
Appendix D

Message Authentication, Public-Key
Ciphers, and Digital Signatures

Message Authentication

An “authentic” message is one that has arrived
exactly as it was sent (without errors or altera-
tions), is not a replay of a previous message, and
comes from the stated source (not forged or falsi-
fied by an imposter or fraudulent altered by the
recipient). 1 Encipherment in itself does not auto-
matically authenticate a message: it protects
against passive eavesdropping automatically, but
does not protect against some forms of active
attack. 2

Encipherment algorithms can be used to authen-
ticate messages, however, and the algorithm used
in the Data Encryption Standard (DES) is the most
widely used cryptographic basis for message au-
thentication. As discussed in more detail later,
there are profound differences in using a symmet-
ric cipher, such as the current DES algorithm,
rather than an asymmetric one like the RSA al-
gorithm named after its inventors: Ronald Rivest,
Adi Shamir, and Leonard Adelman. Use of a sym-
metric cipher for message authentication can only
protect against third parties and not against fraud
by either the sender or receiver (both of whom know
the secret key), while an asymmetric algorithm can
be used to resolve disputes between the sender-
receiver pair.

As the uses of electronic media for financial and
business transactions have proliferated, message
authentication techniques have become increas-
ingly important and have evolved from simple
pencil-and-paper calculations to sophisticated,
high-speed hardware processors.

1 For a thorough discussion of message authentication and the vari-
ous techniques used to authenticate messages, see I)avies & Price, Secu-
rit.v for Computer N’etworks: An Introduction to Data Security in
Teleprocessing and Electronic Fund Transfers (New York, NY: J. Wiley
& Sons, 1984) ch. 5. The descriptions of authentication techniques in
this section follow Davies & Price closely.

‘Davies & Price describe passive attack as eavesdropping and active
attack as the falsification of data and transactions through such means
as: 1 I alteration, deletion, or addition; 2) changing the apparent origin
of the message; 3) changing the actual destination of the message; 4)
altering the sequence of blocks of data or items in the message; 5) replay-
ing previously transmitted or stored data to create a new false mes-
sage; or 6) falsifying an acknowledgment for a genuine message. (See
I)avies  & Price, op. cit., pp. 119-120. )

In general, the various message authentication
schemes that are used can be grouped together
according to whether they are based on public
knowledge or, at least in part, on secret knowledge.
Among the former are message authentication
using check fields,3 parity checks,4 and cyclic
redundancy checks.5 These share a common weak-
ness: unauthorized or fraudulent modifications
may go undetected because they are accompanied
by matching, yet fraudulent, authentication pa-
rameters that can be calculated by unauthorized
parties because the authentication parameters are
not secret.

Using secret authentication parameters known
only to the sender and receiver permits a stronger
form of message authentication because the check
field data cannot be forged by a third part y unless

Ocheck-field  techniques we designed to ensure that stored  or trans-

mitted information has been prepared correctly. A check field is a sim-
ple function of the numerical characters in the important fields of the
message that makes it highly likely that the most common types of
mistakes and errors will be detected. The use of check fields does not
safeguard against deliberate fraud by data-entry operators or others;
because the check sum function and the data used to create it are not
secret, a data-entry operator could calculate the ‘‘correct check sum
and transmit it along with a fraudulently altered message. Also, it is
possible to generate false messages that have the same calculated check
sum value as the original message. (See Davies & Price, op. cit., pp.
121-122.)

4Parity checks can be used to detect accidental errors during trans-
mission, usually either by using an eighth “parity bit with each seven-
bit message word or by providing longitudinal parity checks using
modulo-2  addition on successive words. Parity checks are weak in that
multiple errors ardor  missing blocks can sometimes go undetected. (See
Davies & Price, op. cit., p. 122. )

‘According to Davies & Price, cyclic redundancy checks are the best-
known error detection method and offer strong protection against ac-
cidental error. However, the procedure for creating the check data via
a predetermined polynomial is public knowledge. Therefore, the checks
do not provide strong protection against an active attack. In this form
of message authentication, the cyclic check operation calculates the
check data by dividing the polynomial formed by a block of message
bits by the predetermined check polynomial and using the “remainder”
from the polynomial division as a check field. The check field is appended
to the message block and transmitted with the message. Upon its re-
ceipt, the recipient performs the same polynomial division operation
on the message and compares the remainder wit~ the transmitted check
field to authenticate the message. The cyclic check does not protect
against active attack because the means of creating the check data—
the polynomial division operation—is not secret. An active wiretapper
can divert the message, alter it, calculate a new check field using the
correct predetermined polynomial, and retransmit the altered message
with the new check field appended. The message will appear to be authen-
tic when the recipient compares the check fields. (See Davies & Price,
op. cit., pp. 122-123. )
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the secret parameters are compromised. A differ-
ent secret parameter is usually required for each
sender-receiver pair. The logistics for distributing
this secret information to the correct parties is
analogous to key distribution for encryption. Com-
promise of the secret parameters invalidates the
integrity of the safeguarding function because it
could then be forged. (See ch. 4.)

