_i} \langle e_i, \phi_j^{-1} \rangle > \theta_j > 0 \]
must hold. Because $\theta_j > 0$ is fixed, we can always find $t_i \to 0$ sufficiently small such that this condition is satisfied (we can choose t_i either positive or negative, depending on the sign of $\langle e_i, \phi_j^{-1} \rangle$). We may hence conclude that there is always an interior equilibrium no matter the value of $\theta \in \text{ri}(\Delta)$ when trade is sufficiently restricted.

Appendix 5: Distributions of test statistics

Table 1 lists the percentage:

\[S_k^i = \frac{1}{M} \sum_i \text{sgn} \left[\max \left\{ 0, \sum_j Z_{ij}^k \right\} \right], \]

which is binomially distributed. Hence, the null hypothesis is given by $H_0 : S_k^i = 1/2$, whereas the alternative hypothesis is given by $H_1 : S_k^i > 1/2$. The 0.01 and 0.05 critical values for this unilateral test can be computed for each M. For example, for $M = 20$, S_k^i is significantly greater than 1/2 at the 1 percent (resp. 5 percent) level when $Z_i^k > 0$ in 16 (resp. 15) or more out of 20 countries. These critical values depend on M.

Table 2 lists the percentage:

\[S^k = \frac{2}{M(M-1)} \sum_i \sum_{j<i} \text{sgn} \left[\max \{ 0, Z_{ij}^k \} \right], \]

which is also binomially distributed so that the same null hypothesis applies. However, the number of pairs $M(M-1)/2$ is large enough that we may use the normal approximation to the binomial distribution, as in Choi and Krishna (2004, p. 903). That is, S^k is significantly greater than 1/2 at the 1 percent (resp. 5 percent) level when

\[z \equiv \frac{M(M-1)}{2} S^k + \frac{1}{2} - \frac{M(M-1)}{4} \sqrt{\frac{M(M-1)}{16}} \]

