Lectures 8: Policy Analysis in the Growth Model
(Capital Taxation)

ECO 503: Macroeconomic Theory I

Benjamin Moll

Princeton University

Fall 2014
Policy Analysis in the Growth Model

- Classic question: what are the consequences for allocations and welfare of policy x?
- Today: x = capital income taxation
- but approach works more generally
Capital Taxes in the U.S.

- U.S. top marginal tax rates (from Saez, Slemrod and Giertz, 2012, Table A1)
Capital Taxation in Theory

- Most influential: Chamley and Judd’s zero capital tax result
 - somewhat more precisely: in the long-run, the optimal linear capital income tax should be zero
 - perhaps even reflected in observed policy (see previous slide)
Plan

1. Capital income taxation and redistribution
 - a growth model with capitalists and workers
 - “Ramsey taxation” (Judd, 1985)
 - critique by Straub and Werning (2014)

2. Capital income taxation without redistribution
 - “Ramsey taxation” (Chamley, 1986)
 - only quick overview

3. Summary: takeaway on capital taxation
Growth Model with Capitalists & Workers

- Consider a variant of the growth model with two types of individuals:
 - **capitalists**: rep. capitalist derives all income from returns to capital
 - **workers**: rep. worker derives all income from labor income

- Originally due to Judd (1985), use discrete-time formulation from Straub and Werning (2014)

- Two reasons why variant is better model for thinking about capital income taxation than standard growth model
 - some distributional conflict (as opposed to rep. agent)
 - math turns out to be easier

- End of lecture: capital taxation in representative agent model (Chamley, 1986)
Growth Model with Capitalists & Workers

• **Preferences**

 • capitalist
 \[
 \sum_{t=0}^{\infty} \beta^t U(C_t), \quad U(C) = \frac{C^{1-\sigma}}{1 - \sigma}
 \]

 • workers
 \[
 \sum_{t=0}^{\infty} \beta^t u(c_t)
 \]

• **Technology**

 \[
 c_t + C_t + k_{t+1} = F(k_t, h_t) + (1 - \delta)k_t
 \]

• **Endowments**: capitalists own \(k_0 = \hat{k}_0 \) units of capital
Competitive Equilibrium without Taxes

- **Definition**: A SOMCE for the growth model with capitalists and workers are sequences \(\{c_t, h_t, k_t, a_t, w_t, r_t\}_{t=0}^{\infty} \) s.t.

1. (Capitalist max) Taking \(\{r_t\} \) as given, \(\{C_t, a_t\} \) solves

\[
\max_{\{C_t, a_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(C_t) \quad \text{s.t.}
\]

\[
C_t + a_{t+1} = (1 + r_t)a_t, \quad \lim_{T \to \infty} \left(\prod_{s=0}^{T} \frac{1}{1+r_s} \right) a_{T+1} \geq 0, \quad a_0 = \hat{k}_0.
\]

2. (Worker max) Taking \(\{w_t\} \) as given, \(\{c_t, h_t\} \) solves

\[
\max_{\{c_t, h_{t}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.} \quad c_t = w_t h_t
\]

3. (Firm max) Taking \(\{w_t, r_t\} \) as given \(\{k_t, h_t\} \) solves

\[
\max_{\{k_t, h_{t}\}} \sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s} \right) (F(k_t, h_t) - w_t h_t - i_t), \quad k_{t+1} = i_t + (1-\delta)k_t
\]

4. (Market clearing) For each \(t \):

\[
c_t + C_t + k_{t+1} = F(k_t, h_t) + (1-\delta)k_t, \quad a_t = k_t
\]
Comments

- Only capitalist can save
- Worker cannot save, lives “hand to mouth”
- Work with decentralization in which
 - firms own capital
 - capitalists save in riskless bond
 - in contrast, in last lecture: households owned capital, rented it to firms
- Relative to Straub and Werning
 - make notation as similar as possible to last lecture
 - impose no-Ponzi condition rather than borrowing limit $a_{t+1} \geq 0$ (doesn’t matter)
Necessary Conditions

