Discussion of

Exporters and Shocks: Dissecting the International Elasticity Puzzle

by Doireann Fitzgerald and Stefanie Haller

Oleg Itskhoki
Princeton University

NBER Summer Institute
IFM Meeting, July 2014
Why a Puzzle?

- **Assumptions**
 1. Downward-slopping demand
 \[Q_{ikt} = q(P_{ikt}; Z_{kt}) \]
 where \(P_{ikt} \) is local currency price (good \(i \), market \(k \))
 2. Marginal cost of delivering the good to consumers in local currency:
 \[MC_{ikt} = (1 + \tau_{kt})E_{kt}MC_{it}^* \]

- **Result**
 Static profit maximization implies
 \[\frac{\partial \log(P_{ikt}Q_{ikt})}{\partial \log E_{kt}} = \frac{\partial \log(P_{ikt}Q_{ikt})}{\partial \log(1 + \tau_{kt})} \]
Why a Puzzle?

- **Assumptions**
 1. Downward-slopping demand

 \[Q_{ikt} = q(P_{ikt}; Z_{kt}) \]

 where \(P_{ikt} \) is local currency price (good \(i \), market \(k \))
 2. Marginal cost of delivering the good to consumers in local currency:

 \[MC_{ikt} = (1 + \tau_{kt}) E_{kt} MC_{it}^* \]

- **Result**

 Static profit maximization implies

 \[
 \frac{\partial \log(P_{ikt} Q_{ikt})}{\partial \log E_{kt}} = \frac{\partial \log(P_{ikt} Q_{ikt})}{\partial \log(1 + \tau_{kt})} = -(\theta - 1)
 \]

 \[\rightarrow \] under additional assumption of constant pass-through (e.g., PC or CES+MC), \(\theta \) is (local) elasticity of demand
Why a Puzzle?

Assumptions

1. Downward-slopping demand

\[Q_{ikt} = q(P_{ikt}; Z_{kt}) \]

where \(P_{ikt} \) is local currency price (good \(i \), market \(k \))

2. Marginal cost of delivering the good to consumers in local currency:

\[MC_{ikt} = (1 + \tau_{kt})E_{kt}MC^*_{it} \]

Result

Static profit maximization implies

\[\frac{\partial \log(P_{ikt}Q_{ikt})}{\partial \log E_{kt}} = \frac{\partial \log(P_{ikt}Q_{ikt})}{\partial \log(1 + \tau_{kt})} = -(\theta - 1) \]

→ under additional assumption of constant pass-through (e.g., PC or CES+MC), \(\theta \) is (local) elasticity of demand
Two Distinct Puzzles

1. Exchange Rate vs Tariffs
 - exports are more responsive to tariffs

2. Short Run vs Long Run
 - exports are more responsive over longer horizons
 - J-curve

\[
\log(P_{ikt} Q_{ikt}) = \alpha_k + \delta_{it} + \beta_1 \Delta \log(E_{kt}) + \beta_2 \log(1 + \tau_{kt}) + \beta_3 \log(D_{kt}) + \epsilon_{ikt}
\]
Two Distinct Puzzles

1. Exchange Rate vs Tariffs
 - exports are more responsive to tariffs

2. Short Run vs Long Run
 - exports are more responsive over longer horizons
 - J-curve

This paper: Exchange Rate vs Tariff at the firm level

(i) small extensive margin (entry and exit) effects at annual frequency

(ii) large differences in intensive margin elasticities ($\beta_2 < \beta_1$)

$$\log(P_{ikt}Q_{ikt}) = \alpha_k + \delta_{it} + \beta_1 \Delta \log E_{kt} + \beta_2 \log(1+\tau_{kt}) + \beta_3 \log D_{kt} + \varepsilon_{ikt}$$
Exchange Rates vs Tariffs
Why Measured Elasticities may be Different?

1. Different statistical properties (persistence, volatility) and . . .
 (a) sunk cost of entry
 (b) sunk adjustment costs (of inputs or prices)
Exchange Rates vs Tariffs
Why Measured Elasticities may be Different?

1. Different statistical properties (persistence, volatility) and . . .
 (a) sunk cost of entry
 (b) sunk adjustment costs (of inputs or prices)

2. Different panel properties
 — little time-series variation in $\tau_{ikt} \Rightarrow$ regression with α_k and δ_{it} is a long-run cross-sectional regression (LR investment response)
 — lots of time-series variation in $E_{kt} \Rightarrow$ regression with α_k and δ_{it} picks up response to annual deviations of E_{kt} from its time-series average (lack of SR price response)
Exchange Rates vs Tariffs
Why Measured Elasticities may be Different?

1. Different statistical properties (persistence, volatility) and...
 (a) sunk cost of entry
 (b) sunk adjustment costs (of inputs or prices)

2. Different panel properties
 — little time-series variation in $\tau_{ikt} \Rightarrow$ regression with α_k and δ_{it} is a long-run cross-sectional regression (LR investment response)
 — lots of time-series variation in $E_{kt} \Rightarrow$ regression with α_k and δ_{it} picks up response to annual deviations of E_{kt} from its time-series average (lack of SR price response)

3. Different general equilibrium comovement
 — correlation with MC_{kt}, Z_{kt}, etc
 — correlations across markets k
 — controlling for δ_{it} does not necessarily resolve it
Why controlling for δ_{it}?

- Consider a pricing-to-market regression:

$$P_{ikt} = M_{ikt}(1 + \tau_{kt})\varepsilon_{kt} MC^*_{it} \quad \Rightarrow$$

$$\log P_{ikt} = \log M_{ikt} + \log(1 + \tau_{kt}) + \log \varepsilon_{kt} + \log MC^*_{it}$$

- "Second stage":

$$P_{ikt} Q_{ikt} = e^{\eta_{ikt}} Q_{kt} P_{kt}^{1-\theta} P_{ikt}^{1-\theta} \quad \Rightarrow$$

$$\log(P_{ikt} Q_{ikt}) = \eta_{ikt} + \log Q_{kt} - \theta \log P_{kt}$$

$$\quad + (1 - \theta) \left[\log M_{ikt} + \log(1 + \tau_{kt}) + \log \varepsilon_{kt} + \log MC^*_{it} \right]$$

- But note that both P_{kt} and M_{ikt} potentially have different comovement properties with $(1 + \tau_{kt})$ and ε_{kt}:

 — different cross-k correlations and...

 (i) input-output effects on P_{kt}

 (ii) strategic complementarities
Conclusion

• Many possible stories are consistent with the different measured elasticities

• This paper shows that the measured elasticity differences persistent at the firm level controlling for extensive margin → simple story based on sunk costs of entry is insufficient

• Next steps:
 1. Identify the mechanism most consistent with the data
 2. Develop a modeling framework
 3. Develop a structural estimation technique