
Chapter 4

Software Technology
and the Law

Contents
Page

Introduction .
Technology .

Introduction .
Program Function .
External Design .
User Interface .
Program Code .

Software and the Application of Intellectual Property Laws .
Program Function .
External Design .
User Interface .
Program Code .. .

Recompilation .
Introduction .
Recompilation and Disassembly .
Uses of Recompilation .
Other Methods of Reverse Engineering .

Legal Arguments for Policy Positions .
Patent Law .. .
Copyright Law .
Software Development

125
125
125
126
126
127
130
130
132
138
142
144
146
146
147
148
150
150
150
151
153

Boxes
Box Page
4-A. Authorship .131
4-B. Cryptography . 137
4-C. Neural Networks . 152
4-D. Software Reuse 154
4-E. Special Concerns of the Federal Government . 156
4-F. The Discipline of Computer Science . 158

Figures
Figure Page

4-1. Comparison of ’’Substituting” and ’’Attaching’’ Programs . 127
4-2. High-Level Language, Machine Language, and Disassembled Versions of a

Program .*........*.......*..Q... 149

—

Chapter 4

Software Technology and the Law

Introduction
There are intellectual property issues associated

with four elements of a program: the program
function, the external design, the user interface
design, and the program code. The first section of
this chapter describes the technology behind each of
these elements. The second section outlines the
application of existing intellectual property laws to
each element, and discusses the policy issues
associated with the current level of protection. There
have been various policy positions advanced for
maintaining or changing the scope of protection, and
most of these policy positions have been supported
by legal arguments; the final section of the chapter
briefly summarizes these legal arguments.

Technology
Introduction

One way to think about computers and programsl

is to look at the hardware. The core parts of the
computer are the processor and memory. Both the
processor and memory usually consist of one or
more integrated circuits, which are semiconductor
chips that manipulate digital electronic information.
The processor and memory work together to perform
logical and arithmetic operations on data; the
program is stored in memory and specifies the order
in which the operations are to be performed.

A program consists of a list of instructions. Each
type of processor has an instruction set—a set of
operations that it is capable of performing. Most of
these operations are simple; for example, a typical
instruction set would include an instruction for
operations such as moving data from memory to the
processor, logical operations such as checking if two
pieces of data have the same value, and arithmetic
operations such as adding two numbers. A program
is executed when the instructions are transferred to
the processor and the processor performs the speci-
fied operations.

Inside the computer, ‘‘instructions’ and ‘‘data’
arc both patterns of electronic signals. These signals

can take one of two values; to make it easier to
comprehend what is happening inside the computer,
programmers represent one of the values with the
symbol” 1,’ and the other with the symbol ‘‘ O.” For
example, the addition instruction for the processor
that is used in most microcomputers may be
represented as “00000100.” In the same way, in
most computers the letter “A’ is represented by the
pattern of signals corresponding to “01000001. ”
The complex functions that programmed computers
perform for users often seem far removed from the
patterns of electronic signals and very simple
operations that characterize the computer at the
hardware level. Computers perform complex tasks
by performing a large number of simple operations
in sequence—typically millions of operations per
second.

The processor and memory are usually part of a
larger system. Data to be used in a computation may
be read from a disk or tape drive. Data can also be
exchanged or shared with other computers using a
network. The data is exchanged using communica-
tions protocols, which specify the format and
sequence in which data is sent. It is also possible for
part of a computation to be carried out on a distant
computer. Sometimes specialized computers are
used for different parts of a task; for example, a
supercomputer may carry out the computationally
intensive portions of a task, while a workstation is
used for displaying the results of the computation.

There are also a variety of input and output
devices for communicating with the user. The
display is the output device most commonly used for
providing users with information about the results of
a computation. More advanced displays, faster
processors, and cheaper memory enable program
developers to go beyond the simple display of text
to include graphics. Color monitors are also increas-
ingly common. In some applications, small displays
inside helmets or goggles are used to give users the

126 ● Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

illusion of a three-dimensional image.2 Sound,
which can include warning tones, music, and synthe-
sized speech, may also be used to provide informat-
ion to users.

Input devices include the keyboard, for entering
text, and the mouse, a pointer used for drawing
figures or selecting commands on a screen. The use
of a special pen can also allow the entry of written
information and commands.3 Research is under way
on speech recognition technologies that allow com-
mands to be spoken instead of typed or selected
using a mouse. Other experimental input devices
detect eye movements4 or gestures made with a
special glove.

Sometimes the memory and the processor are not
part of a conventional computer, but are embedded
in industrial machinery and other devices. The
processor receives information from a variety of
sources, processes the data, and uses the results of
the computation to direct the operation of a machine.
Examples of embedded systems are the microproc-
essor-based controllers used in appliances, automo-
biles, and industrial processes.

Program Function

Progr ammed computers perform a series of calcu-
lations to transform input values to output values. A
well-defined computational procedure for taking an
input and producing an output is called an algo-
rithm. 5 Algorithms are tools for solving computa-
tional problems. The statement of a problem speci-
fies in general terms the desired relationship
between the input and the output, while the algo-
rithm describes a specific computational procedure
for achieving the input/output relationship.6

The transformation of input data to output data
can also be performed in hardware. Integrated
circuits can perform the same simple logical and
arithmetic operations that programmed computers

perform. Connecting together these electronic cir-
cuits has the same effect as programmingg a com-
puter. Just as the calculation that the computer will
perform can be understood by looking at the
program, the calculation that a circuit will perform
can be understood by looking at the circuit diagram.

The choice of whether to perform the calculation
by programming a computer or building a circuit is
an engineering decision. Often, a calculation can be
performed more quickly by hardware, which maybe
an important consideration in some applications
such as signal processing. On the other hand,
programming a computer is potentially less costly
and more flexible. The function of a programmed
computer can be changed by writing a new program;
with hardware, however, a new circuit must be built.

Often many different problems can be modeled in
a similar way, and solved using the same class of
algorithms. For example, many applications that
operate on speech signals and video images use
similar signal processing algorithms. Searching and
sorting algorithms are also among the basic tools
that are commonly used in software development.
Problems such as finding the fastest route between
two cities or determiningg when to perform tasks in
a manufacturing process may be modeled in a way
that makes them solvable by using graph algorithms.

External Design

Programs have an external design or interface—
the conventions for communication between the
program and the user or other programs. The
external design is conceptually separate from the
program code that implements the interface (the
internal design). It specifies the interactions between
the program and the user or other programs, but not
how the program does the required computations.
There are typically many different ways of writing
a program to implement the same interface.

2 Scott S. Fisher, “Virtual Interface Environments, ” in Brenda Laurel (cd.), The Art of Human-Compufer Interface Design (Reading, MA:
Addison-Wesley, 1990), p. 423.

s Ro~I-I M. cm, ‘‘lhe point of the Pe~” Byte Magazine, vol. 16, No. 2, February 1991, p. 211.

‘1 Robert J.K. Jacob, “What You Look Is What You Ge4’ Proceedings of CHI (Conference on Human Factors in Computing System.r), 1990 (New
York, NY: Association for Computing Machinery, 1990), pp. 11-18.

s The definition given here reflects the use of the term ‘algorithm’ in computer science. In applying patent law to inventions involving programmed
computers, the courts are required to determine whether the claimed invention is a‘ ‘mathematical algorithm. ’ The term “mathematical algorithm’ was
used by the Court of Customs and Patent Appeals to characterize a method of converting binary coded decimal to binary numbers that the U.S. Supreme
Court held to be nonstatutory in its 19’72 decision Gorrschulk v. Benson (409 U.S. 64). The meaning of “mathematical algorithm, ” and the relationship
between ‘algorithm’ as the term is used in computer science, and ‘‘mathematical algori~’ as the term is used in the case law, has been the subject
of considerable discussion (see pp. 133-134).

b Thomas H. Cormen, Charles E. Leiserson, and Romld L. Rivest, Introducn”un w Algorithms (Cambridge, MA: MIT Press, 1990).

Chapter 4--Software Technology and the Law . 127

The external design will sometimes reflect con-
straints such as the speed of the processor, the
amount of memory available, and the time needed to
complete the product. In addition, the process of
developing software is iterative—the external de-
sign is refined as testing reveals more about user
needs or constraints on the implementation.7

One example of an external design is the user
interface, the conventions for communication be-
tween the user and the program. There are also
interfaces between programs, such as the ‘‘operating
system calls’ applications programs use to access
functions provided by the systems software of a
computer. Communications protocols and the speci-
fications of procedures are other examples of inter-
faces.

The discussion of appropriate intellectual prop-
erty protection for interfaces often involves the use
of terms such as ‘‘open systems, ’ ‘‘interoperabil-
ity, ’ or ‘ ‘compatibility. These terms sometimes
have ambiguous meanings. 8 They may be used to
describe a situation in which a program from one
vendor is able to exchange information with a
program from a different vendor. However, these
terms are also sometimes used to describe a situation
in which multiple vendors offer a product with the
same external design. Each of these meanings of
‘ ‘compatibility’ implies a different economic ef-
fect. For this reason, participants in the software
debate sometimes distinguish between ‘ ‘attaching”
programs, which are able to exchange information
with a program written by a different vendor, and
‘‘substituting programs, which have the same
external design (see figure 4-1). ‘ ‘Substituting’
programs are sometimes referred to as “workalike”
programs or ‘ ‘clones.

User Interface

The user interface specifies the interactions
between the program and the user. There are a
number of different kinds of user interfaces. A
programming language is in a sense a user interface—

Figure 4-l—Comparison of “Substituting” and
“Attaching” Programs

I 1

7.-T ‘(.--r
Original Program “Substituting” or

“Clone” Program

‘a
Original Program “Attaching” Program

SOURCE: OTA.

programming using conventional programming g lan-
guages is one way to direct a computer to perform a
task. For most people this style of interaction is too
difficult and inconvenient. By using new technolo-
gies, however, different ways of using computers
have been developed, Sophisticated, but easy-to-
use, user interfaces have created new markets where
there are end users who are not programmers.9

Command languages, menu-based dialogs, graphi-
cal user interfaces, and newer interaction techniques
have expanded the design choices available to user
interface designers.

One interaction style10 is the command language
dialog, in which the user issues instructions to a
computer through a typed command.l 1 The Unix and
DOS operating systems usually have this type of
user interface. For example, the command for

7 Daniel S. Bncklm, Prcs]dcnt, Software Garden, Inc., testimony at hearings before the House Subcommittee on Courts, Intellectual Property, and
the Administration of Jusucc, Nov. 8, 1989, Serial No. 119, p. 221,

~ b ‘What Does ‘open sys[crns’ Really MeEUI? Computcrntorld, vol. 25, No. 19, May 13, 1991, p. 21.

9 Jonathan Grudin, ‘ ‘The Computer Reaches Out, ’ Proceedings of CHI (Conference on Human Factors in Computing Sys(cms), 1990 (New York
NY: Association for Computing Machinery, 1990), pp. 261-267,

10 For ~ discussion of different ~n[eractlon s~.]es, see R~na]d M Baeckcr ~d w]]]i~ As, Buxton, Reud/~g~ In HuvuJn-COTTlpUf~~]n/era~flOn (SMI
Matco, CA: Morgan Kaufmann, 1987), p. 427,

11 Ibid., p, 428,

128 ● Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

Photo credit: Library of Congress

An early user interface. Dr. J. Presper Eckert, Jr. examines
the control panel of the ENIAC computer at the

University of Pennsylvania in 1946.

deleting a file when a computer is using the Unix
operating system is ‘‘rm. ’ The difficulty with this
type of interface is that it is hard to learn. It may be
difficult to remember the available commands, their
exact syntax, and how they can be strung together to
perform more complex tasks.12

A second type of interdiction style uses a menu.
Instead of having to remember the commands, the

user can select choices from a list of alternatives
displayed on a screen.

13 The selection can be made
by pressing a key that corresponds to a menu option,
or by moving the cursor on the screen until the
option is highlighted. Menu-based interfaces were
made possible by the development of hardware
technology that allowed large amounts of informa-
tion to be quickly displayed on a screen.14

Newer interfaces are graphical, using images, in
addition to text, to display information to users.
Icons represent operations (much as menu options
do) or data. Commands can be issued by direct
manipulation 15: instead of using a command lan-
guage to describe operations on objects, the user
‘‘manipulates’ objects visible on the display.l6 The
effect of the action is immediately apparent to the
user. For example, a user could point to an icon
representing a file with the mouse and then ask the
system to delete the file; the icon could then
disappear from the screen to show the user that the
file has been deleted. Graphical user interfaces often
allow users to view several activities simultaneously
on the screen, through the use of windows that
subdivide the screen area.

The Design Process

The user interface designer makes many design
decisions.17 Technological change is adding to the
range of available choices-color, graphics, sound,
video, and animation are only beginning to be
explored or widely applied.l8 However, the user
interface designer must also work within a set of
constraints. Some of these constraints are imposed

12 Bill Curtis, “Engineering Computer ‘bok and Feel’: User Interface Technology and Human Factors Engineering, ” Jurimem”cs, vol. 30, No. 1,
fall 1989, p. 59.

13 Dodd A+ Nomu * ‘Design Mciples for Human-Computer Intetiaces, ’ Proceedings of CHI (Conference on Human Factors in Computing
Systems), 1983 (New York, NY: Association for Computing Machinery, 1983), p. 9.

14 Jo~W~er, ‘mough the Lo&ingGlass, ‘‘ in Brenda Laurel (cd.), The Art ofHuman-Computer Interface Design (Reading, MA: Addison Wesley,
1990).

IS Ben s~eide~~ ‘ ‘Direct Manipulation: A Step Beyond PrOW amrning Languages, ” IEEE Computer, vol. 16, No. 8, August 1983, pp. 57-69.

lb Robert J.K. Jacob, ‘ ‘Direct hfa.nipulatlou “ in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (New York
NY: Institute of Electrical and Electronics Engineers, 1986), pp. 384-388.

17 * ~U~e~sone clones ~ exl~t~gproduct, desigfig even one aspect of ~ ktefiace--menunavigatio~ wbdow operations, CO remand names, function
key assignments, mouse button syntax, icon design, etc.—gives rise to a potentially endless series of decisions. ” Jonathan Grudin, op. cit., footnote 9,
p. 261.

18 Ibid.

.—

Chapter 4--Software Technology and the Law ● 129

by the needs of the user, and some are imposed by
hardware or software capabilities.19

In developing a program, a developer decides
which functions the program is to perform for the
user. The user interface design reflects the designer’s
efforts to communicate this functionality to the user.
Designing user interfaces is a “communications
task like writing or filmmaking.”20 The user inter-
face helps the user develop a ‘ ‘mental model” of
how the program works. This mental model does not
necessarily reflect the internal ‘engineering model’
of the program. 21 For example, when a user Points

with the mouse to an icon representing a file and asks
the computer to delete the file, the user does not have
to know where the file is stored or how the hardware
and software perform the operation.

One component of the user interface design
process is the choice of the interaction style. This
choice is influenced by hardware and software
constraints, the nature of the application, and the
characteristics of the end user. For example, a
command language interface may not be appropriate
for users who use a program infrequently; a menu
interaction style would be easier to use because it
would provide the users with reminders of the
available commands.

Another component of the design process requires
that the functionality of the application be repre-
sented within the interaction style. This stage of
design would include, for example, the choice of
commands and their representation by icons or
appropriate mnemonics. This stage of the design
reflects the designer’s judgment of how the user

would want to accomplish certain tasks.22 For
example, the assignment of commands to various
menus could reflect a judgment of the relative
importance of each command.

Constraints

There are a number of constraints that the user
interface designer must take into account. Hardware
or software constraints may limit solutions that
require too much processing power or are too
time-cons uming to program. The capabilities of
users present other constraints. Research in the field
of human-computer interaction (HCI) tries to find a
scientific base for understanding what makes a user
interface design successful.23 HCI research also
focuses on methodologies for developing better
interfaces.

One of the most important user interface design
principles is that ‘ ‘consistency’ is important.24 One
type of consistency is internal consistency .25 Inter-
nal consistency means, for example, that operations
common to several objects in a program have the
same results on all of the objects. For example, there
might be a single ‘‘delete’ command that deletes the
selected object, whether it is a text string, a curve, or
a file.26

From the perspective of intellectual property law,
the most significant type of consistency is external
consistency with the features of other interfaces, i.e.,
similarity of a given interface to those of other
applications and systems. A system is said to be
‘‘backwards compatible ‘‘ if it is compatible with an
older version of the system, allowing users to benefit

‘9‘‘ [Solutions are shaped by a multitude of problems that arc invisible to those outside of the design process. A wonderfully intuitive solution doesn’t
rrmtter if the system architecture doesn’t support it, or if the resulting code takes up too much memory or runs too slowly. Other problems stem from
the basic capabilities of humans, and tic requirements of tasks users wish to do. It doesn’t matter if the interface responds instantly, if the user can’t usc
it. Solutions to an interface problcm involve compromise. But how do dcsi.gners determine what an acceptable compromise is? How do designers figure
out acceptable lradcoffs bctwccn speed and intuitiveness and other seemingly contradictory vahJcs and requircmcnts? Thomas D. Erickson, ‘‘Creativity
and Design, ’ m Brenda Lwrcl (cd.), The Ar(of Hlinta/1-Co/?l/jliter Interf~ce Dc~i,gn (Reading, MA: Addison-Wesley, 1990), p. 3.

