(1) Hamilton-Jacobi-Bellman equations in stochastic settings
(without derivation)

(2) Ito’s Lemma

(3) Kolmogorov Forward Equations

(4) Application: Power laws (Gabaix, 2009)
Stochastic Optimal Control

• Generic problem:

\[V(x_0) = \max_{u(t)_{t=0}^\infty} \mathbb{E}_0 \int_0^\infty e^{-\rho t} h(x(t), u(t)) \, dt \]

subject to the law of motion for the state

\[dx(t) = g(x(t), u(t)) \, dt + \sigma(x(t)) \, dW(t) \]

and \(u(t) \in U \) for \(t \geq 0 \), \(x(0) = x_0 \) given.

• Deterministic problem: special case \(\sigma(x) \equiv 0 \).

• In general \(x \in \mathbb{R}^m, u \in \mathbb{R}^n \). For now do scalar case.
Stochastic HJB Equation: Scalar Case

- Claim: the HJB equation is

\[\rho V(x) = \max_{u \in U} h(x, u) + V'(x)g(x, u) + \frac{1}{2} V''(x)\sigma^2(x) \]

- Here: on purpose no derivation ("cookbook")

- In case you care, see any textbook, e.g. chapter 2 in Stokey (2008)

- Sidenote: can again write this in terms of the Hamiltonian

\[\rho V(x) = \max_{u \in U} \mathcal{H}(x, u, V'(x)) + \frac{1}{2} V''(x)\sigma^2(x) \]
Just for Completeness: Multivariate Case

- Let $x \in \mathbb{R}^m$, $u \in \mathbb{R}^n$.
- For fixed x, define the $m \times m$ covariance matrix
 \[
 \sigma^2(x) = \sigma(x)\sigma(x)'
 \]
 (this is a function $\sigma^2 : \mathbb{R}^m \to \mathbb{R}^m \times \mathbb{R}^m$)
- The HJB equation is
 \[
 \rho V(x) = \max_{u \in U} h(x, u) + \sum_{i=1}^{m} \frac{\partial V(x)}{\partial x_i} g_i(x, u) + \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\partial^2 V(x)}{\partial x_i \partial x_j} \sigma^2_{ij}(x)
 \]
- In vector notation
 \[
 \rho V(x) = \max_{u \in U} h(x, u) + \nabla_x V(x) \cdot g(x, u) + \frac{1}{2} \text{tr} \left(\Delta_x V(x) \sigma^2(x) \right)
 \]
- $\nabla_x V(x)$: gradient of V (dimension $m \times 1$)
- $\Delta_x V(x)$: Hessian of V (dimension $m \times m$).
HJB Equation: Endogenous and Exogenous State

- Lots of problems have the form $x = (x_1, x_2)$
 - x_1: endogenous state
 - x_2: exogenous state

\[
\begin{align*}
 dx_1 &= \tilde{g}(x_1, x_2, u)dt \\
 dx_2 &= \tilde{\mu}(x_2)dt + \tilde{\sigma}(x_2)dW
\end{align*}
\]

- Special case with

\[
 g(x) = \begin{bmatrix} \tilde{g}(x_1, x_2, u) \\ \tilde{\mu}(x_2) \end{bmatrix}, \quad \sigma(x) = \begin{bmatrix} 0 \\ \tilde{\sigma}(x_2) \end{bmatrix}
\]

- Claim: the HJB equation is

\[
\rho V(x_1, x_2) = \max_{u \in U} h(x_1, x_2, u) + V_1(x_1, x_2)\tilde{g}(x_1, x_2, u) \\
+ V_2(x_1, x_2)\tilde{\mu}(x_2) + \frac{1}{2} V_{22}(x_1, x_2)\tilde{\sigma}^2(x_2)
\]
Example: Real Business Cycle Model

\[V(k_0, A_0) = \max_{c(t)_{t=0}^{\infty}} \mathbb{E}_0 \int_0^{\infty} e^{-\rho t} U(c(t)) \, dt \]

subject to

\[dk = [AF(k) - \delta k - c] \, dt \]
\[dA = \mu(A) \, dt + \sigma(A) \, dW \]

for \(t \geq 0, \ k(0) = k_0, \ A(0) = A_0 \) given.