exceeds 2.33 (resp. 1.645).
Table 3 finally gives the Spearman rank-correlation coefficients. The significance levels can be found in Kendall and Gibbons (1990).
<table>
<thead>
<tr>
<th>ISIC</th>
<th>Industry classification</th>
<th>OECD</th>
<th>OECD</th>
<th>OECD</th>
<th>DVLP</th>
<th>DVLP</th>
<th>DVLP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>% with λ</td>
<td>% with λ_{size}</td>
<td>M</td>
<td>% with λ</td>
<td>% with λ_{size}</td>
</tr>
<tr>
<td>311</td>
<td>Food products</td>
<td>20</td>
<td>80.0**</td>
<td>75.0*</td>
<td>20</td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td>313</td>
<td>Beverages</td>
<td>19</td>
<td>15.8</td>
<td>31.6</td>
<td>20</td>
<td>65.0</td>
<td>75.0*</td>
</tr>
<tr>
<td>314</td>
<td>Tobacco</td>
<td>19</td>
<td>52.6</td>
<td>42.1</td>
<td>20</td>
<td>35.0</td>
<td>30.0</td>
</tr>
<tr>
<td>321</td>
<td>Textiles</td>
<td>20</td>
<td>85.0**</td>
<td>85.0**</td>
<td>20</td>
<td>10.0</td>
<td>25.0</td>
</tr>
<tr>
<td>322</td>
<td>Wearing apparel except footwear</td>
<td>19</td>
<td>31.6</td>
<td>94.7**</td>
<td>18</td>
<td>94.4**</td>
<td>94.4**</td>
</tr>
<tr>
<td>323</td>
<td>Leather products</td>
<td>19</td>
<td>100.0***</td>
<td>84.2**</td>
<td>18</td>
<td>72.2*</td>
<td>66.7</td>
</tr>
<tr>
<td>324</td>
<td>Footwear except rubber or plastic</td>
<td>19</td>
<td>47.4</td>
<td>73.7*</td>
<td>19</td>
<td>100.0***</td>
<td>94.7**</td>
</tr>
<tr>
<td>331</td>
<td>Wood products except furniture</td>
<td>19</td>
<td>57.9</td>
<td>78.9**</td>
<td>20</td>
<td>25.0</td>
<td>45.0</td>
</tr>
<tr>
<td>332</td>
<td>Furniture except metal</td>
<td>19</td>
<td>36.8</td>
<td>94.7**</td>
<td>18</td>
<td>16.7</td>
<td>33.3</td>
</tr>
<tr>
<td>341</td>
<td>Paper and products</td>
<td>19</td>
<td>52.6</td>
<td>84.2**</td>
<td>20</td>
<td>20.0</td>
<td>30.0</td>
</tr>
<tr>
<td>342</td>
<td>Printing and publishing</td>
<td>20</td>
<td>95.0**</td>
<td>90.0**</td>
<td>20</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>351</td>
<td>Industrial chemicals</td>
<td>19</td>
<td>94.7**</td>
<td>89.5**</td>
<td>20</td>
<td>60.0</td>
<td>90.0**</td>
</tr>
<tr>
<td>352</td>
<td>Other chemicals</td>
<td>20</td>
<td>85.0**</td>
<td>95.0**</td>
<td>20</td>
<td>40.0</td>
<td>50.0</td>
</tr>
<tr>
<td>355</td>
<td>Rubber products</td>
<td>20</td>
<td>95.0**</td>
<td>95.0**</td>
<td>19</td>
<td>63.2</td>
<td>52.6</td>
</tr>
<tr>
<td>356</td>
<td>Plastic products</td>
<td>20</td>
<td>90.0**</td>
<td>85.0**</td>
<td>20</td>
<td>75.0*</td>
<td>85.0**</td>
</tr>
<tr>
<td>362</td>
<td>Glass and products</td>
<td>18</td>
<td>83.3**</td>
<td>88.9**</td>
<td>20</td>
<td>65.0</td>
<td>80.0**</td>
</tr>
<tr>
<td>369</td>
<td>Other non-metallic mineral products</td>
<td>19</td>
<td>78.9**</td>
<td>84.2**</td>
<td>19</td>
<td>36.8</td>
<td>31.6</td>
</tr>
<tr>
<td>371</td>
<td>Iron and steel</td>
<td>18</td>
<td>88.9**</td>
<td>94.4**</td>
<td>20</td>
<td>50.0</td>
<td>40.0</td>
</tr>
<tr>
<td>372</td>
<td>Non-ferrous metals</td>
<td>16</td>
<td>43.8</td>
<td>81.3*</td>
<td>18</td>
<td>22.2</td>
<td>27.8</td>
</tr>
<tr>
<td>381</td>
<td>Fabricated metal products</td>
<td>20</td>
<td>90.0**</td>
<td>85.0**</td>
<td>20</td>
<td>65.0</td>
<td>90.0**</td>
</tr>
<tr>
<td>382</td>
<td>Machinery except electrical</td>
<td>20</td>
<td>85.0**</td>
<td>75.0**</td>
<td>19</td>
<td>78.9**</td>
<td>73.7*</td>
</tr>
<tr>
<td>383</td>
<td>Machinery electric</td>
<td>20</td>
<td>85.0**</td>
<td>90.0**</td>
<td>20</td>
<td>60.0</td>
<td>90.0**</td>
</tr>
<tr>
<td>384</td>
<td>Transport equipment</td>
<td>20</td>
<td>95.0**</td>
<td>95.0**</td>
<td>20</td>
<td>75.0*</td>
<td>85.0**</td>
</tr>
<tr>
<td>385</td>
<td>Professional and scientific equipment</td>
<td>18</td>
<td>88.9**</td>
<td>94.4**</td>
<td>17</td>
<td>64.7</td>
<td>41.2</td>
</tr>
<tr>
<td>390</td>
<td>Other manufactured products</td>
<td>18</td>
<td>83.3**</td>
<td>88.9**</td>
<td>19</td>
<td>47.4</td>
<td>68.4</td>
</tr>
<tr>
<td></td>
<td>Arithmetic mean</td>
<td>73.7</td>
<td>83.0</td>
<td>52.7</td>
<td>59.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trade weighted mean</td>
<td>82.5</td>
<td>86.3</td>
<td>59.4</td>
<td>68.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: * = significant at 5% level; ** = significant at 1% level
<table>
<thead>
<tr>
<th>ISIC</th>
<th>Industry classification</th>