‘) Paul Hcckcl, The E/emerrts {$ Friend/) Software De.~i<qn (A1.amcda, CA: .sybcx, 199 1), p, xix. The Epilogue describes the author’s experiences in
applying for and enforcing a ‘ ‘software palcnt.

‘1 Donald R, Gentncr and Jonathan Grudin, ‘‘ Why Good Engineers (Sometimes) Crcalc Bad Intcrfaccs, ’ Proceedings of CH.. (Conference on Human
Fur~ors in Computmg Sjslems), 1990 (New York, NY: Association for Computing Machinery, 1990), p. 277.

Jl ‘ . . . dcslgncrs who have only a sketchy or partial understanding of users’ tasks will tind it difficult to appreciate the dominant role tasks should
pktjr in lntcrfticc (lcw.gn. in the abscncc of task analysis, the designer him little to go on and it bccomcs convenient to focus on properties of the
intcrfacc. .“ Jonathan Grudin, ‘ ‘The Case Against User Intcrftice Consistency’, “ Com/)z~(nic’u[iotl.r ofthc ACM, vol. 32, No IO, October 1989, p. 1165.

23 s~u:ut K. Card and Thomas P. Moran, ‘ ‘User Technology: From Pointing {o Pondering, ’ in Adele M. Goldberg (cd.), A History of Persorul
W’ork.rttltions (New York, NY: ACM Press. 1988), p. 493.

~ Bcn Shncldcrman, Desi,qnln,q the User Irr/erf,Jce (Rca(iing, MA: Addison-Wesley, 19S7).

2s Grudin, op. cit., footnote 22, p. 1165.

‘b Bullcr W. Lampson, ‘‘Personal Distrlbutm! Computmg, ‘‘ in Adele M. Goldberg (cd.), A Historj’ of Personal W’orksfations (New York, NY: ACM
Press, 1 988), p 321

130 . Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

from new features or better performance without
having to learn a completely new system. Interoper-
ability and backwards compatibility requirements
reflect aspects of the users’ experience and environ-
ment that should be reflected in an interface design.
They are increasingly important as computers are
used by more people and in different application
areas .27

Program Code

The program code is the implementation of the
fiction and external design (including the user
interface) of the program. Much effort has been
devoted to developing new tools and methods for
coping with the complexity of developing new
software systems. In general terms, ‘‘software engi-
neering’ is concerned with the practical aspects of
developing software. It overlaps all of the various
specialities of software research, including program-
ming languages, operating systems, algorithms, data
structures, databases, and file systems.28

The use of high-level programming languages,
such as FORTRAN, C, and Pascal, is an important
element in the development of complex programs.
High-level languages are more powerful than ma-
chine languages-each statement in a high-level
language usually does the same job as several
machine language instructions. In addition, pro-

grammers need not be as concerned with the details
of the computer’s operation, and can write the
program in a more natural way. For example, the
Pascal-language statement “quantity := total - 5“
does the same job as a series of machine language
statements; the names of the variables, such as
“total,’ may also suggest something about why the
operation is being done. Finally, the programmer
does not need to know where the data is stored in
memory or how it is represented by patterns of
electronic signals.

Programs written in a high-level language must be
translated into machine language for execution. This
process is called “compilation.” The high-level
language version of a program is often referred to as
‘‘source code, ’ while the machine language version

is referred to as “object code. ” In the software
debate, the relationship between source code and
object code has been the subject of considerable
discussion (see box 4-A and the “Recompilation”
section later in this chapter).

High-level languages also encourage the con-
struction of procedures, data abstractions, or ob-
jects, which allow the decomposition of large and
complex programs into smaller pieces that can be
attacked independently. Much of the internal struc-
ture of a program is due to decisions made by the
programmer about how best to decompose the larger
problem into smaller pieces. Breaking a larger
problem into smaller, more manageable pieces is not
unique to software:

Well-designed computational systems, like well-
designed automobiles or nuclear reactors, are de-
signed in a modular manner, so that the parts can be
constructed, replaced, and debugged separately.29

An example of a procedure might be a sequence
of instructions for sorting numbers. This sequence of
instructions could be a procedure called “Sort.’
“Sort” in effect becomes a new instruction that the
programmer can use as if it were an ordinary
instruction. At every point in the program where it
is necessary to sort some numbers, the programmer
simply uses the new instruction, without worrying
about the details of its implementation. The pro-
grammer only needs to know about the interface that
specifies the name of the procedure, its function, and
the format in which it exchanges information with
other parts of a program.30

Software and the Application of
Intellectual Property Laws

This section discusses the policy issues associated
with the four elements of software outlined in the
previous section—program function, external de-
sign, the user interface, and the program code. For
each of these elements, the section outlines the
courts’ current approach to its protection, and then
discusses arguments for maintaining or modifying
the level of protection. To the extent possible, this

27 Grudin, op. cit., footnote 22, p. 1171.
2S computer Science ad Tec~olo},V Bored, Nation~ Rese~ch co~cil, Scu/jng Up: A Reseurch Agen~ajor Sojhvare Engineering (Washington,

DC: National Academy Press, 1989), p. 18.
29 Hmold A&.lson ~d Gcr~d Sussmm, Structure and]nterpre[ati~n @C~mputer program (Cambridge, MA: MIT Press, 1985), p. 2.

30 * *G~~d engineers dlstinWish beh~een whaf a ~omponen{ does (the abs~~ction seen by tie user) ~d how it does it (the implementation inside the
black box). ” Jon Bentley, Programming Pear/s (Reading, MA: Addison Wesley, 1986), p. 134.

Box 4-A—Authorship

The copyright clause of the U.S. Constitution permits Congress to grant ‘‘authors’ exclusive rights to their
‘‘writings.’ Before the current Copyright Act and 1980 software amendments became law, there was considerable
disagreement as to whether programs were copyrightable “writings.” Even after the 1980 amendments were
enacted some believed that only high-level language (or ‘‘source code”) programs were copyrightable subject
matter, while machine language (or ‘object code’ programs were not protected by copyright law. Some arguments
centered on whether code in lower-level languages was human-readable; according to one view, only higher-level
languages expressed writings (for human readers) eligible for copyright protection.l

A corollary debate concerns requirements for ‘‘authorship’ of programs. There were two issues: 1) whether
“original works of authorship’ required a human author, or whether machine-generated works could also be
eligible for copyright—the Copyright Office has maintained that the term ‘‘authorship’ in the Copyright Act
implies a human originator; and 2) dete rmining authorship and copyright ownership for machine-generated or
machine-assisted works.

Questions of machine authorship have arisen with respect to compilers .3 When a program is compiled, some
information is removed (e.g., comments), some information is added, and the code may then be rearranged to
optimize execution speed. From a technological perspective, the end result of the compilation process could
therefore be regarded as a ‘‘derivative work’ based on the source code program. However, the Copyright Office
does not view the object code version as containing sufficient “originality’ to be a derivative work, For this reason,
the Copyright Office takes the position that the source-code and object code versions of a computer program are
copies of the same work.4

The final report of the National Commission on New Technological Uses of Copyrighted Works (CONTU)
addressed the question of computer-generated works and concluded that ‘‘no special problem exists. The issue
continues to be addressed, most recently at a symposium sponsored by the World Intellectual Property Organization
(WJPO) on the intellectual property aspects of artificial intelligence. One conferee expressed the view that the real
issue was not whether there is a human author, but rather who that author is. While CONTU had concluded that the
computer was just a tool to assist a human being in creating a work, the conferee suggested that advances in artificial
intelligence meant that the tools were becoming increasingly sophisticated, perhaps indicating a need to apportion
authorship among the user and the author of a program used in creating a work.6 A second participant expressed
similar views when discussing the authorship of programs generated by a sophisticated “code generator” from
functional specifications.7

1 The ~le tit a work must ~ readable by a humm audience had its origins in White-Smith Music Publishing CO. V. Apo[10 Music CO.,
209 U.S. 1 (1908), which ruled that player-piano rolls could not be copyrighted. For a discussion of the readability requirement, see “Copyright
Protection of Computer Program Object Code,” Harvard Law Review, vol. 96, May 1983, pp. 1723-1744; Christopher M. MMow, “Computer
Microcode: Testing the Limits of Software Copyrightability,’ Boston University Law Review, vol. 65, July 1985, pp. 733-805; and the dissent
of Commissioner John Hersey in National Commission on New Technological Uses of Copyrighted Works (CONTU), Final Report
(Washington, DC: Library of Congress, July 31, 1978).

2 Cq H. she~~, H@5h R, s~diso~ md IWWC D. @ren, Computer Software Protection Law ~ashingtou DC: The B~eau of
National Affairs, 1989, 1990), 204.3(d).

s Ibid., 208.2(b)(5), and discussion at OTA workshop on “Patent, Copyright and Trade Secret Protection for Software,” June 20, 1991.
4 *L~e Cop@ght Office Comiders Sowce code ad object code as two mpresen~tiom of tie s-e computer program. For re@S~atlOn

purposes, the claim is in the compurer program rather than in any particular representation of the program. ” Computer Program Practices,
Compendium II, Copyright Oj?ce Practices, Section 321.03.

5 co~, op, cit., fOOtnOte 1$ P. a.

6 -u R ~]er, ~$computers ~d AU~O~hip: me COpY@@fi~ of COrnpUter-&mrated Works, ‘‘ in WZPO Worldwide Symposium
on the Intellectual Property Aspects ofArtifi”cia/ Intelligence, WIPO Publication No. 698 (E) (Geneva, Switzerland: World Intellectual prope~
Organization 1991) , p. 241.

7 Ro~fi Barr, “Computer-Produced Creations, ” in WIPO Worldwide Symposium on the Inteliectua! Property Aspects of Artificial
Intelligence, WIPG Publication No. 698 (E), p. 225.

SOURCE: OTA and cited sources.

132 . Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

section separates the question of the appropriate
level of protection from the question of how existing
patent, copyright, and trade secret laws should be
interpreted. In the software debate, policy arguments
for a certain level of protection are often character-
ized as consistent with a ‘‘proper’ interpretation of
existing law. Legal arguments made in support of
policy positions are outlined in the last section of the
chapter.

Program Function

Intellectual Property Protection of’
Program Function

Existing intellectual property laws are applied to
program function in several ways. First, it can be
argued that the program function is protected against
copying because the implementation is protected by
copyright law. Copyright law prevents others from
acquiring the functionality of the programmed
computer if it is obtained by copying the “expres-
sion’ in the program code. However, copyright law
does not prevent the independent development of a
program that performs the same function,

Some aspects of the function of a programmed
computer may be protected by maintaining them as
trade secrets. For example, a program may be
distributed with contractual restrictions on the extent
to which it may be studied. Trade secret protection
may also be maintained (in part) by distribution of
the program in machine language, which is difficult
for competitors to understand. This may be a
valuable form of intellectual property protection; the
scope of protection is the subject of the ‘ ‘decompila-
tion” debate discussed later in this chapter.

Finally, parts of the function of a program may be
protected by patent law. The same program may
embody many patentable inventions, or none at all,
depending on how many parts of the program
function are novel, nonobvious, and statutory sub-
ject matter. The inventions are claimed either as a

series of functional steps carried out by the computer
or as a system capable of performing certain
functions. The U.S. Patent and Trademark Office
(PTO) emphasizes that patents are granted for the
functional steps or the system, not the program
code .31

When the invention is being claimed as a series of
functional steps, or process, the applicant does not
specify each machine language operation carried out
by the computer.

32 Instead, the claim usually de-
scribes the steps at a higher level of abstraction,
independent of a specific implementation. For ex-
ample, one patent recites the steps of:

Identifying a plurality of overlapping working areas
on said screen, associating each said working area
with an independent computer program, selectively
communicating data to each said program. . ,33

If, on the other hand, the invention is being
claimed as a system or apparatus, the applicant
describes the ‘means’ for performing the functions.
For example, the apparatus claim corresponding to
the process claim described above specifies:

A computer terminal display system comprising a
display surface, means for simultaneously display-
ing a plurality of overlapping rectangular graphic
layers, . . . means for associating each of said graphic
layers with an independent computer program. . .

The basis for claiming a software-related inven-
tion as an apparatus is that the progr ammed com-
puter becomes anew machine, or at least a‘ ‘new and
useful improvement’ of the unprogrammed ma-
chine.34 In an early case that addressed the question
of the patentability of software-related inventions,
the Court of Customs and Patent Appeals (C. C.P.A.)
wrote:

If a machine is programmed in a certain new and
unobvious way, it is physically different from the
machine without that program; its memory elements
are differently arranged. The fact that these physical

SI * ‘R~cntly some comen~tors have stated that the office is issuing patents on computer programs or ‘Software. ’ This is not tie case. A ‘comPuter
program’ is a set of statements or instructions to be used directly or indirectly in a computer to bring about a certain result. A computer program is different
from a ‘computer process’ which is dej”ined as a series of process steps performed by a computer. This distinction may become blurred because some
refer to both the series of process steps performed by the computer and the set of statements or instructions as computer pro~ams. Jeffrey M. Samuels,
Acting Commissioner of Patents and Trademarks, testimony at hearings before the House Subcommittee on Courts, Intellectual Property, and the
Administration of Justice, Mar, 7, 1990, Serial No. 119, p. 334.

‘z John P. Sumner, “The CopyrighLPatent Interface: Patent Protection for the Structure of Program Code, ” Jurirnefrics, vol. 30, No. 1, fall 1989, p.
118.

33 us, patent No, 4,555,775. In Ordt>r t. satisfy the ‘ ‘~nablement’ r~uirement of section 112 of tie Patent Act, the specification would show in rnOP.3

detail how the process steps recited in the claim would be performed.
-MIn re Bernhurt, 417 F.2d 1400 (C’. C.P.A. 1969).

-———— -.—

changes are invisible to the eye should not tempt
us to conclude that the machine has not been
changed. 35

Statutory or Nonstatutory--Novel and nonobvi-
ous program function, whether claimed as an appara-
tus or process, is not necessarily ‘ ‘statutory subject
mat te r for which patents may be granted. In
determining whether a claimed computer-related
invention is statutory, patent examiners apply the
Freeman-Walter-Abele test, outlined in PTO guide-
lines issued in 1989.36 This test is named after the
appeals court decisions that contributed to develop-
ing and refining the test. The purpose of the
Freeman-Walter-Abele test is to determine whether
a claimed invention is a nonstatutory ‘‘mathematical
algorithm’ or mere calculation. 37

The Freeman-Walter-Abele test applies, in the
context of computer-related inventions, the patent
law doctrines that regard scientific principles, ab-
stract ideas, and mathematics as nonstatutory. In the
1972 case, Gottschalk v. Benson,

38 the U.S, Supreme

Court held that a method of converting binary coded
decimal (BCD) numbers to binary numbers was not
statutory. In C. C.P.A. decisions that followed Ben-
son this method was characterized as a ‘ ‘mathemati-
cal algorithm. ’ The Supreme Court objected to the
fact that the claimed process just converted numbers
from one representation to another without applying
the result of the calculation to any other task. Just as
a law of nature by itself was not statutory subject
matter, the mathematical algorithm was not statutory
unless it was applied in some fashion .39

The Freeman-Walter-Abele test has two parts.
The first part of the test asks examiners and the
courts to determine whether a claim includes a
mathematical algorithm. If there is no mathematical
algorithm, the claim is for statutory subject matter:
‘‘nonmathematical’ algorithms are statutory.40 If,
on the other hand, a mathematical algorithm is part
of the claim, then the examiner must apply the
second part of the test and determine whether the
algorithm is sufficiently ‘ ‘applied. ’ An invention
that includes a mathematical algorithm is statutory
only if the mathematical algorithm is ‘ ‘applied in
any manner to physical elements or process steps
or if the invention is ‘‘otherwise statutory’ without
the algorithm.41

Mathematical Algorithms-The line between
“mathematical algorithms’ and other types of
program function is difficult to draw. PTO guide-
lines state that claims that include mathematical
formulae or calculations expressed in mathematical
symbols indicate that the program function is a
mathematical algorithm. Terms in a claim such as
‘ ‘computing’ or ‘ ‘counting’ may also indicate the
presence of a mathematical algorithm.42 On the other
hand, the claim does not recite a mathematical
algorithm if the invention can be stated in terms of
its operations on things in ‘‘the real world’ that are
not conventionally considered ‘ ‘mathematical. For
example, claims for inventions that would process
architectural symbols43 or translate languages
were found to be ‘ ‘non-mathematical.