- Here: \(x_1 = k, \ x_2 = A, \ u = c \)
- \(h(x, u) = U(u) \)
- \(g(x, u) = F(x) - \delta x - u \)
Example: Real Business Cycle Model

- HJB equation is

\[
\rho V(k, A) = \max_c U(c) + V_k(k, A)[AF(k) - \delta k - c] + V_A(k, A)\mu(A) + \frac{1}{2} V_{AA}(k, A)\sigma^2(A)
\]
Example: Real Business Cycle Model

• Special Case 1: A is a geometric Brownian motion

\[dA = \mu A dt + \sigma A dW \]

\[\rho V(k, A) = \max_c U(c) + V_k(k, A)[AF(k) - \delta k - c] \]

\[+ V_A(k, A)\mu A + \frac{1}{2} V_{AA}(k, A)\sigma^2 A^2 \]

See Merton (1975) for an analysis of this case.

• Special Case 2: A is a Feller square root process

\[dA = \theta(\bar{A} - A) dt + \sigma \sqrt{A} dW \]

\[\rho V(k, A) = \max_c U(c) + V_k(k, A)[AF(k) - \delta k - c] \]

\[+ V_A(k, A)\theta(\bar{A} - A) + \frac{1}{2} V_{AA}(k, A)\sigma^2 A \]
Special Case: Stochastic AK Model with log Utility

- Preferences: \(U(c) = \log c \)
- Technology: \(AF(k) = Ak \)
- \(A \) follows any diffusion

\[
\rho V(k, A) = \max_c \log c + V_k(k, A)[Ak - \delta k - c] + V_A(k, A)\mu(A) + \frac{1}{2} V_{AA}(k, A)\sigma^2(A)
\]

- **Claim:** Optimal consumption is \(c = \rho k \) and hence capital follows

\[
dk = [A - \rho - \delta]kdt
\]

\[
dA = \mu(A)dt + \sigma(A)dt
\]

- Solution prop’s? Simply simulate two SDEs forward in time.
Special Case: Stochastic AK Model with log Utility

- **Proof:** Guess and verify

 \[V(k, A) = v(A) + \kappa \log k \]

- **FOC:**

 \[U'(c) = V_k(k, A) \iff \frac{1}{c} = \frac{\kappa}{k} \iff c = \frac{k}{\kappa} \]

- Substitute into HJB equation

 \[
 \rho [v(A) + \kappa \log k] = \log k - \log \kappa + \frac{\kappa}{k} [Ak - \delta k - k/\kappa] \\
 + v'(A)\mu(A) + \frac{1}{2} v''(A)\sigma^2(A)
 \]

- Collect terms involving \(\log k \) \(\Rightarrow \kappa = 1/\rho \) \(\Rightarrow \) \(c = \rho k. \square \)

- **Comment:** log-utility \(\Rightarrow \) offsetting income and substitution effects of future \(A \) \(\Rightarrow \) constant savings rate \(\rho \).
General Case: Numerical Solution with FD Method

- See `HJB_stochastic_reflecting.m`
- Solve on bounded grids $k_i, i = 1, ..., l$ and $A_j, j = 1, ..., J$
- Use short-hand notation $V_{i,j} = V(k_i, A_j)$. Approximate

$$V_k(k_i, A_j) \approx \frac{V_{i+1,j} - V_{i-1,j}}{2\Delta k}$$

$$V_A(k_i, A_j) \approx \frac{V_{i,j+1} - V_{i,j+1}}{2\Delta A}$$

$$V_{AA}(k_i, A_j) \approx \frac{V_{i,j+1} - 2V_{i,j} + V_{i,j-1}}{(\Delta A)^2}$$

