The Control Register controls four Counter operating modes and three maskable interrupts. It also reports the status of three interrupt conditions.

R6500/1 COUNTER MODES

INTERVAL TIMER (MODE 0)
In this mode the Counter is free-running, and decrements at the $\varphi 2$ clock rate. The CNTR line is held high in the high state.

PULSE GENERATOR (MODE 1)
In this mode the Counter is free-running, and decrements at the $\varphi 2$ clock rate. The CNTR line toggles from one state to the other when Counter overflow occurs.

EVENT COUNTER (MODE 2)
In this mode the CNTR line is used as an event input line. The Counter decrements each time a rising edge is detected on CNTR.

PULSE WIDTH MEASUREMENT (MODE 3)
This mode allows accurate measurement of the duration of a low state on the CNTR line. The Counter decrements at the $\varphi 2$ clock rate as long as the CNTR is held in the low state, and stops when CNTR switches to the high state.

Note: In all modes Counter overflow sets the Control Register CTRO status bit and causes the Counter to be preset to the Latch value.

PROCESSOR PROGRAMMING MODEL

MACHINE INSTRUCTIONS

- **ADC** Add Memory to Accumulator with Carry
- **AND** AND Memory with Accumulator
- **ASL** Shift Left One Bit (Memory or Accumulator)
- **BCC** Branch on Carry Clear
- **BCS** Branch on Carry Set
- **BEQ** Branch on Result Zero
- **BIT** Test Bits in Memory with Accumulator
- **BMI** Branch on Result Minus
- **BNE** Branch on Result Not Zero
- **BPL** Branch on Result Plus
- **BRK** Force Break
- **BVC** Branch on Overflow Clear
- **BVS** Branch on Overflow Set
- **CLC** Clear Carry Flag
- **CLD** Clear Decimal Mode
- **CLI** Clear Interrupt Disable Bit
- **CLV** Clear Overflow Flag
- **CMP** Compare Memory and Accumulator
- **CPX** Compare Memory and Index X
- **CPY** Compare Memory and Index Y
- **DEC** Decrement Memory by One
- **DEX** Decrement Index X by One
- **DEY** Decrement Index Y by One
- **EOR** Exclusive-OR Memory with Accumulator
- **INC** Increment Memory by One
- **INX** Increment Index X by One
- **INY** Increment Index Y by One
- **JMP** Jump to New Location
- **JSR** Jump to New Location Saving Return Address
- **LDA** Load Accumulator with Memory
- **LDX** Load Index X with Memory
- **LDY** Load Index Y with Memory
- **LSR** Shift Right One Bit (Memory or Accumulator)
- **NOP** No Operation
- **ORA** OR Memory with Accumulator
- **PHA** Push Accumulator on Stack
- **PHP** Push Processor Status on Stack
- **PLA** Pull Accumulator from Stack
- **PLP** Pull Processor Status from Stack
- **ROL** Rotate One Bit Left (Memory or Accumulator)
- **ROR** Rotate One Bit Right (Memory or Accumulator)
- **RTI** Return from Interrupt
- **RTS** Return from Subroutine
- **SBC** Subtract Memory from Accumulator with Borrow
- **SEC** Set Carry Flag
- **SED** Set Decimal Mode
- **SEI** Set Interrupt Disable Status
- **STA** Store Accumulator in Memory
- **STX** Store Index X in Memory
- **STY** Store Index Y in Memory
- **TAX** Transfer Accumulator to Index X
- **TAY** Transfer Accumulator to Index Y
- **TSX** Transfer Stack Pointer to Index X
- **TXA** Transfer Index X to Accumulator
- **TXS** Transfer Index X to Stack Pointer
- **TYA** Transfer Index Y to Accumulator

COMPARE INSTRUCTION RESULTS

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
<th>Z</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, X, or Y < Memory</td>
<td>1*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A, X, or Y = Memory</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A, X, or Y > Memory</td>
<td>0*</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*An invalid value for C is complement of N.