- **Necessary conditions for** capitalist **problem**

 \[U'(C_t) = \beta (1 + r_{t+1}) U'(C_{t+1}) \]
 \[0 = \lim_{T \to \infty} \beta^T U'(C_T) a_{T+1} \]

- **Solution to** worker **problem**

 \[h_t = 1, \quad c_t = w_t \]

- **Necessary conditions for** firm **problem**

 \[F_h(k_t, h_t) = w_t \]
 \[F_k(k_t, h_t) + 1 - \delta = 1 + r_t \]

- **Market Clearing**

 \[c_t + C_t + k_{t+1} = F(k_t, h_t) + (1 - \delta) k_t \]
Necessary Conditions

• (6) is same no-arbitrage condition we had in last lecture, but now coming directly from firm’s problem

• Combining (1) and (6) and defining $F(k_t, 1) = f(k_t)$ we get

$$U'(C_t) = \beta U'(C_t)(f'(k_{t+1}) + 1 - \delta)$$

• Same condition as usual, except that C_t is consumption of capitalists

• In steady state $C_t = C^*, c_t = c^*, k_t = k^*$

$$f'(k^*) + 1 - \delta = \frac{1}{\beta}$$

⇒ same steady state as standard growth model.
Analytic Solution in Special Case: $\sigma = 1$

- **Lemma**: with $\sigma = 1$ capitalists save a constant fraction β

 \[a_{t+1} = \beta (1 + r_t) a_t, \quad C_t = (1 - \beta)(1 + r_t) a_t \]

- **Proof**: “guess and verify”. Consider nec. cond’s w/ $\sigma = 1$

 \[\frac{C_{t+1}}{C_t} = \beta (1 + r_{t+1}) \quad (\ast) \]

 \[0 = \lim_{T \to \infty} \beta^T \frac{a_{T+1}}{C_T} \]

 \[C_t + a_{t+1} = R_t a_t \]

- Guess $C_t = (1 - s)(1 + r_t) a_t$. From (\ast)

 \[\frac{(1 - s)(1 + r_{t+1}) a_{t+1}}{(1 - s)(1 + r_t) a_t} = \beta (1 + r_{t+1}) \quad \Rightarrow \quad \frac{a_{t+1}}{a_t} = \beta (1 + r_t) \]

 i.e. $s = \beta. \square$
\[\sigma = 1: \text{Intuition for Constant Saving Rate} \]

- Log utility \(\Rightarrow \) offsetting income and substitution effects
 - \((a_{t+1}, C_t)\) do **not** depend on \(r_{t+1} \)
- \(1/\sigma = \text{"intertemporal elasticity of substitution (IES)"} \)
 - low \(\sigma \Rightarrow U \text{ close to linear ...} \)
 - ... capitalists like to substitute intertemporally ("high IES")
- To understand, consider effect of unexpected increase of \(r_{t+1} \)
 - \(\sigma > 1: \text{income effect dominates } \Rightarrow C_t \uparrow, a_{t+1} \downarrow \)
 - \(\sigma < 1: \text{substitution effect dominates } \Rightarrow C_t \downarrow, a_{t+1} \uparrow \)
 - \(\sigma = 1: \text{income \\& subst. effects cancel } \Rightarrow C_t, a_{t+1} \text{ constant} \)
- Same logic as in Lecture 4
 - there condition was \(\sigma \geq \alpha \) where \(\alpha = \text{curvature of prod. fn.} \)
 - reason for difference: planner in Lecture 4 faced concave saving technology, \(\varepsilon k_t^\alpha \)
 - ... here instead, capitalists face linear saving technology \(((1 + r_t)a_t)\). In effect, \(\alpha = 1. \)
Analytic Solution in Special Case: $\sigma = 1$

- Necessary conditions reduce to

 \[k_{t+1} = \beta(f'(k_t) + 1 - \delta)k_t \]

 \[C_t = (1 - \beta)(f'(k_t) + 1 - \delta)k_t \]

 \[c_t = f(k_t) - f'(k_t)k_t \]