The distinction in patent law between mathemati-
cal algorithms and other software-related inventions
was discussed by the C. C.P.A. in Bradley:

35 In ~e fjernhart 417 F,2~ I w (c,c,p,A. 1969). < ‘In onc sense, a general-purpose digital COMpU[er maybe regarded as but a slorcroom of Parts cmd/or
electrical components. But once a program has been introduced, the general-purpose digital computer becomes a special-purpose digital computer (i. e.,
a specific electrical circuit with or without clcctro-mcchamcal components) which, along with the process by which it operates, may be patented subject,
of course, to the requirements of no~clty, utility, and non-obwousness. ’ In re Pruter, 415 F.2d 1393, 1403.

1~ ‘‘ M~thcma[ical .4]gorithn.s and Computer prOfJHiMS, ’ Off/ciul Ga:cffe of fhe F’ufenf Ofice, vol. 1106, No. 5, Sept. 5, 1989, pp. 5-12.
‘7 ‘ ‘The focus of the inquiry should bc whether the claim, us u whole, is dlrectcd essentially to a method of calculation or mathematical formula. ’

1n TC Diehr, 602 F.2d 987,

‘8 409 L~. S. 64.
39 ~ +It is ~uS clew tha([he ‘nutshell’ lmwge of Ben$()/l expressed tic ancient m]e [hat practi~~ application remains key, BCCaUSC it did not consider

the performance of an algorithm by a computer as constituting a practical apphca[loi) o! that algorithm under the rule, the Court mus~ have viewed
Benson’s clalms as effectively clalming the ‘effect, ’ principle, or law or force of na[urc (the algorithm) itself. ” in rc de Casfelc(, 562 F.2d 1243 (C. C.P.A.
1977).

‘) ‘ ‘The CCPA [hm] . . . held that a computer algorithm, as opposed to a mathematical algori[hm, is patentable subject matter. ’ Paine, W’ebber,
Jackson & Curtis v. Merrill Lynch, Pierce, Fenner & Smith, 564 F. Supp. 1358, 1367.

41 ‘‘Ma[hcmatical .Mgorithrn.s and Computer Programs, ’ op. cit , fOOtnOtc 36, p. g.

‘z Ibid.
~~ [n rc phi///ps, 6(’)8 F.2d 879 (C. C.P.A. 1979)

~Itl r-c TOVM, S7 S F,2d 872 (CC p A. 197~).

134 ● Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

[The data being manipulated] may represent the
solution of the Pythagorean theorem, or a complex
vector equation describing the behavior of a rocket
in flight, in which case the computer is performing
a mathematical algorithm and solving an equation.
This is what was involved in Benson and Flook. On
the other hand, it may be that the data and the
manipulations performed thereon by the computer,
when viewed on the human level, represent the
contents of a page of the Milwaukee telephone
directory, or the text of a court opinion retrieved by
a computerized law service. Such information is
utterly devoid of mathematical significance.45

At one point during the period in which it was
uncertain how Benson was to be interpreted, PTO
viewed all claims that involved the use of a computer
as ‘‘mathematical’ in the Benson sense, % because
computers perform logical and arithmetic opera-
tions. The C. C.P.A. responded to this by writing:

The board’s analysis confuses what the computer
does with how it is done. It is of course true that a
modem digital computer manipulates data, usually
in binary form, by performing mathematical opera-
tions. . . But this is only how the computer does what
it does. Of importance is the significance of the data
and their manipulation in the real world, i.e. what the
computer is doing.47

When Is an Invention That Uses a “Mathemati-
cal Algorithm ” Statutory?—-The second part of the
Freeman-Walter-Abele test determines if a mathe-
matical algorithm is ‘‘applied’ ‘—in which case the
invention is statutory--or if the applicant is attempt-
ing to claim the nonstatutory mathematical algor-
ithm. A software-related invention that includes a
mathematical algorithm has been found to be
applied and statutory if the computer is being used
as part of an apparatus or process for transforming
physical substances into a different physical state.
For example, the invention that the Supreme Court
held to be statutory in Diamond v. Diehr used the

result of a calculation to control a process for curing
rubber.

However, a distinction is made between transfor-
mations of physical substances and the mere manip-
ulation of ‘‘data. ’48 If the claim is for a series of
calculations whose only result is a ‘ ‘pure num-
ber,”49 then the claimed invention is not statutory.
For example, the purpose of a process found
nonstatutory in Parker v. Flook50 was to calculate an
“alarm limit. ” Because the alarm limit was just a
‘‘number” and not clearly applied in a physical
sense the Supreme Court ruled that the claimed
process was not statutory.

At one time it was believed that a mathematical
algorithm could become statutory subject matter if
the claim were in apparatus form. The apparatus
claim was thought to make the invention sufficiently
‘‘applied’ or ‘‘non-abstract. ’ ’51 However, PTO will
no longer approve these applications, viewing them
as attempts to circumvent the nonstatutory subject-
matter rejection .52

Software Patents—The term “software patent”
is frequently used in the policy debate to describe a
class of inventions that some believe should not be
statutory subject matter or should not be infringing.
The policy debate is complicated by the fact that the
term software patent’ does not correspond directly
to a PTO technology class or subclass. The term
‘‘software patent, ’ as used in the policy debate,
appears to refer to those inventions that would
usually be implemented using a program executing
on a general-purpose computer.

One difficulty with the use of the term “software
patent’ is that terminology used by PTO, such as
‘‘computer-related invention’ or “computer proc-
ess’ does not refer only to inventions implemented
in software. These terms are also used to refer to

45 In ~e &a&y, 600 F.2d 812 (C.C.P.A. 1979).

ti see, ~g., ~n re Br~/ey, 600 F.2d 807 (C. C.P.A. 1979).

47 Ibid., p. 811.

a “Mathematical Algorithms and Computer Programs, ” op. cit., footnote 36, p. 9.
w In re Waiter, 618 F.2d 767.
m 437 U.S. 584,

51 * ~~c in~tmt ~l~m, however, MC ~kawn t. physic~ s~c~e ad not to ~ abs~act ‘law of nature, a ma~ernatlc~ formlda or ~ algOri~. ’ There

is nothing abstract about the claimed invention. It comprises physical structure, including storage devices and electrical components uniquely configured
to perform specified functions through the physical properties of electrical circuits to achieve controlled results. Appellant’s programmed machine is
structurally different from a machine without that program. ’ In re No/l, 545 F.2d 148 (C. C.P.A. 1976).

52 1‘Ma~cmatica] Algori~s and Computer programs, op. cit., footnote M, p. g.

—

Chapter 4-Software Technology and the Law . 135

inventions that could be implemented in hardware .53
Under current law, the form of implementation does
not determine whether a computer-related invention
is statutory-it is significant that the Freeman- Walter-
Abele test for statutory subject matter only checks
for the use of mathematical algorithms, not the use
of software. OTA uses the term ‘‘software-related
invention’ to refer to inventions implemented in
software.

Another difficulty with defining the term “soft-
ware patent ‘‘ is that software is used in a variety of
inventions. Not all software-related inventions are
products of the ‘‘software industry. ’ Many tradi-
tional industrial processes are now controlled by
computers or use embedded processors. For examp-
le, the invention found statutory by the Supreme
Court in Diamond v. Diehr used a computer to
control a process for curing rubber.

‘‘Software patent-type’ inventions may be distin-
guished from other ‘‘computer-related inventions’
because they are not as well represented in the PTO’S
database of prior art. This database consists mainly
of issued patents. Many significant advances in
software are not represented in the database because
few ‘‘software patents’ were issued before the
mid-1980s. While in theory these inventions could
have been implemented in hardware, in practice they
were not. As it was widely assumed that implemen-
tation in software precluded the issuance of a patent,
few developers applied for patents on these inven-
tions. The gaps in the PTO database of prior art make
it more difficult for examiners to determine whether
an invention is novel and nonobvious.

When Is a Patent for a Software-Related Inven-
tion Infringed?-- There is uncertainty about the
scope of protection available from a patent on a
software-related invention. The breadth of protec-
tion is determined during infringement litigation, of
which there has been little to date. One important

issue will be the interpretation of claims. Before
determining if a device is infringing, courts interpret
a claim by looking at the specification and the
prosecution history. For exampIe, “means-plus-
function’ claims do not cover all of the “means”
for performing a function, only the “structure,
material or acts described in the specification and
equivalents thereof. ’ ’54 One question might be
whether the claims cover both hardware and soft-
ware implementations of an invention.

“Literal infringement’ occurs when an accused
device or process incorporates each and every
element of a claim. Even if there is no literal
infringement, a device can still be found to be
infringing-this is known as the “doctrine of
equivalents, ’55 The doctrine of equivalents is ap-
plied when an accused device does not incorporate
every element of the claim but is still ‘‘close
enough.’ 56 Infringement occurs if the accused
device or process accomplishes “substantially the
same thing, in substantially the same way to achieve
substantially the same result. ’ ’57 Generally, ‘ ‘pio-
neer’ inventions that represent a substantial ad-
vance over the prior art are granted a broader range
of equivalents by the courts. Observers have argued
that some software-based patents, though claimed
and allowed broadly due to a lack of knowledge of
constraining prior art, may not be true pioneers in
their fields .58

Protection of Program Function—
“Software Patent” Policy Issues

There has been considerable debate about the
granting of patents for software-related inventions.
Some believe that no inventions that use software
should be patentable or that only software-related
inventions that are traditional industrial processes
should be statutory subject matter.59 Others believe
that inventions that use software should not be

53 whether Or no(a softwwe implementation infringes a “hardware” patent depends on the interpretation of “equivalent” in the [35 U. S. C.] section
112(6) sense and the “doctrine of equivalents. ” See Romld S. Laurie and Jorge Contrems, ‘*Application of the Doctrine of Equivalents to
Software-Based Patents, ‘‘ in Michael S. Keplingcr and Ronatd S. Laurie (cds ,), Patent Profectionfor Cornpu[er Software (Englcwood Cliffs, NJ: Prentice
Hall Law and Business, 1989), p. 161.

~ 35 U.s.c, 1 12(6),

55 The “doctrmc of equivalents’ should not be confused with the meaning of ‘‘equivalent as used in interpreting means-p lus-funchon clalms. Scc
Donald S. Chisum, Patents (New York, NY: Matthew Bender, 1991), vol. 4, pp. 18-6(>1 8-63.

s~ ~uric and Contrcras, Op, cit., fOOtIIOtC 53, p. 1~~.

57 Chisum, op, cit., footnote 55.

5R ~~uric and Contrcras, Op. cit., footnote 53, p. 169.
5Y Scc pamc la Samuclson,L “Benson Revisited, ” Emor) IMw lo~(rn(ll, vol. 39, No. 4, falI 1990, pp. 1133-1142.

136 . Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

treated differently from other types of inventions.60

In fact, some who believe that software-related
inventions should be patentable have argued that
many of what are now deemed nonstatutory mathe-
matical algorithms should be statutory subject mat-
ter.61

Some of the concerns about the patenting of
inventions that use software are similar to those
expressed about the patent system in general62 or
about the patent system’s ability to accommodate
any new technology. In some cases these questions
have been brought into sharper focus in the context
of software. For example, the appropriate length of
the patent term has been a subject of discussion for
many years (see chapter 6); many believe that 17
years is especially inappropriate for a fast-moving
technology such as software.63 The fact that patent
applications are kept secret until the patent issues
makes it impossible to be certain that a product
under development will not ‘be accused of infringing
a patent; this ‘‘kmdmine’ problem may be exacer-
bated by the longer pendency for computer-related
inventions. However, two areas of concern are more
directly related to the question of software patent-
ability: the effect of patents on industry structure and
innovation, and the quality of the patents that have
been granted.

First, it is argued that the widespread use of
patents could change the structure of the software
industry in a way that would actually reduce the rate
of innovation. According to those who hold this
view, patenting favors larger companies, not the
small companies that have historically been the
source of much innovation. The software industry
has had a disproportionate number of smaller
companies; in part, this industry structure was due to
the fact that the limited use of patents and licenses
kept barriers to entry modest. There is a concern that

the widespread use of patents could reduce small-
company-based innovation by raising barriers to
entry, either as a result of the need to pay royalties
or the added costs of searching and filing for
patents,

64 In addition, large companies could engage

in portfolio trading while small companies without
extensive patent portfolios would have their free-
dom to develop products restricted.65

The alternative view is that the economics of the
software industry is not that different from the
economics of other industries, and that patents are
therefore equally appropriate for encouraging soft-
ware development. Some argue that software devel-
opment is becoming increasingly expensive, and
patents may provide the incentive needed to invest
or attract venture capital funding.66 In addition, it
may be that patents in fact benefit small companies,
by providing a means to protect their development
effort against appropriation by a larger company.67

A second set of concerns focuses on the quality of
patents that have issued. Some consider that many
patents have issued that do not in fact represent
significant advances.

68 From the developer’s per-
spective, this increases the probability that a pro-
gram could be accused of infringing patents. The
developer would then have to decide whether to
engage in costly litigation in an attempt to invalidate
the patent. The perceived problems with examina-
tion quality have primarily been the result of the long
period of time during which it was uncertain whether
software-related inventions were statutory subject
matter. Few patents issued for software-related
inventions, leading to gaps in PTO’S database of
prior art. Some believe that the the problems with the
database of prior art can be resolved given enough
time.69 However, the burdens on the PTO of
increasingly backlogged applications and external
criticism may be exacerbated over the next several

a Do~ld S, ChiSum, “The Patentability of Algorithms, ’ University of Pittsburgh L.uw Review, vol. 47, No. 4, summer 1986, pp. 1009-1019.
61 Romld S, ~~ie, “’rhe Patentability of Artflcial Intelligence Under US hw, ‘‘ in Morgan Chu and Ronald S. Laurie (eds.), Pa~ent Protecn”onfor

Compufer Software (Englewood Cliffs, NJ: Prentice Hall Law and Business, 1991), pp. 288-290.
62 For ~ Ovemlew of Cument concerns about the patent system, see ‘ ‘The Patent G~e: R~sing ‘e ‘rite* “ Science, vol. 253, July 5, 1991, pp. 20-24.
63 Mitchell D. Kapor, Cwm ~d chef Ex~utive Officer, ON Technology, ~c., testimony at hctigs before the House SllbCommltt& On COUrtS,

Intellectual Property, and the Administration of Justice, Nov. 8, 1989, Serial No. 119, p. 244.
64 Brim K~n, ‘ ‘The sof~~ Patent Crisis, ’ Technology Review, vol. 93, No. 3, April 1990, p. 53.

65 Ibid.

66 Chisum ~Wes that softw~e should not be a ‘‘disfavored technology. ” Donald S. ChisunL op. cit., footnote 60,
67 Elon GMper, Ed Hfi5, Paul Heckel, Wllllm Hulbig, @ Ligh~~, ~d we o’M~ley, letter, New York Times, June 8, 1989, editorid page.
6S Km op. cit., footnote ‘.

@ David Bender, letter, New York 7’imes, June 8, 1989, editorial page.

Chapter 4--Software Technology and the Law . 237

Box 4-B--Cryptography
The recorded history of cryptography as a means for securing and keeping private the content of

communications is more that 4,000 years old. Manual encryption methods using code books, letter/number
substitutions and transpositions, etc. have been used for hundreds of years-the Library of Congress has letters from
Thomas Jefferson to James Madison containing encrypted passages. Modem (computer-based) cryptographic
technologies began to develop in the World War II era, with the German Enigma cipher machine and the successful
efforts to break the cipher computationally; cryptographic research and development in the United States has often
proceeded under the aegis (or watchful eye) of the National Security Agency and, to some extent, the National
Institute of Standards and Technology (NIST).

Encryption techniques can be used to maintain the secrecy/privacy of messages; they can also be used to
authenticate the content and origin of messages. The latter function is of widespread commercial interest as a means
of electronically authenticating and ‘ ‘signing” commercial transactions like purchase orders and funds transfers,
and ensuring that transmission errors or unauthorized modifications are detected. Encryption is a mathematical
process and the descriptions of different techniques (e.g., the Federal Data Encryption Standard (DES), the
Rivest-Shamir-Adelman (RSA) public-key cipher, the “Trapdoor Knapsack” cipher, etc.) are usually referred to
as ‘‘algorithms. ’ Nevertheless, cryptographic systems have been successfully patented (usually as “means plus
function” claims); the RSA system was patented by the Massachusetts Institute of Technology and licensed in 1982
to the inventors, who formed a private company to market the system. Results from other university research in
cryptography have also been patented and licensed—for example, U.S. Patent No. 4,218,582 for a “Public Key
Cryptographic Apparatus and Method” invented by Martin Hellman and Ralph Merkle of Stanford was granted in
1980----as have commercially developed systems.

Patents may be complicating development of a new Federal standard for a public-key cipher. In 1991, NIST
proposed a digital signature standard (DSS) for unclassified use in digitally authenticating the integrity of data and
the identity of the sender of the data. The proposed standard is intended to be suitable for use by corporations, as
well as civilian agencies of the government. NIST has filed for a U.S. patent on the selected technique and plans
to seek foreign patents. NIST has also announced its intention to make the DSS technique available worldwide on
a royalty-free basis. According to press accounts, NIST has chosen the DSS algorithm as a standard to avoid
royalties. Some critics of this choice (including the company marketing the RSA system) have asserted that the RSA
algorithm is technologically superior and that NIST deliberately chose a weaker cipher. In late 1991, NIST’S
Computer Security and Privacy Advisory Board went on record as opposing adoption of the proposed DSS.