- Discretized HJB

$$\rho V_{i,j} = U(c_{i,j}) + V_k(k_i, A_j)[A_j F(k_i) - \delta k_i - c_{i,j}]$$

$$+ V_A(k_i, A_j)\mu(A_j) + \frac{1}{2} V_{AA}(k_i, A_j)\sigma^2(A_j)$$

$$c_{i,j} = (U')^{-1}[V_k(k_i, A_j)]$$
General Case: Numerical Solution with FD Method

- As boundary conditions, use

\[V_A(k, A_1) = 0 \quad \text{all } k \quad \Rightarrow \quad V_{i,0} = V_{i,2} \]
\[V_A(k, A_J) = 0 \quad \text{all } k \quad \Rightarrow \quad V_{i,J+1} = V_{i,J-1} \]

- These correspond to “reflecting barriers” at lower and upper bounds for productivity, \(A_1 \) and \(A_J \) (Dixit, 1993).
- In theory also need boundary condition for \(k \) (possibility: reflecting barrier at \(k_I \))
- Instead, use “dirty fix”: backward and forward rather than central differences at boundaries

\[V_k(k_1, A) = \frac{V_{2,j} - V_{1,j}}{\Delta k}, \quad V_k(k_I, A) = \frac{V_{I,j} - V_{I-1,j}}{\Delta k} \]
General Case: Numerical Solution with FD Method

• Iterate using same explicit method as in deterministic case.

• Guess, V^0, update using:

$$\frac{V_{i,j}^{n+1} - V_{i,j}^n}{\Delta} + \rho V_{i,j}^n = U(c_{i,j}^n) + V_k^n(k_i, A_j)[A_jF(k_i) - \delta k_i - c_{i,j}^n]$$

$$+ V_A^n(k_i, A_j)\mu(A_j) + \frac{1}{2} V_{AA}^n(k_i, A_j)\sigma^2(A_j)$$

• See HJB_stochastic_reflecting.m

• **Extremely** inefficient: need 112,140 iterations.

• Implicit Method?
Ito’s Lemma

• Let x be a scalar diffusion

$$dx = \mu(x)dt + \sigma(x)dW$$

• We are interested in the evolution of $y(t) = f(x(t))$ where f is any twice differentiable function.

• **Lemma:** $y(t) = f(x(t))$ follows

$$df(x) = \left(\mu(x)f'(x) + \frac{1}{2}\sigma^2(x)f''(x)\right)dt + \sigma(x)f'(x)dW$$

• Extremely powerful because it says that any (twice differentiable) function of a diffusion is also a diffusion.

• Can also be extended to vectors.

• FYI: this is also where the $V'(x)\mu(x) + \frac{1}{2}V''(x)\sigma^2(x)$ term in the HJB equation comes from (it’s $\frac{\mathbb{E}[dV(x)]}{dt}$).
Application: Brownian vs. Geometric Brownian Motion

- Let x be a geometric Brownian motion

 $$dx = \mu x dt + \sigma x dW$$

- Claim: $y = \log x$ is a Brownian motion with drift $\mu - \sigma^2/2$ and variance σ^2.

- Derivation: $f(x) = \log x$, $f'(x) = 1/x$, $f''(x) = -1/x^2$

 By Ito’s Lemma

 $$dy = df(x) = \left(\mu x(1/x) + \frac{1}{2} \sigma^2 x^2(-1/x^2) \right) dt + \sigma x(1/x) dW$$

 $$= (\mu - \sigma^2/2) dt + \sigma dW$$

- Note: naive derivation would have used $dy = dx/x$ and hence

 $$dy = \mu dt + \sigma dW$$ \text{ wrong unless } \sigma = 0!$$
Just for Completeness: Multivariate Case

- Let \(x \in \mathbb{R}^m \). For fixed \(x \), define the \(m \times m \) covariance matrix

\[
\sigma^2(x) = \sigma(x)\sigma(x)'
\]