 (used $F = F_k k + F_h h$ and so $F_h(k_t, 1) = f(k_t) - f'(k_t)k_t$)

- Model basically boils down to **Solow model**

 - e.g. with $f(k) = Ak^\alpha$

 \[k_{t+1} = \alpha\beta Ak_t^\alpha + \beta(1 - \delta)k_t \]

 - effective saving rate $\alpha\beta$ and depreciation term $\beta(1 - \delta)$

- Extremely convenient: compute entire transition by hand

 - no need for phase diagram etc, simply do Solow zig-zag graph

 - but still same steady state at standard growth model

 \[f'(k^*) = 1/\beta + 1 - \delta \]
Policy in GE Models

• Next: policy in growth model with capitalists and workers

• Questions about policy need to be **well posed**
 • example of question that is not well-posed: “What happens if we introduce a proportional tax τ on capital?”
 • reason: if a policy raises revenue (or requires expenditure), then one must specify what is done with the revenue (where the revenue comes from)

• There are many possible uses of revenue \Rightarrow many possible exercises

• Here, ask: What are the consequences of introducing
 • a proportional (linear) tax on capital income of τ_t when the revenues are used to fund
 • constant government consumption $g \geq 0$ and
 • a lump-sum transfer to workers T_t with period-by-period budget balance?
Competitive Equilibrium with Taxes

Definition: A SOMCE with taxes for the growth model with capitalists and workers are sequences
\[
\{c_t, h_t, k_t, a_t, w_t, r_t, \tau_t, T_t\}_{t=0}^{\infty}
\]
s.t.

1. (Capitalist max) Taking \(\{r_t, \tau_t\}\) as given, \(\{C_t, a_t\}\) solves
 \[
 \max_{\{C_t, a_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t U(C_t) \quad \text{s.t.}
 \]
 \[
 C_t + a_{t+1} = (1 - \tau_t)(1 + r_t)a_t, \quad \lim_{T \to \infty} \left(\prod_{s=0}^{T} \frac{1}{1+r_s} \right) a_{T+1} \geq 0, a_0 = \hat{k}_0.
 \]

2. (Worker max) Taking \(\{w_t\}\) as given, \(\{c_t, h_t\}\) solves
 \[
 \max_{\{c_t, h_{t}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}
 \]
 \[
 c_t = w_t h_t + T_t
 \]

3. (Firm max) Taking \(\{w_t, r_t\}\) as given \(\{k_t, h_t\}\) solves
 \[
 \max_{\{k_t, h_{t}\}} \sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s} \right) (F(k_t, h_t) - w_t h_t - i_t), \quad k_{t+1} = i_t + (1-\delta)k_t
 \]
Competitive Equilibrium with Taxes

- **Definition:** A SOMCE with taxes for the growth model with capitalists and workers are sequences \(\{c_t, h_t, k_t, a_t, w_t, r_t, \tau_t T_t\}_{t=0}^{\infty}\) s.t.

 4. (Government) For each \(t\)

 \[g + T_t = \tau_t k_t\]

 5. (Market clearing) For each \(t\):

 \[c_t + C_t + k_{t+1} = F(k_t, h_t) + (1 - \delta)k_t, \quad a_t = k_t\]
Tax is **linear** as opposed to **non-linear** tax function \(\tilde{\tau} \)

\[
C_t + a_{t+1} = (1 + r_t) a_t - \tilde{\tau}((1 + r_t) a_t)
\]

with \(\tilde{\tau}'' \neq 0 \) (e.g. \(\tilde{\tau}'' > 0 \) = progressive)
Characterizing CE with Taxes