SOURCES: U.S. Congress, Office of Technology Assessment, Defending Secrets, Sharing Data: New Locks and Keys for Electronic
Information, OTA-CIT-31O (Washington, DC: U.S. Government printing Office, October 1987); Michael Alexander, “Data
Security Plan Bashed,’ Computerworld, vol. 25, No. 26, July 1, 1991, pp. 1, 80; Richard A. Danca “NIST Crypto Change Takes
Fed Vendors by Surprise,” Federal Computer Week, July 8, 1991, pp. 1,37; Federal Register, vol. 56, No. 169, Aug. 30, 1991, pp.
4298042982; Richard A. Danca “NIST Signature Standard Whips Up Storm of Controversy From Industry,” Federal Computer
Week, Sept. 2, 1991, p. 2; Darryl K. Taft “Board Finds NIST’S DSS Unacceptable, ” Government Computer News, vol. 10, No.
26, Dec. 23, 1991, pp. 1,56.

years. Computer implemented processes will be- as faster processors have become available. Second,
come more “commonplace and important in a wide
variety of industries and applications (see box 4-B),
ranging from home entertainment to scientific re-
search to financial services.

There may be practical limitations on attempts to
exclude ‘‘software inventions from the patent
system. First, many claims in computer-related
invention patents issuing today cover both hardware
and software implementations; if the software im-
plementation were not an infringement, the value of
a “hardware” invention could be appropriated.
Some inventions that were initially “hardware”
inventions are now being implemented in software,

there are-many inventions that use software but are
not the type of invention that has been the subject of
concern in the policy debate. There does not appear
to be much concern about the patenting of traditional
industrial processes that happen to use software as
part of the apparatus or to perform a step in the
process.

The Freeman-Walter-Abele Test—Another issue
is whether the Freeman-Walter-Abele test draws the
line between statutory and nonstatutory subject
matter in the right place. Some observers believe that
some of what PTO and the Court of Appeals for the
Federal Circuit regard as nonstatutory mathematical

138 . Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

algorithms should be statutory subject matter.70 A
variant of this opinion is that “field of use”
limitations should be sufficient to demonstrate that
a mathematical algorithm is ‘‘applied’ and the
claimed invention statutory. In Parker v. Flook71 the
Supreme Court held that language in the claim that
limited the field of use of a mathematical algorithm
to processes comprising the catalytic conversion of
hydrocarbons was not sufficient to make the inven-
tion statutory.

Supporters of an expansion in the scope of
statutory subject matter argue that some mathemati-
cal algorithms fall within the ‘‘useful arts’ and that
their invention should be encouraged by the patent
system. Under the Benson analysis, more efficient
methods of solving general ‘ ‘mathematical’ prob-
lems on a computer are not statutory subject matter.
In its decision finding Benson’s application to be
statutory (later reversed by the Supreme Court), the
C. C.P.A. listed a number of advances embodied by
the invention:

,.. reducing the number of steps required to be
taken, dispensing with the repetitive storing and
retrieval of partially converted information, elimi-
nating the need for interchanging signals among
various equipment components, and the need for
auxiliary equipment, and decreasing the chance of
error. 72

The Freeman-Walter-Abele test may also be
difficult to apply consistently .73 The distinction
between “mathematical” and “nonmathematical”
algorithms has been criticized by computer scien-
tists as a creation of the case law that lacks a
foundation in computer science.74 It may be that:

. . . any attempt to find a helpful or cutting distinc-
tion between mathematics and nonmathematics, as
between numerical or nonnumerical, is doomed.75

Some commentators have suggested that patents
have issued for inventions that do not appear to
satisfy the conditions of the test, or at least indicate
that the test is difficult to understand.76 There is also
a sense among some patent attorneys that PTO has
recently changed its application of the Freeman-Walter-
Abele test, resulting in an increase in the number of
rejections for nonstatutory subject matter.77

The difficulty in distinguishing between mathe-
matical and other algorithms has been used to
support calls for both an expansion and a reduction
in the scope of statutory subject matter. Those who
would reduce the scope of statutory subject matter
argue that, since the distinction cannot be easily
made, all algorithms should be nonstatutory .78
Those who would expand the scope argue the
opposite—if some algorithms are statutory and no
distinction can be made, then statutory subject
matter should include many of what are now called
mathematical algorithms.79

External Design

When Is the External Design of a
Program Protected?

The external design of a program includes its user
interface and the conventions for communication
with other programs. The design of a user interface
can include the appearance of images on a screen,
the choice of commands for a command language, or
the design of a programming language. The external
design may also include file formats and communi-

704$ [p]olicy co~iderations indicate that patent pro[wtion is as appropriate for mathematical algorithms that are USefUl in Computer prOgrdng M
for other technological innovations. ’ Chisum, op cit., footnote 60, p. 1020.

7198 S, C[. 2522 (1978).

7Z In re Benson, 441 F.2d 682,683 (C. C.P.A. 1971).

73 “Maintenance of such an arbitrary and unclear line between mathematical and nonmathematical algorithms is necessary only because of the
assumption of the continued vitality of Benson. Benson held that ‘something’ is per se unpatentable but fmled to provide reasoning that could bc apphcd
to determine the scope of the per se rule. ’ Chisurn, op. cit., footnote 60, p. 1007.

74 Allen Newell, ‘ ‘The Models Are Broken, The Models Are Broken, ’ Uni\erslty of Pittsburgh Law Re\lieun, vol. 47, No, 4, summer 1986, pp.
1023-1035,

75 Ibid., p. 1024.
76 one issued patent often cited in~,olves the ‘‘Karrnakar algorithm. ’ Sce Pamela Samuelson, ‘‘Benson Revisited, ‘‘ Emory La~8 Journal, vol. 39, No.

4, fall 1990, pp. 1099-1102.
77 Robert Greene Steme and Edwiud J. Kessler, ‘‘Worldwldc Patent Protection in the 1990’s for Compulcr-Related Technology, ’ in Morgan Chu

and Ronald S. Laurie (cds.), Parcnr Prorecrion for Compu(er Sofiu’are (Englcwood Cliffs, NJ: Prentice Hall Law and Business, 1991), p. 445.
T~ See, C,g,, S:nuelsom op. cit., footnote 76, pp. 1139-1 la.

79 see, e.g., Chisum, op. cit., footllotc 60, p. 959.

cations protocols. Modules of a program, such as a
procedure, also have an interface.

Patent, copyright, and trade secret law have all
been used to protect elements of external designs.
Some external designs, such as communications
protocols, may be patentable.80 Patents can also be
used to protect elements of user interfaces, if novel
and nonobvious, and design patents may be avail-
able for some of the ‘‘ornamental’ aspects of user
interfaces. 81 Trade secret law may provide some
degree of protection, if a program is distributed in
machine language form. To specify all of the
externally observable behavior of an interface, one
must generally know all permitted sequences of
interface actions. Determining all of the possible
sequences of interface actions may be difficult if it
is not possible to study the assembly language or
high-level language versions of the program code.

Copyright protection may be available for aspects
of external designs, especially those that use screen
displays. The screen displays of a video game are
often protected through an ‘ ‘audiovisual’ copy-
right. Other user interfaces have also been found to
be protected by copyright law, There are two
different approaches to protecting user interfaces
using copyright law. One approach is to protect the
user interface through the copyright in the underly-
ing program.

82 The other approach is to regard tie
screen display as a separate work from the program
code, and protect it as an audiovisual work or as a
compilation of literary terms (for interfaces that use
text). The scope of copyright protection for user
interfaces that do not use a screen display, such as
command languages or programming languages, has
not been at issue in a decided case. However, there

Chapter 4--Software Technology and the Law . 139

are some who feel that the legal reasoning used in the
cases where the user interface used screen displays
would protect these types of external design as
well.83

Interfaces other than user interfaces have also
been the subject of copyright litigation. The format
for entering statistical data into a structural-analysis
program has been found to be not protected.84 There
has been an effort to assert copyright protection for
what the court described as ‘‘minor content varia-
tions’ in the bit pattern of a communications
protocol, 85 but the court did not find in the variations
‘‘choice and selection’ beyond the content of an
earlier protocol to evidence sufficient originality.
Dictum in a 1985 case, E.F. Johnson v. Uniden,86

indicates that the court viewed the development of
a communications product (a radio) ‘‘compatible’
with an existing product as permissible behavior.
The court emphasized, however, that permissible
development of a compatible product requires that
the implementation be done independently87—
achieving compatibility in the external design is not
an excuse for copying the program code.88 No cases
have addressed such issues as the interfaces in class
libraries for object-oriented languages.

Perceptions of the scope of copyright protection
for interfaces have changed over the past decade. In
the early 1980s some had assumed that the external
design was unprotected89 and that the only issue was
whether the implementation had been done inde-
pendently—there are usually different ways of
writing a program with the same interface. The view
that copyright protection for interfaces was limited
was reflected in the use of ‘clean rooms, ’ in which
a specification of the program is given to program-

~o Stcmc and Kessler, op. cit., footnOtc 77, p. ~~.

81 Danicl J. Kluth and Steven M. Lundberg, ‘‘Dcslgn Patents: A Ncw Form of Intellectual Property Protection for Computer Software, ’ JPTOS,
December 1988, p. 847.

8Z Te/cm@e~l,lq “ ,yj,nla,lfcc., 12 U, S,p,Q,2d 1991 (N.D. Cal. 1989); Lotus V. papa-back, 740 FSUPP. 37 (D. ‘ass” 1990)”.
s~ Ronald l,. Johnston and Allen R. Grogan, ‘ ‘Copyright Protection for Command Driven Interfaces, ’ The Computer L.uwyer, vol. 8, No. 6, June 1991,

p. 1.
w Ell~lneerlng DYllanllC,~ v. 5’rructuru/ SofiW1are, No. CV 89-1655, U.S. District Court, E.D. Lmisiana, Aug. 29, 1991; SYnercom Techflology v.

L/ni\ers~ty Computi~g, 462 F. SUpp. 1003 (N.D. TCX. 1978).
85 sec.~dre ,~en,irc~ Tech~o[ogv v, Tlmc ad SpaC-e processr~<y, 722 F. SUpp. 1354, 1362 (E.D. ~ci. 1989).t.
86623 F.,SUpp. 1485 (D. Minn. 1985).

R7 Ibid,, p. 1501, footnote 17.

M Scc also Apple v. Franklin, 714 F,2d 1240, 1253 (3d Cir. 1983).
89 In ~1 1986 ~~lclc Duncan Davidson ~ote: ‘ ‘It is striking fllat despltc all fic concerns raised over software copyrights, a pa(en[-like mOnOpO]y does

not exist m any area of softwmc, Application environments like Lotus 123 have been both cloned and emulated by other spreadsheets. ” Duncan M.
Davidson, ‘‘Common Law, Uncommon Software, Uni~’ersiq of Pittsburgh Lan’ l?e~’ieu, vol. 47, No. 4, summer 1986, p. 1077. (In the 1990 case Lutus
v, P~perback (740 F. Supp. 37) such a clone was found to be a copyright mfringemcnt.)

‘j2(J -,/2(, [) - 9? - 1[1

140 . Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

mers who have not seen the original program (the
aim of the procedure being to make available
‘‘clean’ uncopyrighted ideas without the ‘‘taint’ of
the program’s copyrighted expression). The theory
was that since the clean-room programmers had not
seen the original program there could be no infringe-
ment. The most commonly cited example of a
clean-room developed product is an operating sys-
tem program used in a type of microcomputer.90 The
legal status of clean-room practices is still uncertain;
however, in the 1991 case Computer Associates v.
Altai, a program implemented using a clean-room-
type process was found to be noninfringing.

Policy Issues-External Design

The economic effects of protecting interfaces are
difficult to evaluate, requiring a determination of the
appropriate level of incentives and the role of
standards and network externalities. An evaluation
of the economic effects of intellectual property
protection may also be complicated by the fact that
there are different types of interfaces. The value of
a standard, and the balance between the cost of
designing the interface and cost of its implementa-
tion, may both depend on the type of interface.

lncentives-One policy position is that intellec-
tual property protection is required in order to
provide the proper incentives for the development of
software. It is argued that protection of the program
code alone is not sufficient to provide this incentive.
Because there are different ways of writing a
program with the same interface, it may be possible
to reimplement the same interface without a finding
of infringement, If the cost of reimplementation
were small when compared to the orginal devel-
oper’s investment in designing the interface, it
would be relatively easy to appropriate this invest-

ment. Without more direct intellectual property
protection for the external design, it is argued, there
would be less incentive to develop new interfaces.

An important factor in evaluating whether exter-
nal designs should be protected is therefore the
relative cost of design and implementation. Support-
ers of intellectual property protection for external
designs argue that the cost of implementation is
becoming less significant. In Lotus the court said:

I credit the testimony of expert witnesses that the
bulk of the creative work is in the conceptualization
of a computer program and its user interface, rather
than in its encoding.91

Similar considerations are said to apply to other
types of interfaces: during an intellectual property
panel at the 1990 Personal Computing Forum, one
participant said ‘ ‘the hard work in doing object-
oriented technology is in the interface design, The
implementation of an object is trite. ’ ‘92 The relative
cost of design and implementation is also an
important factor in the recompilation debate dis-
cussed later in this chapter—it has been argued that
recompilation can make it significantly less expen-
sive for a competitor to reimplement an existing
program.

The alternative view is that there is sufficient
incentive to engage in the design of interfaces, even
without intellectual property protection. Those who
argue for this position claim that reimplementation
may be time consuming and expensive, providing
the original developer with significant lead time.93

Other factors may also provide a significant advan-
tage to the original designer of the interface.94

Long-range planning of enhancements may favor
the interface originator, for example.95

w Ibid.
~1 ~tus v. paperback, 74.0 F. Supp. 37,56 (D. Mass. 1990). Others also hold the view that the effort involved in dcsigrnng a user Intcrfacc dcscmcs

protection. See, e.g., Ben Shneiderman, “Protecting Rights in User Interface Designs, ’ SIGCHI Bulletin, October 1990, vol. 22, No. 2, p.18.
92 AdelC Gold~rg Pacp]ace syslems, at Pcrsonal Computing Forum 1990, mtiPt in Release ~u~ ’01 90$ P 107”

‘J3 ~ ~SoftwCwe is s. ~omplex and idlospcratic tit, u~css tie person is dcli~r~tely copy~g tic intem~s of tie code, a reproduction of a soptusticated
application so flawless that it has equivalent quality and utility to the original is usually significantly difficult and expensive to produce that any firm
with the economic and intellectual resources to do a good job at this prefers to crcatc original products which represent a greater opportunity. ’ Mitchell
D. Kapor, Clmirman and Chief Executive Officer, On Technology, Inc., testimony at hearings before the House Subcommittee on Courts, Intellectual
Property and the Administration of Justice, Nov. 8, 1989, Serial No. 119, p. 243.

‘x ‘ ‘And I must tell you that the de velopment of the softwwc program, maintaining it, keeping it documented, porting it to other computers, evolving
it, enhancing it, supporting it, answering service calls, and so on and so forth, this is the bigger picture, and it is really simplistic (o say that if one can
actually jusl lake the looks of a program, they will be able to run with it and in fact surpass whoever originiitcd the first program. ” Richard Bezji~
President, Mosaic Software, at panel c~n ‘ ‘Intellectual Property in Computing: (How) Should Software Be Protected” (Cambridge MA: Transcript, Oct.
30, 1990), p. 24.

95 Brett L. Rceci, ‘‘Obscrvatioms on the Economics of Copyright ami User Interfaces, “ International Conlpl/ter LuwAd}iser, vol. 5, No. 10, July 1991,
p. 4.

Chapter G-So@’ are Technology and the Law . 141

Network Externalities-There is a question as to
whether the effect of intellectual property laws on
standardization should affect an evaluation of the
appropriate level of protection for interfaces,96

Standards benefit users in a number of ways. For
example, a greater variety of application programs
will be developed if there is a standard operating
system-developers will be able to sell to a larger
market and more easily recover their development
costs. Another example of an advantage of standards
is that consistency among user interfaces makes it
easier for users to learn to use a new program. The
benefits to users that result from the wider use of an
interface are known as ‘ ‘network externalities’ (see
also ch. 6). Moreover, users may benefit from
competition among suppliers of standard product.
For example, suppliers of compilers for standard
languages compete on the basis of the cost of the
compiler and the efficiency of the machine language
code generated.

De facto standards evolve through the actions of
the market. If there is a dominant firm, the interface
that it has developed is more likely to become the
standard. Alternatively, a de facto standard can
develop because of a ‘ ‘bandwagon’ effect. If
consumers are faced with a choice between different
interfaces, network externalities make the more
widely used product more attractive. Consumers
value the network externalities, not just the intrinsic
value of the interface.

Standards may also be negotiated using standards
committees. Firms engage in voluntary standards-
setting when they determine that they are better off
with a part of a larger market than if they were to
continue trying to establish their interface as a de
facto standard. Consumers may be less willing to

buy a proprietary product. For example, it is not clear
whether a computer language available from a single
vendor would be widely used97—a developer might
be unwilling to rely on a single supplier.