- Ito's Lemma:

\[
df(x) = \left(\sum_{i=1}^{n} \mu_i(x) \frac{\partial f(x)}{\partial x_i} + \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \sigma_{ij}^2(x) \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right) dt \\
+ \sum_{i=1}^{m} \sigma_i(x) \frac{\partial f(x)}{\partial x_i} dW_i
\]

- In vector notation

\[
df(x) = \left(\nabla_x f(x) \cdot \mu(x) + \frac{1}{2} \text{tr} \left(\Delta_x f(x) \sigma^2(x) \right) \right) dt + \nabla_x f(x) \cdot \sigma(x) dW
\]

- \(\nabla_x f(x) \): gradient of \(f \) (dimension \(m \times 1 \))
- \(\Delta_x f(x) \): Hessian of \(f \) (dimension \(m \times m \)).
Kolmogorov Forward Equations

- Let x be a scalar diffusion

\[dx = \mu(x)dt + \sigma(x)dW, \quad x(0) = x_0 \]

- Suppose we’re interested in the evolution of the distribution of x, $f(x, t)$, and in particular in the limit $\lim_{t \to \infty} f(x, t)$.

- Natural thing to care about especially in heterogenous agent models

- Example 1: $x =$ wealth
 - $\mu(x)$ determined by savings behavior and return to investments
 - $\sigma(x)$ by return risk.
 - microfound later

- Example 2: $x =$ city size, will cover momentarily
Kolmogorov Forward Equations

- **Fact:** Given an initial distribution \(f(x, 0) = f_0(x) \), \(f(x, t) \) satisfies the PDE

\[
\frac{\partial f(x, t)}{\partial t} = -\frac{\partial}{\partial x}[\mu(x)f(x, t)] + \frac{1}{2} \frac{\partial^2}{\partial x^2}[\sigma^2(x)f(x, t)]
\]

- This PDE is called the “Kolmogorov Forward Equation”
- Note: in math this often called “Fokker-Planck Equation”
- Can be extended to case where \(x \) is a vector as well.
- **Corollary:** if a stationary distribution, \(\lim_{t \to \infty} f(x, t) = f(x) \) exists, it satisfies the ODE

\[
0 = -\frac{d}{dx}[\mu(x)f(x)] + \frac{1}{2} \frac{d^2}{dx^2}[\sigma^2(x)f(x)]
\]
Just for Completeness: Multivariate Case

• Let $x \in \mathbb{R}^m$.

• As before, define the $m \times m$ covariance matrix

$$\sigma^2(x) = \sigma(x)\sigma(x)'$$

• The Kolmogorov Forward Equation is

$$\frac{\partial f(x, t)}{\partial t} = -\sum_{i=1}^{m} \frac{\partial}{\partial x_i} [\mu_i(x)f(x, t)] + \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\partial^2}{\partial x_i^2} [\sigma_{ij}^2(x)f(x, t)]$$
Recall RBC Model

\[
\rho V(k, A) = \max_c U(c) + V_k(k, A)[AF(k) - \delta k - c]
\]

\[
+ VA(k, A)\mu(A) + \frac{1}{2} VA_A(k, A)\sigma^2(A)
\]

Denote the optimal policy function by

\[
\dot{k}(k, A) = AF(k) - \delta k - c(k, A)
\]

Then \(f(k, A, t) \) solves

\[
\frac{\partial f(k, A, t)}{\partial t} = -\frac{\partial}{\partial k}[\dot{k}(k, A)f(k, A, t)]
\]

\[
- \frac{\partial}{\partial A}[\mu(A)f(k, A, t)] + \frac{1}{2} \frac{\partial^2}{\partial A^2}[\sigma^2(A)f(k, A, t)]
\]

Can discretize using FD method, run forward, see if it converges to stationary distribution.
Application: Power Laws

• Pareto (1896!!!): upper-tail distribution of number of people with an income or wealth S greater than a large x is proportional to $1/x^\zeta$ for some $\zeta > 0$

\[\Pr(S > x) = kx^{-\zeta} \]

• **Definition:** We say that a variable, x, follows a power law (PL) if there exist $k > 0$ and $\zeta > 0$ such that

\[\Pr(S > x) = kx^{-\zeta}, \quad \text{all } x \]