• Necessary conditions unchanged except for
 \[U'(C_t) = \beta(1 - \tau_{t+1})(1 + r_{t+1})U'(C_{t+1}) \]
 and resource constraint
• Therefore
 \[U'(C_t) = \beta U'(C_{t+1})(1 - \tau_{t+1})(f'(k_{t+1}) + 1 - \delta) \]
• For any \(\{\tau_t\}_{t=0}^{\infty} \) can use shooting algorithm to solve for eqm
 • natural initial condition: steady state without taxes
• What about steady state with taxes? Suppose \(\tau_t = \tau \). Then
 \[(1 - \tau)(f'(k^*) + 1 - \delta) = \frac{1}{\beta} \]
 Hence higher \(\tau \uparrow \Rightarrow k^* \downarrow \), e.g. if \(f(k) = Ak^\alpha \)
 \[k^* = \left(\frac{\alpha A}{\frac{1}{\beta(1-\tau)} + 1 - \delta} \right)^{\frac{1}{1-\alpha}} \]
Ramsey Taxation

• So far: **positive** analysis
 • what is the effect of τ_t ...?

• Now: **normative**
 • what is the **optimal** τ_t

• **Ramsey problem**: find $\{\tau_t\}$ that produces a CE with taxes with highest utility for agents (capitalists and workers).

• that is, find optimal $\{\tau_t\}$ subject to the fact that agents behave competitively for those taxes

• Important assumption
Ramsey Problem

- Need to take stand on objective of policy
- Here use
 \[\sum_{t=0}^{\infty} \beta^t (u(c_t) + \gamma U(C_t)) \]
 for a “Pareto weight” \(\gamma \geq 0 \)
 - \(\gamma = 0 \): only care about workers
 - \(\gamma \to \infty \): only care about capitalists
Ramsey Problem

- Recall necessary conditions for CE with taxes

\[U'(C_t) = \beta(1 + r_{t+1})(1 - \tau_{t+1})U'(C_{t+1}) \]
\[0 = \lim_{T \to \infty} \beta^T U'(C_T)a_{T+1} \]
\[C_t + a_{t+1} = (1 - \tau_t)(1 + r_t)a_t \]
\[c_t = w_t + T_t \]
\[F_h(k_t, 1) = w_t \]
\[F_k(k_t, 1) + 1 - \delta = 1 + r_t \]
\[c_t + C_t + g + k_{t+1} = F(k_t, 1) + (1 - \delta)k_t \]
\[k_t = a_t \]
\[a_0 = k_0 = \hat{k}_0 \]

- Ramsey problem is

\[
\max_{\{\tau_t, c_t, C_t, k_{t+1}, a_{t+1}, w_t, r_t\}} \sum_{t=0}^{\infty} \beta^t (u(c_t) + \gamma U(C_t)) \quad \text{s.t.} \quad (1)-(9)
\]
Ramsey Problem

- Can simplify by combining/eliminating some of the constraints

- From (3) and (8)

\[(1 - \tau_t)(1 + r_t) = \frac{C_t}{k_t} + \frac{k_{t+1}}{k_t}\]

- Substituting into (1)

\[U'(C_{t-1})k_t = \beta U'(C_t)(C_t + k_{t+1})\]

- Write \(F(k_t, 1) = f(k_t)\) as usual

- Walras’ Law: can drop one budget constraint or resource constraint. Drop (4).

- Also drop (5) and (6) since \(\{r_t, w_t\}_{t=0}^{\infty}\) only show up in equations we already dropped.
After simplifications:

\[
\max_{\{c_t, C_t, k_{t+1}\}_{t=0}^\infty} \sum_{t=0}^\infty \beta^t (u(c_t) + \gamma U(C_t)) \quad \text{s.t.}
\]

\[
c_t + C_t + g + k_{t+1} = f(k_t) + (1 - \delta)k_t
\]

\[
\beta U'(C_t)(C_t + k_{t+1}) = U'(C_{t-1})k_t
\]

\[
\lim_{T \to \infty} \beta^T U'(C_T)k_{T+1} = 0
\]
Comments

• Note: problem only in terms of allocation

• Given optimal \(\{c_t, C_t, k_{t+1}\}_{t=0}^{\infty} \), can always back out taxes and prices

\[
\begin{align*}
 w_t &= F_h(k_t, 1) = f(k_t) - f'(k_t)k_t \\
r_t &= F_k(k_t, 1) - \delta = f'(k_t) - \delta \\
1 - \tau_t &= \frac{1}{f'(k_t) + 1 - \delta} \frac{U'(C_t)}{\beta U'(C_{t+1})}
\end{align*}
\]