One view is that intellectual property protection
may harm users by affecting standardization proc-
esses. It is argued that firms may not have the correct
incentives to engage in voluntary standards setting
because intellectual property protection can increase
a fro’s vested interest in seeing the interface it has
developed chosen as a standard, slowing the stand-
ardization process.98 This could harm users, until a
standard is negotiated or one interface prevails in the
marketplace, Users could also be harmed if new
programs are not “backwards compatible” and
require users to learn a new interface to take
advantage of new features or better performance, In
addition, it has been argued that network externality
effects can complicate the balancing of incentives
for software development, by resulting in “extra”
revenues for firms that succeed in establishing their
products as a de facto standard and making it more
difficult for other firms to enter the market.99

The other view is that the question of standards
should be kept separate from the basic issue of the
proper incentives for software development. Fur-
thermore, it is argued that voluntary standards
efforts are sufficient,lOO and that there is a trend in
the computer industry toward using more formal
standardization and licensing processes. Consortia
have formed in a number of areas, such as user
interface design and operating systems. There are a
variety of voluntary standards committees that are
developing standards for data communications pro-
tocols,lO1 operating system interfaces,lO2 and princi-
ples for user interface design.103

‘~ For discussions of standardization considerations, see Peter S. Mencll, ‘‘An Analysis of the Scope of Copyright protection for Application
Programs, ’ S’/anfordLu~r Re\ie~, vol. 41, No. 5, May 1989, pp. 1100-1 101; Richard H. Stem, ‘‘Legal protection of Screen Display s,’ Columbia -1’LA
Journal of kin & the Arts, vol. 14, pp. 291-292; Anthony L. Clapcs, Sofrutare, Copjright, & Competition (Westport, CT: QUOIUIII BOOkS, 1989),
p. 206.

97 Alfred Z. Spec[or, “Software, Intcrfxc, and Impkmentation, “ Jurime/rics, vol. 30, No. 1, fall 1989, p. 89.

‘)8 Joseph Farrell, “Standardization and Intellectual Property, ” Jurimetrics, vol. 30, No. 1, fall 1989, p. 44.
~ ~c ~ou~ ,n ~jfl,$ dld not Vlcw ~ls ~ ~fcc[ing tic dc[emina[ion of whc~er [he copyright had been infringed,

100, ‘The ~xcluslom, IOf ,nte-faces ~uld llmlta~ions of ‘dccompllatlon’ from copylght law] me unnecessq, to permit development of ‘intcropemblc’

programs: thousands of such programs have been cr~ltcd under the existing copyright rules, thanks to the work of international standards organization
,and the voluntary sharing of necessary information. ” Wdliam T. Lake, John H, Harwood, and Thomas P. Olson, “Tampering With Fundamentals: A
Crltiquc of Propowd Changes in EC Software Protection, ’ The Computer f.a~yer, vol. 6, No. 12, December 1989, p. 3.

101 Steven Turner, “The Network Manager’s Compendium of Standards, ” Net~ork Wbrld, vol. 8, No. 15, Apr. 15, 1991, p. 1.

’02 D. Richad Kuhn, ‘ ‘IEEE’s Posix: Making Progress, ’ IEEE Specfrurn, vol. 28, No, 12, December 1991, pp. 36-39.
1~~ sect e.g., Pat BillingsIcy, ‘ ‘The Standards Factor: Standards on the Horizon, ” SIGCHI Bulletin, vol. 22, No. 2, p. 10.

142 . Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

User Interface

Which Elements of a User Interface Design
Have Been Protected?

The type of interface that has received the most
attention in the software intellectual property debate
is the user interface. Two factors have been taken
into account by the courts when determining the
scope of protection for user interfaces. First, stand-
ard ‘‘building blocks’ of user interface design such
as the idea of using a menu have not been protected.
Second, the courts have recognized constraints on
the design; for example, commands that are neces-
sary to the overall purpose of a program have not
been protected. Hardware and software constraints
on the way information is presented on the screen
have also been recognized,

Having determined which elements of an inter-
face are either standard building blocks or imposed
by technical constraints, the courts look for design
choices. When there are design choices remaining
after the constraints have been taken into account,
the courts generally protect the elaboration of these
design choices into a user interface. The choice and
organization of commands in a menu hierarchy, and
the arrangement of command terms on a screen, for
example, have been found to be protected.

Unprotected Elements–-In general, common in-
teraction techniques have not been protected. The
idea of using a menu has not been protected.
Particular menu styles have also not been protected
by copyright, on the grounds that they were common
in the industry. The use of a pull-down menu was not
protected expression in Telemarketing. 104 The use of

a two-line moving cursor menu was described as
“functional and obvious” (and not protected) in
Lotus.105 Also found unprotected have been standard
ways of entering commands,lO6 selecting menu
entries,107 and navigating on the screen.108

Commands and menu options required for the
overall purpose of the program would probably not
be protected. For example, in Telemarketing menu
options that allowed the user to access existing files,
edit work, and print the work were not protected.l09

Also not protected were functions that were likely to
be found in any outlining program, or cost-
estimation program.

110 The rimes chosen for indi-
vidual menu entries have, in general, not been
protected. For example, the use of “print” as the
command name for printing would probably not be
protected.111

The courts have also addressed the issue of the
organization of information on the screen, and have
generally recognized constraints. Centering the head-
ings on a screen, locating program commands at the
bottom of the screen, and the use of a columnar
format have all been found to be either unprotected
‘‘conventions’ chosen from a narrow range of
choices or not original.112

Protected Elements-What has generally been
protected is the overall set of command terms and
their organization into menus. The designer’s judg-
ment of the way in which users would want to use a
spreadsheet, as reflected in the ‘ ‘menu structure, ”
including the overall structure, the order of com-
mands in each menu line, and the choice of letters,
words, or ‘‘symbolic tokens’ to represent each

IW $ ‘Pl~ntlffs may not cIairn copyright protection of an idea and expression that is, if not standard, then commonplace in the computer softw=e
industry. ” Telemarketing v. Symantec, 12 U. S. P.Q.2d 1991, 1995 (N.D. Cal. 1989).

10574.0 F. SUpp. 37, 65 (D. h’laSS. 1990).
106 ~ + . . . the typing of two symbols to activate a specific command is an ‘idea. ’ “ Digital v. Softklone, 659 F. Supp. 449,459 (N.D. Ga. 1987).
107 &fTI V. cA~,$, 706 F. Supp. 934, 9950. co~. 1989).
1Os ‘‘ ~]he idea at issue, the process or manner of navigadng internally on any specific screen displays likewise is limited in the number of ways it may

be simply achieved to facilitate user comfort. To give the plaintiff copyright protection for this aspect of its screen displays, would come dangerously
close to allowing It to monopolize as ignificant portion of the easy-to-use internal navigation conventions for computers. MT] v. CAMS, 706 F. Supp.
984, 995 (D. corm. 1989).

10912 U. S, P.Q,2d 1991, 1995 (N.D. CaI. 1989).

110 L $Nor 15 he fi5ting of item for w~ch &U is Supplled subject to copyright, because, in tie language of tie machining indush-y, sp~ds ~d feeds,
machining times and costs, and data specific to the size, depth, and diameter of the hole is atl closely related to and hence incidcn(to the idea of displaying
this data. . .“ MTI V. CAMS, 706 F. Supp. 984, 998 (D. Corm 1989).

111 ‘ ‘Obvious’ command terms which merge with the idea of the command term were discussed by the court in L.urus. Lutus v. Paperback, 740 F. Supp.
37,67 (D. ~SS. 1990).

1 IZ ~1 v, CAMS, 7@5 F. SUpp. 984, 994-5 and 998 @. COIUI. 1989).

Chapter 4--Software Technology and the Law . 143

command was found to be protected in Lotus v.
Paperback. 113 In MTI v. CAMS, the designer’s view
of how a user would go through the process of
cost-estimating, as reflected in the sequence of menu
screens, was found to be protected.l 14 The existence
of design choices has frequently been shown by the
existence of a third program that uses a different
menu structure and has different commands.115 This
has been
chanical
signer.

In one
protected,

interpreted to show the absence of ‘ ‘me-
or utilitarian constraints’ 116 on the de-

case, the commands themselves were not
but the arrangement of the command

terms on the screen was protected expression.117 As
a result, the defendant was forced to redesign the
product to present the command options to the user
in a different way. Instead of presenting the com-
mand options on a single screen, they were distrib-
uted over a sequence of screens.

Standards—Industry conventions such as the use
of certain menu styles, or the use of the ‘return’ key
to select a highlighted menu element have not been
protected by copyright law. On the other hand, the
choices made by the designer of a successful product
in developing the menu structure have not been
recognized as a constraint on later developers. In
Lotus the defendants sought to show that while there
may have once been a number of design choices, the
success of the plaintiff’s spreadsheet product in the
market sharply limited the choices of later develop-
ers, due to network externality effects. This argu-
ment was not accepted; the court wrote:

By arguing that 1-2-3 was so innovative that i t
occupied the f ie ld and set a de facto i n d u s t r y
standard, and that, therefore, defendants were free to
copy plaintiff’s expression, defendants have flipped
copyright on its head. 118

User Interface—Issues

At one level the software intellectual property
debate has been concerned with the question of
whether user interfaces should be protected at all.
The secondary issues have focused on the question
of which elements should be protected. Intellectual
property law establishes rules for competition in
user interface design by drawing lines between
protected and unprotected elements. The debate
about ‘‘look and feel’ ’119 reflects a concern that a
particular style of interface would be protected by
copyright law. There is a concern that the protection
of an interaction style would leave too little room for
innovation by others within the general style, or for
its use in a different program.

However, in cases decided so far, the courts have
held the mere use of a menu-based interaction style
to be unprotected. The use of the “spreadsheet
metaphor’ has also been held to be unprotected. In
effect, the courts have viewed the use of these
common types of interaction in the same way that
they view the use of words and stock characters
alone in the application of copyright law to litera-
ture: as building blocks that should not be protected.
To give one creator a monopoly over these basic
elements would effectively stunt the efforts of other
creators to elaborate on these elements in the
production of their own works.120

One difficulty is that technological change is
continually adding new building blocks. The cases
that have been decided all involved simple text-
based menus that do not represent the state of the art
in user interface design. Some of the cases now in the
courts involve graphical user interfaces, and it is less
clear what constitutes an unprotected ‘‘building
block” of graphical user interface design, and what
constitutes an elaboration of building blocks into a

113740 F. Supp. 37,67 (D. Mass, 1990). ne court said that ‘‘ [a]n example of distinctive details of expression is the preCISe ‘structure, SXluence, and
orgamzation’. .of the menu command system. ’

1 IJ 706 F. .SUpp. 984, 994 (D, Corm. 1989).

115 “In the present case, the Court has already noted that the existence of ‘Stickybear Printer’ [a third program] disproves defendant’s argument that
there are a very limited number of ways to express the idea underlying ‘Print Shop. ’ Thus, there is no danger in the present case that affording copyright
protection to the ‘instructions’ of ‘Print Shop’ will amount 10 awarding plaintiff a monopoly over the idea of a menu-driven program that pMts greeting
cards, banners, signs and posters. ” Broderburd Software v, Unison I+br/d, 648 F. Supp. 1127, 1134 (N.D. Cd. 1986).

llGBro~erbun~ ~o~rware v. Unison Wor/d, 648 F. SUpp. 1127, 1133 @.D. M. 1986).
117Di,gltU/ cornrnunirafio~s ~SsOCiateS v. SoftHone Distributing, 659 F. SUpp. 449 (N.D. Ga. 1987).
118740 F. Sllpp. 37, 79 (D. ~ss. 1990).

f ‘g Despite its ‘widespread use in public discourse, a court has said that the “ ‘look and feel’ concept, standing alone [was not] significantly helpful”
in distinguishing between uncopyrightable and copyrightable elcmcnts of a computer program. Lutus v. Paperback, 740 F, Supp. 37,62 (D. Mass. 1990).

Izo For a discussion of ‘‘idcast ‘‘ see Paul Goldstein, Copjright Principles, Luw and Practice (Boston, MA: Little, Brown+ 1989), vol. I, pp. 76-79.

144 . Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

protected design. There is a concern that a‘ ‘building
block” could be appropriated through copyright by
the developer of the first program to use it.

One question is related to the role of user interface
design principles in determining the scope of design
choices. One of these principles is that interface
designers should be aware of the benefits of ‘exter-
nal consistency. 121 External consistency allows the
‘‘transfer of learning’ from one program to another
and from one generation of a program to the next. Is
it necessary for two spreadsheet programs to be
identical in virtually every respect, or can there be
significant transfer of learning if two spreadsheet
programs share only some core similarity? Would
this core similarity be viewed as an unprotected
‘‘idea’ in the context of copyright law? At the same
time, there is a concern that intellectual property law
will force “gratuitous” differences between inter-
faces. 122

Program Code

How Is the Program Code Protected?

The copying of a computer program can be
prevented in several ways. If a computer program is
the implementation of a patented process, then
copying the program and practicing the invention
would infringe the patent. Copying could also be
limited by a licensing agreement between the
developer of the software and a licensee. However,
the main vehicle for preventing the copying of the
program has been copyright law. Computer pro-
grams have been copyrightable subject matter since
1978, when the Copyright Act of 1976 became fully
effective. 123

The Copyright Act states that copyright protec-
tion does not extend to the “procedure’ or “sys-
tem’ or ‘‘method of operation’ described by a
copyrighted work. This is to prevent copyright from
being used to protect ‘‘utilitarian’ or ‘‘fictional’
articles. For example, an electronic circuit is not
copyrightable subject matter, but the circuit diagram
that describes the circuit is a copyrightable “picto-
rial’ work. The copyright only prevents someone

from copying the pictorial work, not from building
the circuit. In the case of computer programs, it is
especially difficult to separate the description of the
function from the function itself.

“Idea” is a metaphor used in copyright law for
the elements of a work that copyright law does not
protect. Procedures, systems and methods of opera-
tion are ideas. ‘‘Expression ‘‘ is a metaphor for the
protected elements of a work. Infringement occurs
under copyright law when a work is copied and,
taken together, the elements copied amount to an
improper appropriation of expression. Copying can
be shown by direct evidence or by inference, if the
defendant had access to the plaintiff’s work and the
works have substantial similarity as to the protected
expression. Improper appropriation is shown by the
taking of a substantial amount of protected ‘ ‘expres-
s i o n .

Literal Code—The literal code of a program has
consistently been shown to be protected expression,
and verbatim copying a copyright infringement. As
a result, copying a program from one disk to another
clearly infringes the copyright in the program,
except to the extent permitted by the Copyright Act
(e.g., section 117). This is true regardless of the
language used to write the program: the argument
that a program in executable (machine language)
form was not copyrightable subject matter because
it could be considered a ‘ ‘machine part’ has been
rejected by the courts.

“Nonliteral” Copying—In a series of cases,
courts have held that the internal design of a program
at a level of abstraction above that of the program
code could not be copied, In one case a judge wrote:

It would probably be a violation to take a detailed
description of a particular problem solution, such as
a flowchart or step-by-step set of prose instructions,
written in human language, and program such a
description in computer language.l24

In other words, a finding of infringement could not
be avoided by making small changes to a program or

121 See pp. 129-130.
122 pmlclpat ~ discussion at tie Massachusetts IU.Stitute of TdUIOIOgY on “Intellectual Property in Computing: (How) Should Software Be

Protected” (Cambridge, MA: Transcript, Oct. 30, 1990), p. 21.
123 House Repofl g~ 1476 says ‘‘liteW wor~’ prot~t~ ~der s~tion l~(a)(l) of tie Copfight At include computer programs. The protection

of computer programs under the Copyright Act was confh-med by the Software Amendments of 1980.
124 Synercom v, UCC, 462 F. Supp. 1003, 1013 n.5 (N.D, Wx. 1978).