<th>OECD</th>
<th>OECD</th>
<th>OECD</th>
<th>DVLP</th>
<th>DVLP</th>
<th>DVLP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M % with λ</td>
<td>% with λ_{size}</td>
<td>M % with λ</td>
<td>% with λ_{size}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>Food products</td>
<td>20 54.2</td>
<td>59.5**</td>
<td>20 43.2</td>
<td>43.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>Beverages</td>
<td>19 38.6</td>
<td>48.5</td>
<td>20 61.6**</td>
<td>64.7**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>314</td>
<td>Tobacco</td>
<td>19 47.4</td>
<td>44.4</td>
<td>20 41.6</td>
<td>42.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>321</td>
<td>Textiles</td>
<td>20 65.3**</td>
<td>64.2**</td>
<td>20 37.4</td>
<td>50.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>Wearing apparel except footwear</td>
<td>19 47.4</td>
<td>73.1**</td>
<td>18 39.9</td>
<td>37.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>323</td>
<td>Leather products</td>
<td>19 69.0**</td>
<td>70.8**</td>
<td>18 28.1</td>
<td>36.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>324</td>
<td>Footwear except rubber or plastic</td>
<td>19 56.7*</td>
<td>59.1*</td>
<td>19 22.8</td>
<td>28.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>331</td>
<td>Wood products except furniture</td>
<td>19 56.7*</td>
<td>66.7**</td>
<td>20 43.7</td>
<td>53.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>332</td>
<td>Furniture except metal</td>
<td>19 59.6**</td>
<td>79.5**</td>
<td>18 45.1</td>
<td>55.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>341</td>
<td>Paper and products</td>
<td>19 56.1</td>
<td>76.6**</td>
<td>20 45.3</td>
<td>52.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>342</td>
<td>Printing and publishing</td>
<td>20 62.1**</td>
<td>72.1**</td>
<td>20 40.5</td>
<td>43.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>Industrial chemicals</td>
<td>19 63.2**</td>
<td>80.1**</td>
<td>20 48.4</td>
<td>73.2**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>Other chemicals</td>
<td>20 66.8**</td>
<td>74.2**</td>
<td>20 34.2</td>
<td>41.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>Rubber products</td>
<td>20 77.9**</td>
<td>75.8**</td>
<td>19 53.2</td>
<td>52.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356</td>
<td>Plastic products</td>
<td>20 65.3**</td>
<td>68.4**</td>
<td>20 57.9*</td>
<td>65.8**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>362</td>
<td>Glass and products</td>
<td>18 64.1**</td>
<td>72.5**</td>
<td>20 58.4*</td>
<td>68.4**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>369</td>
<td>Other non-metallic mineral products</td>
<td>19 61.4**</td>
<td>70.8**</td>
<td>19 46.2</td>
<td>48.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>Iron and steel</td>
<td>18 73.2**</td>
<td>82.4**</td>
<td>20 50.0</td>
<td>48.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>Non-ferrous metals</td>
<td>16 55.8</td>
<td>74.2**</td>
<td>18 49.7</td>
<td>52.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>381</td>
<td>Fabricated metal products</td>
<td>20 74.7**</td>
<td>68.9**</td>
<td>20 56.3*</td>
<td>63.2**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>382</td>
<td>Machinery except electrical</td>
<td>20 68.4**</td>
<td>64.7**</td>
<td>19 70.2**</td>
<td>73.7**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>Machinery electric</td>
<td>20 69.5**</td>
<td>74.7**</td>
<td>20 59.5**</td>
<td>76.3**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>384</td>
<td>Transport equipment</td>
<td>20 78.4**</td>
<td>73.2**</td>
<td>20 60.0**</td>
<td>72.6**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>Professional and scientific equipment</td>
<td>18 71.2**</td>
<td>75.8**</td>
<td>17 60.3*</td>
<td>66.2**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>Other manufactured products</td>
<td>18 73.2**</td>
<td>74.5**</td>
<td>19 46.8</td>
<td>69.0**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arithmetic mean</td>
<td>63.1</td>
<td>69.8</td>
<td>48.0</td>
<td>55.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trade weighted mean</td>
<td>67.6</td>
<td>71.3</td>
<td>54.4</td>
<td>63.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: * = significant at 5% level; ** = significant at 1% level
Table 3 — Spearman rank correlations and ‘adjusted’ Spearman rank correlations