• In other applications, typically combine constraints in different way, leading to so-called “implementability” condition.
 • same outcome: Ramsey problem in terms of allocations only

• But here follow Judd (1985) and Straub and Werning (2014). Easier to work with.
First order conditions

- **Lagrangean**

\[
\mathcal{L} = \sum_{t=0}^{\infty} \left\{ \beta^t (u(c_t) + \gamma U(C_t)) + \beta^t \lambda_t (f(k_t) + (1 - \delta)k_t - c_t - C_t - g - k_{t+1}) + \beta^t \mu_t (\beta U'(C_t)(C_t + k_{t+1}) - U'(C_{t-1})k_t) \right\}
\]

- **First order conditions (use that \(U'(C_t)C_t = C_t^{1-\sigma} \))**

\[
c_t : \quad 0 = u'(c_t) - \lambda_t \tag{1}
\]
\[
C_t : \quad 0 = \gamma U'(C_t) - \lambda_t - \beta \mu_{t+1} U''(C_t)k_{t+1} + \beta \mu_t ((1 - \sigma) U'(C_t) + U''(C_t)k_{t+1}) \tag{2}
\]
\[
k_{t+1} : \quad 0 = -\lambda_t + \mu_t \beta U'(C_t) + \beta \lambda_{t+1} (f'(k_{t+1}) + 1 - \delta) - \beta \mu_{t+1} U'(C_t) \tag{3}
\]
Tricky Detail: \(C_{-1} \)

- Treated \(C_t \) as a state variable, even though it’s a jump var
 - \(C_{-1} \) is not-predetermined

- Can show: multiplier \(\mu_t \) corresponding to \(\{C_t\} \) has to satisfy
 \[
 \mu_0 = 0
 \]

- Heuristic derivation: for any \((k_0, C_{-1})\) define \(V(k_0, C_{-1}) \) by

 \[
 V(k_0, C_{-1}) = \max_{\{c_t, C_t, k_{t+1}\}} \sum_{t=0}^{\infty} \beta^t(u(c_t) + \gamma U(C_t)) \quad \text{s.t.}
 \]

 \[
 c_t + C_t + g + k_{t+1} = f(k_t) + (1 - \delta)k_t
 \]
 \[
 \beta U'(C_t)(C_t + k_{t+1}) = U'(C_{t-1})k_t
 \]
 \[
 \lim_{T \to \infty} \beta^T U'(C_T)k_{T+1} = 0
 \]

- \(C_{-1} \) pinned down from \(V_C(k_0, C_{-1}) = 0 \). Envelope condition

 \[
 V_C(k_0, C_{-1}) = \frac{\partial L}{\partial C_{-1}} = -\mu_0 U''(C_{-1})k_0 \quad \Rightarrow \quad \mu_0 = 0
 \]
First order conditions

• Manipulate (2) as follows

\[-\beta \mu_{t+1} U''(C_t) k_{t+1} = -\gamma U'(C_t) + \lambda_t - \beta \mu_t ((1-\sigma) U'(C_t) + U''(C_t) k_{t+1}) \]

Use that \(U''(C_t) k_{t+1} = -\sigma U'(C_t) \kappa_{t+1}, \kappa_{t+1} = k_{t+1}/C_t \)

\[\mu_{t+1} \beta \sigma U'(C_t) \kappa_{t+1} = \beta \mu_t ((\sigma-1) U'(C_t) + U'(C_t) \kappa_{t+1} - \gamma U'(C_t) + \lambda_t \]

\[\mu_{t+1} = \mu_t \left(\frac{\sigma - 1}{\sigma \kappa_{t+1}} + 1 \right) + \frac{\lambda_t / U'(C_t) - \gamma}{\beta \sigma \kappa_{t+1}} \]

\[\mu_{t+1} = \mu_t \left(\frac{\sigma - 1}{\sigma \kappa_{t+1}} + 1 \right) + \frac{1 - \gamma v_t}{\beta \sigma \kappa_{t+1} v_t}, \quad v_t = \frac{U'(C_t)}{u'(c_t)} \]