——

Chapter 4--Software Technology and the Law ● 145

by translating the program from one language to
another language.125

The higher levels of abstraction of the program
code are often described as the ‘‘structure, sequence,
and organization’ 126 (SS0) of the program, al-
though this terminology has been criticized, 127

Protection of the structure, sequence, and organiza-
tion has been described as consistent with the
application of copyright to more traditional types of
‘ ‘literary’ works such as novels.128 The main reason
to limit copying at this higher level of abstraction is
that it would otherwise be possible to avoid copy-
right infringement by making a few trivial changes
to the program text. The courts have determined that
this would allow the appropriation of a significant
part of the value of a program.l29

There were two seminal cases in the area of
protection for the structure, sequence, and organiza-
tion of computer programs: Whelan v. Jaslow and
SAS v. S&H. In these cases the particular organiza-
tion of the program into subroutines or modules was
found to be protected expression. In SAS v. S&H the
court stated that copying the organizational scheme
of a program would be a taking of expression, even
if the program code for the ‘‘lowest level tasks’
were written independently, 130 In Whelan v. Jaslow

the two programs were found to be substantially
similar because of similarities in the detailed struc-
ture of the five subroutines that the court found to be
qualitatively important to the program and ‘ ‘virtu-
ally identical file structures. 171

Constraints on Program Structure-The courts
have applied the “merger” doctrine of copyright
law by looking for evidence that the structure of the

program was dictated by engineering constraints. In
cases such as Q-Co. v. Hoffman and NEC v. Intel the
courts have found that the similarities between
programs were due to constraints imposed by the
overall purpose of the program or by the hardware.
If there were different ways of writing the program
to perform a particular function, however, the courts
have found protected expression. In SAS v. S&H, for
example, the court wrote that:

[The defendants] presented no evidence that the
functional abilities, ideas, methods, and processes
of SAS could be expressed in only very limited
ways. *32

The number of different ways of writing a program
to perform a particular function was discussed at
hearings conducted by the National Commission on
New Technological Uses of Copyrighted Works
(CONTU). 133

Copies—Because computer programs are pro-
tected by copyright, the making of any copy is an
infringement. Even the transfer of a program from
disk to memory is thought to be the creation of a
copy that would be infringing but for the special
exemption contained in section 117 of the Copyright
Act, which allows a computer program to be copied
‘‘as an essential step in the utilization of the
computer program in conjunction with a machine.

The exclusive rights granted to the copyright
holder are also thought by some to limit disassembly
or recompilation of programs-these procedures
involve the making of reproductions or ‘‘derivative
works’ of the machine language program. Limita-
tions on disassembly and recompilation provide
trade secret protection for aspects of a program

125 seC \$rhe/dtl “, JdS/Ow 79? F,zd 1222 (Sd Cir. 1986) and SAS V. .$&H, 605 F. SUPP. 816 (M.D. ‘enn 1985)

1~~ ~rhc~all V. JUSbMI, 797 F.2d 1222, 1224 (3d Cir. 1986).

1~7 COmpU(Cr Associates v, Akl, No. CV 89-0811, U.S. District Court, E.D. New York Aug. 9, 1991.

‘~$ < ‘As I have indicated, CONTU had no views, and made no recommendations which would negate the availability of copyright protection for the
detiillcd dcslgn, structure, and flow of a program under the copyright principles that make copyright protection available, in appropriate circumstances,
for the structure and flow of a novel, a play or a motion picture. ’ Declaration of Melville B, Nirnmer (Vice Chairman of CONTU), appendix to Anthony
L. C1apm, Patrick Lynch, and Mark R. Steinberg, ‘‘Silicon Epics and Buuuy Bards: Determining the Proper Scope of Copyright Protection for Computer
programs,” UCLA LuIt Re\leu, vol. 34, June-August 1987, p. 1493.

I ~g , , ., .arnong the more significant costs in computer programming arc those attributable to developing the structure and logic of the program. The
rule proposed here, which allows copyright protection beyond the literal code, would provide the proper incentive for pro gmmrners by protecting their
most Viiluablc efforts, while not giving them a stranglehold over the dcvclopmcnt of new computer devices that accomplish the s,ame end. Whelan v.
Jusl,}w, 797 F.2d 1222, 1237 (3d Cir. 1986).

l~o 605 F. SUpp 816, 826 (M.D. Tcnn. 1985).

131 ~’he/un V, JU/OW, 797 F.2d 1222, 1228 (3d Cir. 1986).

132605 F, Supp 816, 825 (M.D. Tcm. 1985).

133 sce ~mscfipt of cow Meeting No, 10, Pp, 44-45, quoted in d~lmation of Melville B, Nimmer, appendix to Clapes et. d,, op. cit., footnote 128,
p. 1588,

146 ● Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

because the machine language version of programs
is difficult to understand, The recompilation issue is
discussed in more detail in a later section of this
chapter.

Policy Issues-Protection of Literal and
Nonliteral Elements of Program Code

Literal Copying—The justification for restric-
tions on the copying of computer programs is
economic: some form of legal protection is neces-
sary to provide program developers with the incen-
tives to develop software. Computer programs are
easy to copy—they have the same intangible charac-
ter as traditionally copyrightable works. The CONTU
Final Report states:

The Commission is, therefore, satisfied that some
form of protection is necessary to encourage the
creation and broad distribution of computer pro-
grams in a competitive market,134

The Commission viewed computer program copy-
rightability as consistent with the expansion of
copyright to new technologies over the previous two
centuries, l35

Protected and Unprotected Elements of Pro-
gram Code—One of the reasons for protecting
nonliteral elements of a program is to prevent later
developers from avoiding a finding of infringement
by making small changes. The main issue is the
degree of similarity two programs may have and the
degree of independent development that a later
developer will be forced to do. In other words, to
what extent can the intellectual work in one program
be used in a second program? In the two important
structure, sequence, and organization cases, Whelan
v. Jaslow and SAS v. S&H, the infringing program’s
code was similar at a low level of detail. The line
drawn between protected and unprotected elements
reflects a determination of the level of competition
desirable. l36rticulating this line has proven to be
difficult.

In practice, there will rarely be access to the
high-level language version of a competitor’s pro-

gram. The only access that one would normally have
to a competitor’s program would be to its machine
language form. Disassembly would be possible, but
there would still be considerable work involved in
understanding the program and reimplementing it. It
is not surprising that in the structure, sequence, and
organization cases there has either been access to the
source code or the programs were short enough to be
disassembled and studied relatively easily.137 The
legal status of attempts to disassemble a program is
a major issue associated with the protection of
computer programs using copyright law, and is the
subject of the next section.

Recompilation
‘‘Recompilation’ is a procedure for translating a

machine language program into a more understand-
able form. It is thought by some to be a copyright
infringement, and by others to be a necessary tool for
software engineering. The recompilation issue in-
tersects many of the policy issues outlined earlier in
this chapter. For example, recompilation may be
used in the development of functionally compatible
products; whether or not the development of such
products should be permitted is itself a policy issue
(see ‘‘External Design—Policy Issues” in this
chapter).

Introduction

To understand a program, there are three things
you can do: read about it (e.g., documentation), read
it (e. g., source code), or run it (e.g., watch execution,
get trace data, ex amine dynamic storage, etc.).138

Understanding a program is made easier when the
high-level language or assembly language represen-
tations are available. In most cases, however, only
the machine language version is distributed. Decom-
pilation is a procedure by which a high-level
language representation of a program is derived
from a machine language program, and ‘ ‘disassem-
bly” is a procedure for translating the machine
language program into an assembly language pro-
gram.

134 NatiO~ cO~SSiOn on New ‘rw~O]OgiC~ u5eS of Copyrigb(ed work (cow, Finu/ Repo~ (Washington DC: Library of Congress, Jtdy 31,
1978), p. 11.

135 Ibid.
136 * CLaST Frontier Conference FUport on Copyright Protection of computer Software, “ Jurimetrics, vol. 30, No. 1, fall 1989, p. 20.
1sTE~, JohnSon v. (Jnlden, 623 F. Supp, 1485 (D. b, 1985) (a radio commuications product), NEC V. Intel 10 U. S. P.Q.2d 1177 (N.D. Cal. 1989)

(microcode).
136 R1c~d B. Buder ~d ~omas A Corbi, “Program Understanding: Challenge for the 1990’ s,” Scaling Up: A Research Agenda for Sofrware

Engineering (Washington, DC: National Academy Press, 1989), p. 41.

Chapter 4--Software Technology and the Law ● 147

The legal status of efforts to discover assembly
language or high-level language representations of a
program has become the subject of an intense
debate. 139 Both recompilation and disassembly
involve the making of at least a partial reproduction
or derivative of the machine language program, and
some people believe that reverse engineering using
these techniques is a copyright infringement. l40 The
policy question is the extent to which limiting access
to information about someone else’s program
through the workings of the copyright law is socially
desirable.

Important factors cited in the policy debate are the
uses of recompilation, the ease with which it can be
done, and the degree to which the information is
available from sources other than recompilation. It
has been argued that limits placed on recompilation
are required to provide sufficient incentives for the
development of original programs. Those who take
this position claim that recompilation is a straight-
forward and routine process that allows clone
programs to be implemented at much lower cost,141

Programs are decompiled and then:

. . . without the necessity for the significant R&D
expenditures made by the innovator, the pirate goes
on to alter the program to disguise the copying, and
create a second, similar program which it markets as
an allegedly different product for a much lower
price. ’42

Others argue that recompilation is technically
difficult, and is therefore unlikely to be used for
piracy. They emphasize that disassembly and re-
compilation can be used for a variety of other
purposes, many of which would have a less direct
economic impact on the developer of the program
being reverse engineered. For example, some of the
information gained by recompilation may be used in

developing an “attaching’ product that is to ex-
change data with the program being reverse engi-
neered. Recompilation also could be used for
maintenance, debugging, detecting viruses, investi-
gating safety or reliability concerns, or systems
integration. Indeed, some of these uses of decompi-
lation represent situations in which an organization
might reverse engineer its own programs, not just
those developed by someone else.143

Recompilation and Disassembly

The product of recompilation or disassembly
would never be identical to the original source
program. l44 At the very least, comments and the
names of labels, variables, and procedures would be
lost in the assembly or compilation process and
could not be recovered. In addition, the structure of
the decompiled program would not necessarily be
the same as that of the original program, although
this would depend on the compiler that had been
used. Because of the loss of mnemonics and much of
the structure of the program, considerable work is
required to understand the decompiled or disassem-
bled program.

Disassembly is easier than recompilation. There
is essentially a one-to-one conversion between the
machine language statements and assembly lan-
guage statements, simplifying the process of trans-
lating the machine language program into a more
readable form. However, it takes a great deal of
effort to understand the disassembled code from a
large program.

145 Because disassemblers are widely
available, l46 some developers assume that their
programs will be disassembled, and try to write
sensitive parts of their code in ways which make
disassembly more difficult or make the disassem-

l~gPamcla Samuelson, “Reverse-Engineering Someone Else’s Software: Is It Legal?” /EEE Software, vol. 7, No. 1, January 1990, pp. 9(!-96.

1~0 Victor Sihr, Coworate CO~d, IBM COW., “Interpreting Reverse Engineering Law, ’ letter to ZEEE Software, vol. 7, No. 4, July 1990, p. 8.

’41 “Decompilationof a computer program does not provide an imitator with just a good startin producing acornpeting product; it gives him virtually
everything necessary to produce a functionally identical product, ’ William T. Lake, John H. Harwood, and Thomas P. OISOU “Tampering With
Fundamentals: A Critique of Proposed Changes in EC Software Protection,’ The Computer Lawyer, vol. 6, No. 12, December 1989, pp. 1-10.

1J2 Testimony of JmeS M. B~ger, Chief Counsel, Apple Computer, Inc., on behalf Of the COmPUter and Business %Uipment ‘tiacturers

Association, at hearings before the House Subcommittee on lntcllectwd Property and Judicial Administration, May 30, 1991.
IAJ This situation presen~ no infringement issues.

Iti ~c lack of idcntlty is not relevant to tie legal question of Ilnautiofizcd COpylIlg.

145 An go,~byte machine lmwage pro~m for ~ ~M pC_class computer would result in 32,000 lines of assembly code. Clark Calkins, ‘ ‘Tailoring
the MD86 Disassembler for Thrbo Pascal,’ Tech Specialism, vol. 2, No. 6, June 1991, pp. 41-46.

1~6 For adlscusslon of ~ommerclally available disasscmblcrs, see Brc([Glass, ‘ ‘Disassembler Roundup, ‘‘ Programmer’ sJournaI, vol. 9.2, March/April
1991, pp. 66-71.

148 ● Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

bled code more difficult to understand.147 Figure 4-2
shows a high-level language program, the corre-
sponding machine language (compiled) program,
and the results of disassembling the machine lan-
guage program.

Recompilation is much more difficult; at this time
there appear to be no commercially available decom-
pilers. For this reason, it is unclear whether decompi-
lation is widely used by ‘ ‘pirates” to decompile
entire programs and then rearrange the code in an
attempt to hide the copying,

148 It is possible that the
term “recompilation ‘‘ is being used in the policy
debate to include disassembly,149 as “decompila-
tion’ is often characterized as any technique that is
used to transform ‘‘machine readable’ code into
‘‘human readable’ code.150’

Today, any effort to decompile a program would
start with disassembly. Then, if one knew something
about the compiler that had been used, it might be
possible to match certain patterns of assembly
language statements to higher level constructs.
However, recompilation would be much more
difficult in cases where a sophisticated compiler had
been used: optimizing compilers delete and rear-
range some of the instructions in order to make the
machine language program more efficient, and the
correspondence between sequences of machine lan-
guage instructions and high-level instructions be-
comes less direct. While a pseudo-source code
program could still be derived, it would be less likely
that the decompiled program would immediately
reveal the original program structure.

Uses of Recompilation

The information gained by reverse engineering
techniques such as recompilation can be put to a
variety of uses, each with a different economic
effect. The effect on the developer of the program
being decompiled is most direct when the informa-
tion is being used to develop a competitive product,
In some cases the reverse engineer maybe interested
in learning about a small part of a program, such as
an algorithm, that gives the program’s owner a
competitive advantage.

151 In other cases, decompila-
tion could be used to develop the specifications for
a program that is fictionally compatible—a clone
program, Sometimes the specifications are used in a
clean-room process that is intended to ensure that the
new program does not share expression with the
original, for it is the protected expression that is
protected by copyright.152

Recompilation may also be used to develop a
program or hardware device that is not competitive,
but “complementary” or “attaching.” This would
not affect the market for the original product
directly, but would create more competition in the
second market. For example, knowing interface
information might allow the development of compe-
tition in the market for peripheral devices such as
printers. Recompilation can also be used to confirm
published interface specifications; for example, in
the course of debugging a program an unexpected
problem may arise with another program in the
system, such as an operating system.

Finally, there are a variety of uses for decompila-
tion for which no product is developed at all. First of

147 Bob Edgar, “Shielded Code: HIVW To Protect Your Proprietary Code From Disassemblers, ” Computer hnguuge, vol. 8, No. 6, June 1991, pp.
65-71.

148 Following the testimony of tie computer and Business Equipment Manufacturers Association at the May 30, 1991 hearings (See footnote 142),
OTA asked for specific examples of piracy using recompilation and descriptions of the state of the art in automated recompilation (Joan Winston+ OTA,
letters to James Burger, Apple Computer, July 5, 1991 and Sept. 23, 1991). To date, OTA has not been provided with this information.

149 {‘A computer proWm is generally written, in the fwst instance, in ‘source code’ —that is, in a relatively high-level language such as FORTRAN
or Pascal. The program is then translated (or ‘compiled’) into ‘object code, ’ which consists of instructions to the computer in the form of O’s and 1‘s.
Programs are frequently distributed [o customers only in object code fo~ the source code is retained as an unpublished, copyrighted work.
Recompilation and disassembly (which we calf ‘decompilarion’fur shorf) are methods of reconstructing the source code of a program through copying
and manipulation of its object code. ’ Lake et al., op. cit., footnote 141, p. 4 [emphasis added].

150 The leg~ issue is tie same, whether a program is “disassembled” or “decompiled.”
151 ~ ~~e Soucecode, which often c,>n~ins tie bade ~wre~of he softwmc cr~tor, rem~unpublished. M~y softw~ecompties go to great lengths

to keep their proprietary source codes confidential. . . The right to decide not to publish in any form source code goes to the heart of most software
companies’ strategies for retaining the confidentiality of their most valuable and carefully guarded trade secrets. William Neukom, Vice President, Law
and Corporate Affairs, Microsoft Corp., on behalf of the Software Publishers Association at htigs before the House Subcommittee on Intellectual
Property and Judicial Adrninistratio& May 30, 1991.

]5~ Fora discussion Ofclea room issues, see David L. Hayes) ‘‘Acquiring and Protecting ‘Rchnology: The Intellectual Property Audi4 The Compufer
Luwyer, vol. 8, No. 4, April 1991, pp. 1-20. The effectiveness of using a clean room to avoid copyright infringement depends on whether the specifications
that are used are ideas and not expression.

— — -———. -

Chapter 4--Software Technology and the Law ● 149

Figure 4-2-High-Level Language, Machine Language, and Disassembled
Versions of a Program

HIGH-LEVEL LANGUAGE PROGRAM

program sum–of–numbers;

{This program adds the numbers from first–number to last–number}

{The text between curly brackets is known as a “comment.” Comments }
{make a program easier to read and understand, but do not affect the }
{execution of the program. }
var first–number, last–number, i, sum: integer;
begin

{initialize variables}
first–number := 1,
last–number := 5;
sum := O;

{add numbers from first–number to last–number}
for i := first–number to last–number do
begin

sum := sum + i;
end;

{print the sum}
writeln(’The sum is sum);

end.

The program shown above, written in the high-level language Pascal, adds the numbers from 1 to 5.
High-level language programs have to be translated (compiled) into machine language in order to be
executed on the computer. Part of the compiled program is shown below.