• x follows a PL \iff x has a Pareto distribution

• Holds for surprisingly many variables.
History Interlude

Vilfredo Pareto Kiyoshi Ito Andrei Kolmogorov
City Size

- Order cities in US by size (NY as first, LA as second, etc)
- Graph $\ln \text{Rank}_{NY} = \ln 1$, $\ln \text{Rank}_{LA} = \ln 2$ vs. ln Size
- Basically plot log quantiles $\ln \Pr(S > x)$ against $\ln x$
City Size

• Surprise 1: straight line, i.e. city size follows a PL

\[\Pr(S > x) = kx^{-\zeta} \]

• Surprise 2: slope of line \(\approx -1 \), regression:

\[\ln \text{Rank} = 10.53 - 1.005 \ln \text{Size} \]

i.e. city size follows a PL with exponent \(\zeta \approx 1 \)

\[\Pr(S > x) = kx^{-1}. \]

• A power law with exponent \(\zeta = 1 \) is called “Zipf’s law”

• Two natural questions:
 (1) Why does city size follow a power law?
 (2) Why on earth is \(\zeta \approx 1 \) rather than any other number?
Where Do Power Laws Come from?

- Gabaix’s answer: random growth
- Economy with continuum of cities.
- \(S_i^t \): size of city \(i \) at time \(t \)

\[
S_{t+1}^i = \gamma_{t+1}^i S_t^i, \quad \gamma_{t+1}^i \sim f(\gamma) \quad \text{(RG)}
\]

- \(S_t^i \) follows random growth process \(\iff \log S_t^i \) follows random walk.
- Gabaix shows: (RG) + friction (e.g. minimum size) \(\Rightarrow \) power law. Use “Champernowne’s equation”
- Easier: continuous time approach.
Random Growth Process in Continuous Time

• Consider random growth process over time intervals of length Δt

$$S_t^i + \Delta t = \gamma^i_{t+\Delta t} S_t^i$$

• Assume in addition that $\gamma^i_{t+\Delta t}$ takes the particular form

$$\gamma^i_{t+\Delta t} = 1 + g \Delta t + \nu \epsilon_t^i \sqrt{\Delta t}, \quad \epsilon_t^i \sim N(0, 1)$$

• Substituting in

$$S_t^i + \Delta t - S_t^i = (g \Delta t + \nu \epsilon_t^i \sqrt{\Delta t}) S_t^i$$

• Or as $\Delta t \to 0$

$$dS_t^i = g S_t^i dt + \nu S_t^i dW_t^i$$

i.e. a geometric Brownian motion!
Stationary Distribution

- Assumption: city size follows random growth process

\[dS_t^i = gS_t^i dt + vS_t^i dW_t^i \]

- Does this have a stationary distribution? No! In fact

\[\log S_t^i \sim \mathcal{N}((g - v^2/2)t, v^2t) \]

\[\Rightarrow \text{distribution explodes.} \]

- Gabaix insight: random growth process + friction does have a stationary distribution and that’s a PL

- Simplest possible friction: minimum size \(S_{\text{min}} \). If process goes below \(S_{\text{min}} \) it is brought back to \(S_{\text{min}} \) (“reflecting barrier”)
Stationary Distribution

• Use Kolmogorov Forward Equation.

• Recall: stationary distribution satisfies

\[0 = -\frac{d}{dx}[\mu(x)f(x)] + \frac{1}{2} \frac{d^2}{dx^2}[\sigma^2(x)f(x)] \]

• Here geometric Brownian motion: \(\mu(x) = gx, \sigma^2(x) = v^2x^2 \)

\[0 = -\frac{d}{dx}[gx f(x)] + \frac{1}{2} \frac{d^2}{dx^2}[v^2x^2 f(x)] \]
Stationary Distribution