• Manipulate (3) as follows

\[\beta \lambda_{t+1} (f'(k_{t+1}) + 1 - \delta) = \lambda_t - \mu_t \beta U'(C_t) + \beta \mu_{t+1} U'(C_t) \]

Dividing by \(\beta \lambda_t \) and using \(\lambda_t = u'(c_t), v_t = U'(C_t)/u'(c_t) \)

\[\frac{u'(c_{t+1})}{u'(c_t)} (f'(k_{t+1}) + 1 - \delta) = \frac{1}{\beta} + v_t (\mu_{t+1} - \mu_t) \quad (4)\]
First order conditions

- Using these manipulations we obtain

\[\mu_0 = 0 \] (1)
\[u'(c_t) = \lambda_t \] (2)
\[\mu_{t+1} = \mu_t \left(\frac{\sigma - 1}{\sigma \kappa_{t+1}} + 1 \right) + \frac{1}{\beta \sigma \kappa_{t+1} v_t} (1 - \gamma v_t) \] (3)
\[\frac{u'(c_{t+1})}{u'(c_t)} (f'(k_{t+1}) + 1 - \delta) = \frac{1}{\beta} + v_t (\mu_{t+1} - \mu_t) \] (4)

where \(\kappa_t = k_t / C_{t-1}, \ v_t = U'(C_t) / u'(c_t) \)

- Straub and Werning find it convenient to denote (note \(R_t \neq \) rental rate)

\[R_t^e = f'(k_t) + 1 - \delta \]
\[R_t = (1 - \tau_t)(f'(k_t) + 1 - \delta) = \frac{U'(C_t)}{\beta U'(C_{t+1})} \] (5)
\[\tau = 0 \iff R_t^e / R_t = 1 \]
First order conditions

Theorem (Judd, 1985)

Suppose quantities and multipliers converge to an interior steady state, i.e. c_t, C_t, k_{t+1} converge to positive values, and μ_t converges. Then the tax on capital is zero in the limit: $R_t^e / R_t \to 1$.

• **Proof:** Theorem assumes $(c_t, C_t, k_t, \mu_t) \to (c^*, C^*, k^*, \mu^*)$. Hence also $(v_t, \kappa_t) \to (v^*, \kappa^*)$.

• From (4) with $c_t = c_{t+1} = c^*$

\[R_t^e \to R_{t+1}^e = \frac{1}{\beta}, \]

• Similarly, from (5) with $C_t^* = C_{t+1}^* = C^*$

\[R_t \to R^* = \frac{1}{\beta}, \]

• Hence $R_t^*/R_t \to 1$ or equivalently $\tau_t \to 0.\blacksquare$
• **Theorem** seems to prove: capital taxes converge to zero in the long-run

• Really striking: this is true **even if** \(\gamma = 0 \), i.e. Ramsey planner only cares about workers!

• Is this really true? Let’s consider again the tractable case with log utility, \(\sigma = 1 \)
Ramsey Problem for $\sigma = 1, \gamma = 0$

- Recall analytic solution for capitalists’s saving decision

 $$a_{t+1} = s(1 - \tau_t)(1 + r_t)a_t, \quad C_t = (1 - s)(1 - \tau_t)(1 + r_t)a_t$$

 with $s = \beta$. Follow Straub-Werning in writing s, could come from somewhere else than $\sigma = 1$ assumption.

- Using $C_t = \frac{1-s}{s}k_{t+1}$, resource constraint becomes

 $$c_t + \frac{1}{s}k_{t+1} + g = f(k_{t+1}) + (1 - \delta)k_t$$

- Also assume $\gamma = 0$ (planner only cares about workers).