MACHINE LANGUAGE (COMPILED) PROGRAM

10111000 00000001 00000000 10100011 01100000 00000010 10111000 00000101
00000000 10100011 01100010 00000010 10111000 00000000 00000000 10100011
01100110 00000010 10100001 01100000 00000010 01010000 01000001 01100010
00000010 01011001 10010001 00101011 11001000 01111101 00000011 11101001
00011010 00000000 01000001 10100011 01100100 00000010 01010001 10100001
01100110 00000010 00000011 00000110 01100100 00000010 10100011 01100110
00000010 01011001 00101001 01110100 00000111 11111111 00000110 01100100
00000010 11101001 11101010 11111111 11101000 01111010 11110111 11101000
01111100

Machine language programs are difficult to read and understand. If the original high-level language
program is not available, disassembler programs may be used to translate the machine language
program into a more understandable form called assembly language. However, assembly language
programs are still more difficult to understand than high-level language programs. Part of the assembly
language program is shown below.

2D9F MOV
MOV
MOV
MOV
MOV
MOV
MOV
PUSH
MOV
POP
XCHG
SUB
JGE

DISASSEMBLED PROGRAM

Ax, 0001
[0260], AX
Ax, 0005
[0262], AX
Ax, 0000
[0266], AX
AX, [0260]
Ax
Ax [0262]

Cx, Ax
Cx, Ax
2DC1

2DC1 JMP
INC

2DC5 MOV
P u s h
MOV
ADD
MOV
POP
DEC
JZ
INC
JMP

2DDB CALL

2DDB
CX
[0264], AX
CX
AX, [0266]
AX, [0264]
[0266], AX
CX
CX
2DDB
WORD PTR[0264]
2DC5
2558

SOURCE: OTA.

150 ● Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

all, someone may wish to ‘‘maintain’ a program for
which no source code is available. Recompilation or
disassembly would help in understanding the pro-
gram so that it could be adapted to new require-
ments, or to fix bugs if no other support was
available. Disassembly is also used to find viruses,
to examine the output of a compiler to see what it had
done, and finally to examine a competitor’s program
to see if they had taken any protected expression.

Other Methods of Reverse Engineering

There are other methods of reverse engineering
programs whose legal status is less controversial
because they do not involve the making of unauthor-
ized reproductions of the machine language pro-
gram. 153 In practice, a reverse engineer would
probably employ a combination of methods, de-
pending on the application, the information being
sought, the effort involved, and legal considerations.
Some information can be obtained by simply execut-
ing the program: it can be run with many different
data sets and its behavior observed. There are a
number of different software and hardware tools that
could be used to follow the course of execution of
the program. However, the program code is the best
specification of the behavior of the program-it may
be impossible to develop tests to explore all the cases
that a program may have to handle.

Other information is available from published
specifications, manuals, and standards documents.
In some cases companies will publish interface
specifications because it is in their commercial
interest to do so. Even if the information is not
published, they may be willing to make it available
through contractual arrangements. However, in other
cases, such as when a company is active in the
market for both the primary product and a comple-
mentary product, it may want to limit competition in
the secondary market by not making the interface
information available. Published documents may
not be at the appropriate level of detail. For example,
there may be scope for differences between imple-
mentations of a standard and manuals may be

inaccurate or out of date, or leave some elements
undocumented.

Legal Arguments for Policy Positions
While there have been proposals that a new sui

generis law be enacted to protect software, much of
the discussion of software intellectual property
policy issues has been based on interpretations of
current law. Convincing legal arguments have been
made for many of the policy positions discussed in
the preceding sections. The two broadest legal
questions are the proper interpretation of the ‘‘men-
tal steps” and “law of nature” exceptions to
patentability in patent law, and the proper interpreta-
tion of the statement in section 102(b) of the
Copyright Act that copyright protection does not
extend to ‘‘processes’ or ‘‘methods of operation.
Both the exceptions to patentability and the meaning
of section 102(b) have been given a number of
different interpretations by legal scholars and the
courts.

Patent Law

One, policy position is that inventions imple-
mented in software should not be statutory subject
matter. It has been argued that the “mental steps”
doctrine can be used to exclude software implement-
ations from the patent system.154 Under this doc-
trine, processes that could be performed using pencil
and paper are not statutory. The U.S. Supreme Court
in its Benson opinion wrote that a computer does
arithmetic ‘‘as a person would do it by head and
hand. ’’155 In the late 1960s PTO used the mental
steps doctrine to deny patents to inventions that used
software.

The view that inventions that use software are
only statutory if they are traditional industrial
processes that transform matter may also be sup-
ported by the case law. In Benson, the Supreme
Court, relying on a series of cases from the 1800s,
wrote that “[t]ransformation and reduction of an
article ‘to a different state or thing’ is the clue to
patentability of a process claim. ’’156 However, the
Court did goon to say that it was not holding that no

153 ~~ . . . the ideas and principles underlying a program ean frequently be discovered in other ways— ways that are legitimate. Examples are studying
published documentation, performing timing tests and observing the inputs, outputs, and conditions of operation,” Victor Siber, op. cit., footnote 140,
p. 8.

154 Pamela Samuelson, “Benson Revisited, ” Emory Low JournuI, vol. 39, No. 4, fall 1990, p. 1047-1048.
155 GottsctiIk v. Benson, 93 S. Ct. 253,254.

15693 S. Ct. 253,256.

Chapter 4--Software Technology and the Law . 151

process patent could ever qualify if it did not operate
to change articles or materials.157

Legal arguments can also be used to support the
position that some of what are now deemed non-
statutory mathematical algorithms should be patent-
able. These arguments are based on the fact that the
Supreme Court appeared to view the Benson algo-
rithm as a ‘‘law of nature. ’ Some have argued that
the Benson algorithm was not the mathematical
expression of a scientific truth, such as F=ma
expresses the relationship between force, mass, and
acceleration, but a man-made solution to a complex
problem. 158 According to this interpretation of
patent law, industrially useful processes should not
become unpatentable merely because they can be
described mathematically.159

Copyright Law

The scope of copyright protection for computer
programs depends in part on the interpretation of the
meaning of section 102(b) of the Copyright Act.
With all works courts must engage in the process of
drawing the line between protectable expression and
unprotectable ‘‘ idea[s], procedures], processes],
system[s], method[s] of operation, concepts], prin-
ciples], or discoveries]. "160 This exerc ise becomes

more critical, and difficult, in the context of fact-
based works, such as history texts and instruction
manuals, and ‘‘functional’ works, such as blue-
prints or computer programs,

There are a number of different views of the
application of existing law to user interfaces. One
interpretation of the law is that user interfaces are
inherently functional and therefore not copyright-
able subject matter. According to this interpretation,
user interfaces are in the domain of patent law,l6l

protected only to the extent that elements are novel
and nonobvious. This argument would support a
policy position that sharply limits the scope of
protection for user interfaces.

The other view is that user interfaces may be
protected by copyright. One approach has been to
protect the user interface screen displays as audio-
visual works or compilations of literary terms.162

The screen displays are considered a separate work
from the program code. As for all works, the scope
of protection for the audiovisual work or compila-
tion is determined by an interpretation of section
102(b). One interpretation is that the command
terms are ‘ideas’ and that only their arrangement on
the screen is protected expression.163 Protection of
the command terms themselves can be supported by
an interpretation of section 102@) in which the
unprotected ‘ ‘idea’ is at a higher level of abstrac-
tion, such as the overall purpose of the program. Any
design choices not necessary to the purpose of the
program, including the choice of command terms,
would then be protected expression.

A second approach to protecting user interfaces
through copyright law is to consider the user
interface as protected by the copyright in the
program. The user interface is viewed as part of the
‘‘structure, sequence, and organization’ of the
underlying program.

164 This arguably represents a
different interpretation of the meaning of structure,
sequence, and organization’ from the way in which
the term was used in Whelan: it is possible to create
two programs that have identical user interfaces but
use different subroutines and data structures (the
elements that contributed to the court’s finding of
similarity of SS0 in Whelan).

The term ‘structure, sequence, and organization’
has been criticized for failing to distinguish between
the ‘‘static’ structure of the program-the program
code—and its ‘‘dynamic’ structure-the ‘ ‘behav-
ior’ of the program when loaded into the computer

15793 S. Ct. 253,257.
158 ~Uie, op. clt,, footnote 61, p.257.

ls~ William L, Kcefauver, ‘ ‘The Outer Limits of Software Patents, in Morgan Chu and Ronald S. Laurie (eds.), Pa(cnf F’rofecfiun for Compu[er
Softw are (Englewood Cliffs, NJ: Prentice Hall Law and Business, 1991), p. 83.

‘~) 17 U.S.C. 102(b).
ICI S[cvcn M, Lund~rg, Michelle M, Mlchel, and John p. Sumner, ‘ ‘The Copyright/Patent Interface: Why Utilltamm ‘Look .ami Feel’ Is

Uncopyr]ghtable Subject Matter, ” The Compliter Lun’>er, vol. 6, No. 1, Janua~’ 1989.
1~1 Dl@~a[C(lnlmldrll<.orlons ~ssoclates V. Softk[one, 659 F. SUPP 449 (ND ‘a 1987)

163 Ibid.

1~ ~)ms v. Paperkck, 740 F. SUpp, 37, 80 (D. Mass. 1990)

152 ● Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

Box 4-C—Neural Networks

Neural networks are a special kind of computing
architecture. 1 The network consists of a large number
of interconnected processing elements, arranged in
layers (see figure 4-C-l). The relationship between the
input and output of the network is determined by the
internal details of the network. Signals passing be-
tween the layers of the network are modi.tied by
multiplying them by “weights.” These weighted
signals are received as inputs by the processing
elements. The processors compute an output value,
which is a function of the sum of the inputs, and passes
the output to the next layer of processors.

The weights determine the overall behavior of the
network, much as the program code determines the
behavior of a conventional computer. However, neural
networks are not programmed in the same way as
conventional computers. Neural networks are
‘‘trained. The network is presented with input values
for which the desired output is known. The network
then adjusts the weights until this output is achieved.

Figure 4-C-1—Neural Network

Inputs

++++
outputs

The circles represent processing elements that perform a weighted
sum on their inputs and compute an output value that is then sent
to the next layer of processing elements.
SOURCE: OTA.

This process is repeated for a large number of input and output examples, called a training set. Given enough
examples, the desired behavior of the network can be achieved for a wide range of inputs. One focus of research
on neural network applications has been “pattern recognition” problems such as recognizing handwritten
characters: the input is image data, and the output indicates which letter has been “read.”2

Because neural networks are different from conventional computers, there is some uncertainty about the
application of intellectual property laws.3 One issue is the copyrightability of the set of weights. For example, do
the weights satisfy the Copyright Act’s definition of a computer program? Can the set of weights be said to be a
work of authorship? One could argue that the network, and not a human, actually authors the weights (see box 4-A
on authorship). On the other hand, the network could be regarded simply as a tool used by a human author-the
author chooses the training set and presents the data to the network. The first copyright registration for a set of neural
network weights issued in October 1990.

A second question is whether protecting the weights alone is sufficient to protect the value embodied by the
network. Much as two programs can have the same external design or input/output relationship but different
program code, two networks can have the same input/output relationship but different sets of weights. The ability
of a neural network to “learn” could make it easier to appropriate the value of the network—the input/output
relationship-without actually copying the weights. An existing network or conventional program could be
supplied with inputs and the outputs observed.4 These sets of input and output data could then be used to train a
second network, which would have similar behavior to the original network.

1 For ~ fi@~duCti~n t. ~eL~ ~~or~, WC J~dith Dayhoff, Ne~ra/ Ne~Ork Achitecture~ (New Yorlq NY: m Nos~d Reinhold,

1990).
2 T~ stud~ “Neur~ Networks: Computer Toolbox for the 90’s,” R&.D Magazine, vol. 33, No. 10, September 1991, p. 36.
3 ~dy Johnson-Laird, “Neural Networks: The Next Intellectual Property Nightmare?” Computer Luwyer, vol. 7, No. 3, March 1990,

p. 7; Gerald H. Robinsom “Protection of Intellectual Property Protection in Neural Networks,” Computer Luwyer, vol. 7, No. 3, March 1990,
p. 17; Donald L. Wenskay, “Neursl Networks: A Pmxription for Effective Protection’ Computer Lawyer, vol. 8, No. 6, August 1991, p. 12.

4 Jo~on-L~d, op. cit., f(MMe 3, pp. 14-15.

SOURCE: OTA and cited sources.

Chapter 4--Software Technology and the Law . 153

and executed.165 The possibility that the behavior of
a program could be protected expression led to a
discussion about the extent to which copyright
protection might overlap with patent protection of
the program function—what some have termed the
“patent/copyright interface” problem.l65 The rela-
tionship between intellectual property protection of
static and dynamic structure is also an issue in the
context of neural networks (see box 4-C).

The same issue was addressed by the Copyright
Office in 1988 when it addressed the nature of the
relationship between the program code and screen
displays. Hearings were held by the Office in
response to the Softklone court’s holding that the
‘‘computer program’ copyright did not extend to
the screen displays. The Softklone court had noted
that “the same screen can be created by a variety of
separate and independent computer programs. 167

At the hearings the IEEE Computer Society sup-
ported separate registrations of the program code
and screen displays, arguing that the nature of the
‘‘authorship ‘‘ in the program code was fundamen-
tally different from that in the screen displays.168

However, the Copyright Office ruled that a single
registration of a computer program covered any
copyrightable authorship in the program code and
the screen displays, writing that ‘‘the computer
program code and screen displays are integrally
related and ordinarily form a single work. ‘169

Software Development

Arguments about the proper interpretation of
existing law also rely in part on characterizations of
the software development process. Some emphasize
‘‘creative’ aspects of the development process. Just
as with other copyrightable works, it is argued, this
creative effort should be encouraged by limitations
on copying, Others, however, characterize the devel-
opment process as ‘‘engineering, ’ in an effort to
limit the scope of copyright protection or to argue for
the wider use of patents.170

Discussions of creativity and engineering can also
be seen as related to the scope of available design
choices. One of the goals of software engineering
methodologies is to reduce the number of design
decisions, as a way of managing the complexity of
large projects. Elements of the development process
have become more routine. High-level languages
free programs from much of what Brooks calls
“accidental complexity. ’ ’171 Shaw points out that
today “almost nobody believes that new kinds of
loops should be invented as a routine practice. ’ ’172

Subroutines, macros, and operating systems have
also been used to avoid ‘‘re-inventing the wheel. ”
The concept of reuse (see box 4-D) may also make
parts of the development process more routine. The
Federal Government, particularly the Department of
Defense, has shown considerable interest in encour-
aging reuse (see box 4-E).

165 ‘‘Ccn@d to Dr. Davis criticism of the Whelan ‘structure, sequence, and organization’ formulation is the fact that there is no necessary relationship
between the sequence of operations in a program, which arc part of behavior, and the order or sequence in which these operations arc set forth in the
text of the program—the source code and object code. As Dr. Davis pointed OUL ‘the order in which sub-routines appear in the program text is utterly
irrelevant, ’ and the two views of a computer program, as text and as behavior, arc ‘quite distinct. ’ ‘‘ Computer Associate.r v. A1tai, op. cit., footnote 127,
p. 14.

’66 Scc Pamela Samuclson, “Survey on the Patent/Copyright Intcrfacc for Computer Programs, ” Afl’LA QJ. vol. 17, p, 256. Scc also Computer
Associu[cs v. ,41tui, op. cit., footnote 127, p. 15. A study prepared jointfy by the Patent and Trademark Office and the Copyright Office concluded that
there is mimmal overlap between the two areas with respect to computer software. U. S. Patent and Trademark Office and U. S. Copyright Office,
Patent-Cop jv-ight La~’s O\erlap Study$ May 1991, pp. 11-1]1.

l~T Dlxltul Communl<utl[)ns Associates V. Sofik[one Distributing, 659 F. Supp. 449, 455-456. The COur’t then concluded, ‘ ‘Thcrcforc, it is the co~t’s
opinion th~t a computer program’s copyright protection docs not extend to the program’s screen displays, and that copying of a program’s scrccn displays,
without evidcncc of copying of the program’s source code, object code, sequence, organization, or structure does not state a claim of infringement.

168 Richard H. Stem, “Appropriate and Inappropriate Legal Protection of User Interfaces and Screen Displays, Part l,” IEEE Micro, vol. 9, No. 3,
June 1989, p. 84.

169 Copyright Office, ‘‘Registration Decisio~ Registration and Deposit of Computer Screen Display s,’ 53 Federu/Regisfcr 21819 (June 10, 1988).
IT~ For one view of lhc relationship between ‘‘software engineering” and intcllectuaf property, see Clapcs, op. cit., footnote 96, pp. 119-120. For

exlcnsivc discussion of (he nature of software development, see Sus,an Lammcrs, Programmers at Wori (Redmond, WA: Microsofl press, 1986).
IT 1 Frederick p, Brooks, Jr., ‘ ‘No Silver Bullet, ’ IEEE Cornpu(er, Apfil 1987, p. 12.

17Z Mary Sflaw, “Prospects for an Engineering Discipline of Software, ’ IEEE Sojtn’dre, vol. 7, No. 6, November 1990, p. 22.