<table>
<thead>
<tr>
<th>ISIC</th>
<th>Industry classification</th>
<th>OECD</th>
<th>OECD</th>
<th>OECD</th>
<th>DVLP</th>
<th>DVLP</th>
<th>DVLP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>R</td>
<td>R</td>
<td>M</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>311</td>
<td>Food products</td>
<td>20</td>
<td>0.075</td>
<td>0.250</td>
<td>20</td>
<td>-0.215</td>
<td>-0.191</td>
</tr>
<tr>
<td>313</td>
<td>Beverages</td>
<td>19</td>
<td>-0.337</td>
<td>-0.046</td>
<td>20</td>
<td>0.322</td>
<td>0.391</td>
</tr>
<tr>
<td>314</td>
<td>Tobacco</td>
<td>19</td>
<td>-0.065</td>
<td>-0.167</td>
<td>20</td>
<td>-0.244</td>
<td>-0.214</td>
</tr>
<tr>
<td>321</td>
<td>Textiles</td>
<td>20</td>
<td>0.334</td>
<td>0.358</td>
<td>20</td>
<td>-0.391</td>
<td>0.020</td>
</tr>
<tr>
<td>322</td>
<td>Wearing apparel except footwear</td>
<td>19</td>
<td>-0.070</td>
<td>0.532*</td>
<td>18</td>
<td>0.548*</td>
<td>0.509*</td>
</tr>
<tr>
<td>323</td>
<td>Leather products</td>
<td>19</td>
<td>0.604**</td>
<td>0.579**</td>
<td>18</td>
<td>0.061</td>
<td>0.240</td>
</tr>
<tr>
<td>324</td>
<td>Footwear except rubber or plastic</td>
<td>19</td>
<td>0.221</td>
<td>0.291</td>
<td>19</td>
<td>0.460*</td>
<td>0.595**</td>
</tr>
<tr>
<td>331</td>
<td>Wood products except furniture</td>
<td>19</td>
<td>0.214</td>
<td>0.435*</td>
<td>20</td>
<td>-0.226</td>
<td>0.120</td>
</tr>
<tr>
<td>332</td>
<td>Furniture except metal</td>
<td>19</td>
<td>0.314</td>
<td>0.730**</td>
<td>18</td>
<td>-0.176</td>
<td>0.106</td>
</tr>
<tr>
<td>341</td>
<td>Paper and products</td>
<td>19</td>
<td>0.170</td>
<td>0.711**</td>
<td>20</td>
<td>-0.153</td>
<td>0.087</td>
</tr>
<tr>
<td>342</td>
<td>Printing and publishing</td>
<td>20</td>
<td>0.316</td>
<td>0.531**</td>
<td>20</td>
<td>-0.256</td>
<td>-0.153</td>
</tr>
<tr>
<td>351</td>
<td>Industrial chemicals</td>
<td>19</td>
<td>0.311</td>
<td>0.626**</td>
<td>20</td>
<td>-0.044</td>
<td>0.627**</td>
</tr>
<tr>
<td>352</td>
<td>Other chemicals</td>
<td>20</td>
<td>0.367</td>
<td>0.534**</td>
<td>20</td>
<td>-0.432</td>
<td>-0.233</td>
</tr>
<tr>
<td>355</td>
<td>Rubber products</td>
<td>20</td>
<td>0.656**</td>
<td>0.666**</td>
<td>19</td>
<td>0.111</td>
<td>0.086</td>
</tr>
<tr>
<td>356</td>
<td>Plastic products</td>
<td>20</td>
<td>0.402*</td>
<td>0.370</td>
<td>20</td>
<td>0.205</td>
<td>0.418*</td>
</tr>
<tr>
<td>362</td>
<td>Glass and products</td>
<td>18</td>
<td>0.358</td>
<td>0.598**</td>
<td>20</td>
<td>0.211</td>
<td>0.478*</td>
</tr>
<tr>
<td>369</td>
<td>Other non-metallic mineral products</td>
<td>19</td>
<td>0.323</td>
<td>0.542*</td>
<td>19</td>
<td>-0.158</td>
<td>-0.102</td>
</tr>
<tr>
<td>371</td>
<td>Iron and steel</td>
<td>18</td>
<td>0.647**</td>
<td>0.771**</td>
<td>20</td>
<td>-0.002</td>
<td>-0.029</td>
</tr>
<tr>
<td>372</td>
<td>Non-ferrous metals</td>
<td>16</td>
<td>0.129</td>
<td>0.609**</td>
<td>18</td>
<td>-0.084</td>
<td>0.049</td>
</tr>
<tr>
<td>381</td>
<td>Fabricated metal products</td>
<td>20</td>
<td>0.662**</td>
<td>0.501*</td>
<td>20</td>
<td>0.221</td>
<td>0.383*</td>
</tr>
<tr>
<td>382</td>
<td>Machinery except electrical</td>
<td>20</td>
<td>0.445*</td>
<td>0.374</td>
<td>19</td>
<td>0.530*</td>
<td>0.549**</td>
</tr>
<tr>
<td>383</td>
<td>Machinery electric</td>
<td>20</td>
<td>0.433*</td>
<td>0.621**</td>
<td>20</td>
<td>0.266</td>
<td>0.722**</td>
</tr>
<tr>
<td>384</td>
<td>Transport equipment</td>
<td>20</td>
<td>0.758**</td>
<td>0.671**</td>
<td>20</td>
<td>0.292</td>
<td>0.597**</td>
</tr>
<tr>
<td>385</td>
<td>Professional and scientific equipment</td>
<td>18</td>
<td>0.507*</td>
<td>0.695**</td>
<td>17</td>
<td>0.324</td>
<td>0.355</td>
</tr>
<tr>
<td>390</td>
<td>Other manufactured products</td>
<td>18</td>
<td>0.657**</td>
<td>0.637**</td>
<td>19</td>
<td>0.132</td>
<td>0.375</td>
</tr>
</tbody>
</table>

Notes: * = significant at 5% level; ** = significant at 1% level