- Ramsey problem with $\sigma = 1, \gamma = 0$:

 $$\max_{\{c_t, k_{t+1}\}} \sum_{t=0}^{\infty} \beta^t u(c_t),$$

 $$c_t + \frac{1}{s}k_{t+1} + g = f(k_{t+1}) + (1 - \delta)k_t$$

- Mathematically equivalent to standard growth model.
Ramsey Problem for $\sigma = 1, \gamma = 0$

- Euler equation is

$$u'(c_t) = s\beta u'(c_{t+1})(f'(k_{t+1}) + 1 - \delta) \quad (*)$$

- Because this is equivalent to growth model
 - unique interior steady state
 $$1 = s\beta(f'(k^*) + 1 - \delta)$$
 - globally stable
- With $R^* = 1/s$ and $R^{e*} = f'(k^*) + 1 - \delta$ have
 $$\frac{R^e}{R} = \frac{1}{\beta} \quad \Rightarrow \quad \tau^* = 1 - \beta > 0$$

- **Counterexample** to zero long-run capital taxes.
What Went Wrong?

- Crucial part of Judd’s Theorem: “**Suppose** quantities and multipliers converge to an interior steady state ...”
- Turns out this doesn’t happen: **multipliers explode**!
- Consider planner’s equations (3), (4) in case $\sigma = 1, \gamma = 0$

\[
\mu_{t+1} = \mu_t + \frac{1}{\beta \kappa_{t+1} v_t} \quad (3')
\]

\[
\frac{u'(c_{t+1})}{u'(c_t)} (f'(k_{t+1}) + 1 - \delta) = \frac{1}{\beta} + v_t (\mu_{t+1} - \mu_t) \quad (4')
\]

- Judd: **if** $\mu_t \to \mu^*$, then $\tau_t \to 0$ (follows from (4'))
- But from (3') $\mu_{t+1} > \mu_t$ for all $t \Rightarrow \mu_t \to \infty$
- In fact, with log-utility

\[
\kappa_{t+1} = \frac{k_{t+1}}{C_t} = \frac{s}{1 - s} \Rightarrow v_t (\mu_{t+1} - \mu_t) = \frac{1}{\beta \kappa_{t+1}} = \frac{1 - s}{\beta s}
\]

and so (4) implies (*) on previous slide and $\tau^* = 1 - \beta$
General Case $\sigma \neq 1$

- Straub and Werning (2014) analyze general case
- Not surprisingly, asymptotic behavior of τ_t different whether
 - $\sigma > 1$: positive limit tax
 - $\sigma < 1$: zero limit tax
- This is where the meat of the paper is
Proposition

If \(\sigma > 1 \) and \(\gamma = 0 \) then for any initial \(k_0 \) the solution to the planning problem converges to \(c_t \to 0, k_t \to k_g, C_t \to \frac{1-\beta}{\beta} k_g \), with a positive limit tax on wealth: \(1 - \frac{R_t}{R^*_t} \to \tau_g > 0 \). The limit tax is decreasing in spending \(g \), with \(\tau_g \to 1 \) as \(g \to 0 \).

- Proof: see pp.34-48!

- What about \(\sigma < 1 \)?
 - zero long-run capital tax is correct
 - **but** convergence may take many hundred years
 - to be expected for \(\sigma \approx 1 \) due to continuity
Optimal Time Paths for k_t and τ_t

Left panel: k_t, Right panel: τ_t

Figure 1: Optimal time paths over 300 years for capital stock (left panel) and wealth taxes (right panel) for various value of σ. Note: tax rates apply to gross returns not net returns, i.e. they represent an annual wealth tax.
$\sigma < 1$: Years until $\tau_t < 1\%$
Intuition

• In long-run, why is optimal $\{\tau_t\}$ increasing when $\sigma > 1$ and decreasing when $\sigma < 1$?

• Guess what? **Income and substitution effects**!