154 ● Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

Box 4-D—Software Reuse

Productivity in software development is a concern in both the private and public sectors.1 The relatively low
productivity of software programmers is a difficult problem, so one way to improve programming productivity is
to “reuse” program code.2 This would eliminate much of the redundant work of many programmers writing code
that does essentially the same thing. One source estimated that of 15.3 billion lines of code written in 1990, only
30 to 40 percent represent novel applications; 60 to 70 percent represent generic computer tasks like data entry,
storage, and sorting.3

Reuse can be either accidental or systematic. Many programmers employ “accidental’ reuse, making use of
some elements of their own previous work or that of their colleagues. In systematic reuse, software is written from
the beginning with the intention of making it more reusable; the components are documented and put in a library.
This can be time consuming, and in the short run can be more costly than writing a specific program for the
immediate need. This cost has to be seen as an investment that pays off in the long run if the component can be reused
several times. Software development to facilitate systematic reuse could also streamline software maintenance,
which accounts for a large and increasing portion of software life-cycle costs.

When reuse is being practiced within an organization and programmers only use components from their own
organization’s software library, intellectual property considerations are not an issue. However, questions of
ownership become more important if there is to be development of a market in reusable components. This market
is growing, but is still relatively small. For example, it is possible to license libraries of code for common functions,
such as components used in developing graphical user interfaces.

Intellectual property considerations can affect reuse in three ways. First, a number of participants at an OTA
workshop on software engineering indicated that uncertainty about the ownership of a component or the scope of
intellectual property rights could discourage the development of programs composed of components from different
sources. Second, some in the reuse community think that a stable system of ownership rights4 is necessary to
encourage the investment required for creating a commercial-quality library and to handle questions of liability. In
some cases in the past, the investment for widely used libraries has come from sources other than potential licensing
fees (e.g., the X-windows library developed in a university research and education environment, at MIT, and later
used in commercial products). A final issue is whether the interfaces in libraries of reusable components are
protected by copyright law: can a competitor offer a library with the same interfaces but different implementations?6

There are a number of’ other factors which affect the degree of reuse:7

1. Development standards have not been established for software;
2. There is a pervasive belief that if it is “not developed here,” it can’t be trusted or used by “us”;

3. Software is all too often developed with respect to a specific requirement with no consideration given to
reuse in other environments;

4. Many languages encourage constructs that are not conducive to reuse;

1 s=, e.g., The SofiWare challenge (Alexan(lri~ VA: Time-Life Books, 1988); and Albert F. Case, Jr.,lnformation SysremsDevelopment:
Principles of Computer Aided Sofi!ware Engineering (New York NY: Prentice-Hall, 1986).

2s= fiUO Matsufnura et al., “Trend ‘Ibward Reusable Module Component: Design and Coding lkchnique 50SM,” in Proceedings
of the Eleventh Annual Internah”o,rtai Computer Sojlware and Applications ConferencAOMPSAC ’87 (Wash@to& DC: IEEE Computer
Society Press, Oct. 7-9, 1987), p. 45 (cited in Michael Cusumano, Japan’s Sojlware Factories: A Challenge to Us. Management (New YorlG
NY: Oxford University Press, 1991), p. 258).

3 David Eicti and John Atkins, “Design of a Lattice-Based Faceted Ckissiilcation SYW311,” paper presented at SoftwNe Engin@@!
and Knowledge Engineering (SEKE ‘90), Skokie, IL, June 21-23, 1990.

4 com~ct~g licemes or pfic~g s~c~es my be diffic~to As with my digit~ info~tion (see ch. 5), it wifl be H to COI@Ol Wbt

a user does with a component once a copy has been obtained. To&y, some libraries are being sold on a per-copy basis as source code with no
royalties or runtime licenses, However some believe that market forces under the classical copyright paradigm-where “copies’ are priced and
sold—will not work properly (Brad Cox (Washingto~ CT), personal communicatio~ Aug. 1, 1991). To reduce individual transaction costs, Cox
suggests that use-base fees be adminis tered collectively, similar to the way in which performan ce royalties for musical compositions are
administered.

5 Robefi W. Schei,flH ~d J~es Ge~s, X Window system @edford, MA: Digi~ press, 1990), pp. 8-15.

6 ~u~te for Defeme ~yws, pro~eeding~ Of the workshop on Qgal ls~es in Sofiare Re~e, IDA Document D-1OO4 (A.lexandri&
VA: Institute for Defense Analyses, July 1991).

7 Fmm Eic- Wd Atkins, op. cit., fOOtllOte 3.

Chapter 4--Software Technology and the Law ● 155

5. Software engineering principles are not widely practiced and consequently, requirements and design
documents often are not available with the code; and

6. No widely accepted methodology has been developed to facilitate the identification and access of reusable
components.

There is an ongoing body of research designed to: 1) identify characteristics of software components that make
them suitable for reuse, 2) identify techniques to translate a software component with marginal reuse potential into
one that can be reused, and 3) develop systems for classifying and identifying software components to make it easy
to retrieve them from databases when they are needed.8 Among the systems being considered are artificial
intelligence programs capable of browsing libraries of programs, rating their qualit y according to several reusability y
criteria (e.g., modularity, cohesion, size, control structure), and indicating those most suitable for reuse.9 Much of
this work is being done for, or in conjunction with, the Department of Defense (DOD), especially the Defense
Advanced Research Projects Agency. As a major user of software, DOD has an interest in improving its own and
its contractors’ productivity through fostering reuse of software.

Reuse is more common among some major software users in Japan. Of several firms surveyed, Toshiba
reported the most reuse with 50 percent of its delivered custom applications software being made of reused
components. 10 Toshiba has made software reuse a central strategy for increasing productivity and reliability while
reducing costs. Reuse is a high priority for both managers and programmers, Managers are rated on how well their
projects have met reuse targets, as well as more usual measures like schedules and customer requirements.
Programmers are required to report periodically on how many components they have used from, or contributed to,
the reuse database; the company rewards authors of successful components that are frequently reused by others.
Toshiba has also developed a specialized tool, OKBL (object-oriented knowledge-based language), which helps
users classify components for storage in, or retrieval from, departmental libraries. Users can also locate components
using printed catalogs. Most reuse, even at Toshiba, is within families of related products: less than 10 percent of
software is reused across departmental lines.

8 Ibid See ~so V-R. Basili, H.D. Rombac~ J. Bailey, A. Delis, F. Farhat, “Ada Reuse Metrics,” and R. Gaglkmo, G.S. Owen, M.D.
Fraser, K.N. King, P.A. Honhaneu “Tools for Managing a Library of Reusable Ada Components,” paper presented at Ada Reuse and Metrics
Workshop, Atlanta, GA, June 15-16, 1988.

9 JaU CarlOs Esteva and Robert G. Reynolds, “kirning To Recognize Reusable Software by Induction, ” paper presented at Software
Engineering and Knowledge Engineering (SEKE ‘90), Skokie, IL, June 21-23, 1990.

10 Cusumo, op. cit., footnote 2, p. 261.

SOURCE: OTA and cited sources.

However, despite these advances, Brooks argues
that part of software development will always be a
creative process.

173 After reviewing the develop-

ment of software engineering, he concluded that
while the difference between poor conceptual de-
signs and good ones may lie in the soundness of the
design method (and cart be addressed by progress in
software engineering), changes in methodology
cannot bridge the gap between a good design and a

great one. This, Brooks concluded, requires great
designers. 174

Debate continues within the field concerning the
extent to which computer science should be charac-
terized as a science or as an engineering discipline,
its maturity as a discipline, and the appropriate
content of undergraduate education in the disci-
pline.

175 Some recent efforts have presented a formal
definition of the discipline, its methodologies, and

1~~ Broo~$, op. cit., foo~otc 171, p. 1 ~.

1~~ Ibid.
ITS For some rc~ent discussion of these topics, SCC D~vId GrlCS Cl :11., ‘ ‘The 1988 Snowtmd Report: A Dlscipllnc Matures, ’ C{)vltTzl(rlicdtic)rl.Y of the

ACM, vol. 32, No. 3, Mmch 1989, pp. 294-297; Nor-man E. Gibbs, ‘ ‘The SEI Education Program TIc Challenge of Tcxhing Future Software
Engineers, ” ~’or~~v~u)ric-d([c)n~ of (he AC,kf, vol. 32, No. 5, May 1989, pp 594-605; :md Edsgcr W Dljk\tril ct :11.,

$ ‘A Debate on Teaching Computer
Scmwc,’ Corrmu(rr/cariorr.r o~rhe ACM, vol. 32, No. 12, Dcccmber 1989, pp. 1397-1414.

Box 4-E—Special Concerns of the Federal Government

As a major user and developerof software, the Federal Govemment has special concerns with regard to future
trends in software development. Due to the variety of missions of government agencies, its software needs span the
gamut from small standard packages (word processing, spreadsheets, graphics) to large, specialized mission-critical
systems (air traffic control, hospital information systems, military command and control) and nearly everything in
between. Concerns include procurement policies, development of large composed systems, and technology transfer.

Procurement

Government procurement of computer hardware and software has been a complex and controversial subject
for a long time. The government strategies for acquiring and managing information technology have been in a state
of flux since passage of the Brooks Act of 1965,1 which was enacted to establish procurement and management
policies. Among concerns that have generated this flux are: 1) tension between the rapid pace of change in agency
needs and improvements in technology versus the slow pace of the planning and procurement process; and 2) the
tension between agency desires to ensure compatibility between systems and congressional desires to ensure
competition among vendors.2

Software Development
Many government agencies are supported by software systems that are critical to performance of the agency’s

mission. These large systems, to be successful, require a good match between planning and assessment of
technology needs and the acquisition or development of the hardware and software to match those needs.3 In
creating their systems, agencies face the choice of developing their software in-house, attempting to purchase
‘ ‘off-the-shelf packages to meet their needs, contracting with outsiders to develop customized software for them,
or some combination of the three.

Once systems are in place, the complexities of the procurement process often ensure that they stay in place a
long time. For these complicated systems, modifications and updates over the years make the software extremely
complex and difficult to maintain. For example, the Social Security Administration’s (SSA) system, in place since
the early 1960s, had to be modified to reflect changes in benefits mandated by 15 laws passed between 1972 and
1981. Time allowed to make the changes was always inadequate, many mistakes were made, and backlogs became
a recurrent problem, By 1982 the SSA faced the possibility of a ‘‘potential disruption of service’ due to software
deficiencies, yet by 1986 a system modernization program was still mired in political and legal problems and had
barely begun.4

1 ~bfic Law 89-306.
2 A de~~led ~mdy of options for ~wgement of g~~e~nent information resources is found in U.S. Congress, office Of TechrloIogy

Assessment, Federal Government Information Technology: Management, Security, and Congressional Oveersight, OZ4-CIT-297 (lVashingto~
DC: Government Printing Office), February 1986.

3 OTA hm t~en ~ close look at soi~wwe developmen~pr~~ ement problems at sever~ agencies, including Federal Aviation
Administration% Social Security Administration and Veterans Admtm“ “stration: U.S. Congress, Office of ‘Ikchnology Assessmen6 Review of
Ffi’s 1982 National Airspace System Plan, OTA-STI-176 (Washingto~ DC: U.S. Government Printing Oftlce, August 1982); The Social
Security Administration and Information Technology, OTA-CIT-311 (Washingto~ DC: U.S. Government Printing Office, October 1986);
Hospital Information Systems at fhe Veterans’ Administration, O’EJ4-CIT-372 (Washingto~ DC: U.S. Government Printing Office, October
1987).

4 U.S. COWS, ~lce of T5&nology Assessmen~ The Social Secm”ty Administration and/@ormation Technology, op. ciL foomte 3.

its characteristics (see box 4-F). In 1988 an Associa- through three paradigms: theory (rooted in mathe-
tion for Computing Machinery/IEEE Computer matics), abstraction or modeling (rooted in the
Society Task Force on the Core of Computer Science experimental scientific method), and design (rooted
developed its detailed definition of the discipline in engineering).

——.

Government has a particular need, in future generations of software systems for well--engineered, maintainable
software. An additional need is for tools and methods to plan for future software needs and ability to match
technology to those needs in a timely manner. Several government projects aim at bringing government, industry,
and academic research to bear on these projects. For example, a program called Software Technology for Adaptable,
Reliable Systems works with industry to develop new software tools and methods. Part of this multiyear effort was
the establishment of the Software Engineering Institute at Carnegie Mellon University which has done research on
software reuse and other ‘‘software factory’ methods.

Technology Transfer

Software developed by the Federal Government may not be copyrighted. Under section 105 of the Copyright
Act, copyright protection is not available for any work created by the Federal Government. Section 105 was enacted
to give the public unlimited access to important information, to prevent the government from exercising censorship,
and to prevent the government from using copyright in government works as a shield that would prevent selected
groups from acquiring information.5 In addition, it is argued that the public has paid for the creation of the work
through taxes and should not pay a second time by paying copyright royalties.

Some propose that exceptions to the provisions of section 105 be made for computer programs, arguing that
copyright protection for government software would facilitate its transfer to the private sector.6 According to this
view, private sector firms that might be interested in developing and marketing products based on government-
developed software would be more likely to invest in the ‘ ‘commercialization’ of the government software if they
were assured of an exclusive license.7 Similar considerations have motivated government policy with respect to
patents granted to the Federal Government. Opponents of an exception being made for computer programs argue
that the exception is the ‘‘thin end of the wedge,” which could lead to further exceptions to section 105. In addition,
it has been suggested that the line between programs and information’ or ‘data’ is not always clear, and that granting
exclusive rights to ‘programs’ could have the effect of limiting access to ‘data’ which would be retrieved using the
programs. X

Legislation introduced in the 102d Congress would permit limited copyrighting of government software. H.R.
191 and S. 1581 would allow Federal agencies to secure copyright in software prepared by Federal employees in
the context of cooperative research and development agreements (CRADAs) with industry.

5 Ralph ~nuul, Rcgi~ter of cop~ghts, testimony at hearings before the House Subcommittee on sCiencC, ReSeaFCtl and T~~hn~W’! APr

26, 1990, Serial No. 117, p. 100.
6 John M, 01s, Jr., Dkector in tie Resources, Communi(y, and fionomic Development Division, General Accounting offlt~, le\(lftlO1ly

at hearings before the House Subcommittee on Scicncc, Research and Technology, Apr. 26, 1990, Serial No. 117, p. 44.
7 Ibid., p. 41.
8 Steven J, Me~litz, Vice Resident ~d General Cowel, ~ormation Indusq Association, testimony at hearings bCfOrC dlc SeIlitlC

Committee on Commerce, Science and Transportation, Sept. 13, 1991.

SOURCE: OTA and cited sources.

158 . Finding a Balance: Computer Software, Intellectual Property, and the Challenge of Technological Change

Box 4-F—The Discipline of Computer Science
In March 1991, the Association for Computing Machinery (ACM) and the IEEE Computer Society (IEEE-CS)

published a joint report on recommendations for undergraduate curricula in computer science. The report,
Computing Curricula 1991, was prepared by the ACM/IEEE-CS Joint Curriculum Task Force and was intended
to present “current thinking on goals and objectives for computing curricula. ” The curriculum recommendations
in the report built upon nine areas comprising the subject matter of the discipline:

1. algorithms and data structures,
2. architecture,
3. artificial intelligence and robotics,
4. database and information retrieval,
5. human-computer communication,
6. numerical and symbolic computation,
7. operating systems,
8. programmingg languages, and
9. software methodology and engineering,
In preparing this report, the task force drew upon the comprehensive definition of the discipline of computer

science presented in 1988 by the ACM/IEEE-CS Task Force on the Core of Computer Science. In its 1988 report,
Computing as a Discipline, the Task Force on the Core of Computer Science noted that it had extended its task to
include computer engineering, as well as computer science because there was not fundamental difference between
the core material for the two fields; the difference between them is that “computer science focuses on analysis and
abstraction; computer engineering on abstraction and design. ” The task force’s definition of the “discipline of
computing” included all of computer science and engineering:

The discipline of computing is the systematic study of algorithmic processes that describe and transform information:
their theory, analysis, design, efficiency, implementation, and application. The fundamental question underlying all
of computing is, “What can be (efficiently) automated?”

Concerning the role of programming languages, the Task Force on the Core of Computer Science had noted
that the notion that “computer science equals programming “ is misleading because many activities (such as
hardware design, validating models, or designing a database application) are not “programming."T h e r e f o r e , i t
concluded that computer science curricula should not be based on programming.Nonetheless, the task force did
recommend that competence in programming be part of the curricula because:

It is. . clear that access to the distinctions of any domain is given through language, and that most of the distinctions
of computing are embodied in programming notations.

SOURCES: ACM/IEEE-CS Joint curriculum Task Force, Computing Curricula 1991 (New York NY: Association for Computing Machinery.
1991); “A Summary of the ACM/IEEE-CS Joint curriculum Task Force Report,” Communications of the ACM, VO1. 34, No. 6,
June 1991, pp. 69-84; and Peter J. Denning et al., “Computing as a Discipline,’ Communications of the ACM, vol. 32, No. 1, January
1989, pp. 9-23.