- **Claim:** solution is a Pareto distribution, \(f(x) = S_{\min}^{\zeta} x^{-\zeta-1} \)
- **Proof:** Guess \(f(x) = Cx^{-\zeta-1} \) and verify

 \[
 0 = -\frac{d}{dx}[gxCx^{-\zeta-1}] + \frac{1}{2} \frac{d^2}{dx^2}[v^2x^2Cx^{-\zeta-1}]
 \]

 \[
 = Cx^{-\zeta-1} \left[g\zeta + \frac{v^2}{2}(\zeta - 1)\zeta \right]
 \]

 This is a quadratic equation with two roots \(\zeta = 0 \) and

 \[
 \zeta = 1 - \frac{2g}{v^2}
 \]

 - For mean to exist, need \(\zeta > 1 \) \(\Rightarrow \) impose \(g < 0 \).
 - Remains to pin down \(C \). We need

 \[
 1 = \int_{S_{\min}}^{\infty} f(x)dx = \int_{S_{\min}}^{\infty} Cx^{-\zeta-1}dx \quad \Rightarrow \quad C = S_{\min}^{\zeta}. \square
 \]
Zipf’s Law

• Why would Zipf’s Law ($\zeta = 1$) hold? We have that

$$\bar{S} = \int_{S_{\text{min}}}^{\infty} xf(x) \, dx = \frac{\zeta}{\zeta - 1} S_{\text{min}}$$

$$\Rightarrow \quad \zeta = \frac{1}{1 - S_{\text{min}}/\bar{S}} \rightarrow 1 \quad \text{as} \quad S_{\text{min}}/\bar{S} \rightarrow 0.$$

• Zip’s law obtains as friction becomes small.
Alternative Friction: Death

- No minimum size.
- Instead: die at Poisson rate δ, get reborn at S_*.
- Can show: correct way of extending KFE (for $x \neq S_*$) is

$$\frac{\partial f(x, t)}{\partial t} = -\delta f(x, t) - \frac{\partial}{\partial x} \left[\mu(x)f(x, t) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[\sigma^2(x)f(x, t) \right]$$

- Stationary $f(x)$ satisfies (recall $\mu(x) = gx, \sigma^2(x) = v^2x^2$)

$$0 = -\delta f(x) - \frac{d}{dx} \left[gxf(x, t) \right] + \frac{1}{2} \frac{d^2}{dx^2} \left[\sigma^2x^2f(x) \right]$$ (KFE')
Alternative Friction: Death

- To solve (KFE’), guess \(f(x) = Cx^{-\zeta-1} \)

\[
0 = -\delta + \zeta g + \frac{\nu^2}{2} \zeta (\zeta - 1)
\]

- Two roots: \(\zeta_+ > 0 \) and \(\zeta_- < 0 \). General solution to (KFE’):

\[
\Rightarrow f(x) = C_-x^{-\zeta_- -1} + C_+x^{-\zeta_+ -1} \quad \text{for} \; x \neq S_*
\]

- Need solution to be integrable

\[
\int_0^\infty f(x)dx = f(S_*) + \int_0^{S_*} f(x)dx + \int_{S_*}^\infty f(x)dx < \infty
\]

- Hence \(C_- = 0 \) for \(x > S_* \), otherwise \(f(x) \) explodes as \(x \to \infty \).

- And \(C_+ = 0 \) for \(x < S_* \), otherwise \(f(x) \) explodes as \(x \to 0 \).
Alternative Friction: Death

- Solution is a **Double Pareto** distribution:

\[
f(x) = \begin{cases}
C(x/S_*)^{-\zeta_-^{-1}} & \text{for } x < S_* \\
C(x/S_*)^{-\zeta_+^{-1}} & \text{for } x > S_*
\end{cases}
\]
Alternative Friction: Death

- Again, Zipf’s Law \((\zeta = 1)\) obtains as friction gets small. Here: \(\delta \to 0\).
- Other cases in Gabaix’s paper:
 1. Extension to jump processes
 2. Approximate power laws with generalized growth process

\[
\frac{dS_t}{S_t} = g(S_t)dt + v(S_t)dt
\]