• Warm-up exercise: consider unexpected higher future taxation
 $(1 + r_{t+1})(1 - \tau_{t+1})$
 - $\sigma > 1$: income effect dominates $\Rightarrow C_t \downarrow, a_{t+1} \uparrow$
 - $\sigma < 1$: substitution effect dominates $\Rightarrow C_t \uparrow, a_{t+1} \downarrow$
 - $\sigma = 1$: income & subst. effects cancel $\Rightarrow C_t, a_{t+1}$ constant

• One objective of optimal tax policy: high $k_t \Rightarrow$ high output, high tax base

 \Rightarrow want to encourage savings a_{t+1}
 - $\sigma > 1$: income effect dominates \Rightarrow want $\tau_{t+1} \geq \tau_t$
 - $\sigma < 1$: substitution effect dominates \Rightarrow want $\tau_{t+1} \leq \tau_t$
 - $\sigma = 1$: income & subst. effects cancel \Rightarrow want τ_t constant
Effect of Redistributive Preferences γ

Left panel: k_t, Right panel: τ_t

Figure 3: Optimal time paths over 300 years for capital stock (left panel) and wealth taxes (right panel) for various redistribution preferences (zero represents no desire for redistribution; see footnote 16).
Linearized Dynamics

- Straub and Werning also analyze linearized system
 - see their Proposition 4
 - linearize around zero-tax steady state (i.e. Judd’s st. st.)
 - same tools as in Lecture 4 but 4-dimensional system (2 states, 2 co-states)
 - careful: they use “saddle-path stable” to refer to system of 2 states, i.e. “no. of negative eigenvalues = 1” or system is unstable except for knife-edge initial conditions \((k_0, C_{-1})\)

- Analysis confirms numerical results
Capital Taxation without Redistribution

- So far: capital taxation in environment with **redistributive** motif (capitalists and workers as in Judd, 1985)

- Different question: if government has to finance a flow of expenditure g, how should it raise the revenue?
 - capital taxes?
 - labor taxes?

- This is the question asked in Chamley (1986)
 - \Rightarrow Ramsey taxation in **representative agent** model

- Won’t cover this case in detail
 - logic of Ramsey problem same: max. utility s.t. allocation $= CE$ with taxes
 - see Chamley (1986), Atkeson et al. (1999) among others, and Straub and Werning (2014, Section 3)
 - here: brief intuitive discussion
Capital Taxation without Redistribution

• Key to results in rep. agent models is thinking about “supply of capital” and its elasticity (responsiveness to rate of return)

• inelastic in short-run, elastic in long-run

• In standard growth model, consider $k_t(r_t, ...)$
 - supply at $t = 0$:
 $$k_0 = \hat{k}_0 \Rightarrow \text{elasticity} = 0$$
 - supply as $t \to \infty$:
 $$r^* = \frac{1}{\beta} - 1 \Rightarrow \text{elasticity} = \infty$$
 (if decrease r by ε, $k_t \to 0$; if increase r by ε, $k_t \to \infty$)

• “Infinite elasticity in long-run” prediction a bit extreme
 - relies on time-separability of preferences: $\sum_{t=0}^{\infty} \beta^t u(c_t)$
 - but “more elastic in long-run than in short-run” is very general
Capital Taxation without Redistribution

• What does “more elastic in long-run than in short-run” imply for capital taxation?
 • motif for “front-loading” capital taxes: tax more today, than tomorrow
 • Chamley: no upper bounds on capital taxes ⇒ capital tax ⇒ 0 as $t \to \infty$
 • in fact, time-separable preferences + no bounds on taxes ⇒ all taxation at $t = 0$

• Werning and Straub point to extreme assumption: no upper bound on capital taxation
 • bounds ⇒ less front-loading
 • bounds may even bind indefinitely, i.e. capital taxes > 0 in long-run
Takeaway on Capital Taxation

- **Robust prediction:** if possible, want to tax more today than tomorrow
- **Not robust:** this implies that capital taxes should be zero in long-run