In the most general sense, an authentication
function based on secret knowledge can be con-
structed from a public authenticator algorithm and
a secret authentication key.6 Examples of authen-
ticators based on secret keys include the Decimal
Shift and Add (DSA) algorithm,7 and the propri-
etary S. W. I.F.T. (Society for Worldwide Interbank
Financial Telecommunications) and Data Seal al-
gorithms, which use binary arithmetic.8 Although
authentication can be based on encryption (the
DES algorithm, for example, is widely used for
message authentication), the strict requirements
for an authenticator algorithm differ from those
for an encryption algorithm because authentica-
tion does not require the existence of an inverse
function (i.e., decryption). It is also possible to base
message authentication on secret numbers used in
conjunction with special one-way functions. g

Encryption alone is not always sufficient to com-
pletely authenticate a message. If decryption of
an encrypted message yields “sensible” plaintext,
without garbled portions, then there is reasonable
certainty that the message was originated by the
other “authorized” holder of the secret key. How-
ever, some types of message alterations can go un-
detected. ]() A more robust authentication method
(than DES encryption alone, for example) is to use

—
“For mathematical and functional descriptions of authenticator func-

tions, see: Davies & Price, op. cit., pp. 123- 135;  and Et. R. Jueneman, S,M.
Nlatyas,  and C. H hleyer.  ‘ ‘Message Authentication, ” IEEE Commu-
nications .!lagazlne,  vol. 23, No, 9, September 1985,

‘I)SA  1s based on parallel computations performed by the sender and
recei~er,  the starting point for the computations are two secret 10-digit
decimal numbers. The message to be authenticated is treated as a string
of decimal digits, thus DSA requires that alphabetic characters be en-
coded into numeric form, although the numeric content of a message
(e. g., the value of a financial transaction) does not require any conver-
sion. According to Davies & Price isee  pp. 127-130 for an example of
I)SA),  the algorithm can be implemented using a programmable deci-
mal calculator.

“Because these are proprietary, the>, are not a~’ailable  for use as a
published standard.

“A one-way function has the special property that. although the func-
t ion it+elf  1+ relati~ely  easy to compute, its inverse is quite difficult to
compute— i.e., even if the ~’alues  of authenticators for many messages
are known, it is almost impossible to recover the text of a message given
only  the \,alue  of its authenticator. Some, hut not alE, ‘‘hash functions ‘—
functions that appear to generate random outputs from nonrandom
Ln uts — are suitable for message authentication.

Y‘iSee  I)a\’ies  & price, op cit., pp.  134-135 for examples. Juencman,
et al , also discuss strengths and weaknesses of ~anous  authentication
and manipulation detect ion techniques.

DES hardware in an appropriate mode of opera-
tion in order to create a message authentication
code. 11

When DES hardware is used for authentication,
it is operated in either the cipher block chaining
(CBC) or cipher feedback (CFB) mode; the chain-
ing or feedback operation ensures that the authen-
ticator, selected from the last state of the DES
hardware output register, is a function of the en-
tire message stream input to the DES device. 12

The authenticator is appended to the message and
transmitted along with it. The recipient removes
the authenticator from the received message and
calculates his or her own value of the authentica-
tor using the secret key and initialization vector
shared with the sender. If the two authenticator
values are the same, then there is increased assur-
ance that the message is authentic.

The message can be transmitted in plaintext
without compromising its authenticity. If the mes-
sage is altered by a third party who does not use
the secret DES key to calculate a forged authenti-
cator to append to the altered message, then the
authenticator calculated by the receiver will not
have the same value as the one transmitted with
the message. However, because both sender and
receiver know the secret parameters, either could
fraudulently alter the message and deny having
done so. This type of dispute can be resolved
through use of an asymmetric cipher, as will be dis-
cussed below in the sections on public-key ciphers
and digital signatures.

If privacy as well as authentication is required,
then one scheme for encrypting and authenticat-
ing a message involves sequential use of DES using
two different secret keys: one to calculate the
authenticator (called the message authentication
code or MAC), and one to encrypt the message.
These operations can be performed in either order;
the ANSI X9.23 standard requires that the MAC
be calculated before encryption. ” Even the MAC

1 lStrictly speaking, any block encryption algorithm could be used.
However, in practice, the cipher used is DES because the algorithm is
readily available in hardware form. The DES algorithm IS relatiirelj  S1OW

in software form, which makes the hardware form much morcj  con~.enient
for data transmission.

121n  the CBC mode, the authenticator i~ the most sigmficant  n bits
from the last block output by the device. In the (7FH  mode, the I)ES
device is operated one additional time after ~hc last message block is
input, and the authenticator is selected as the most significant n bits
of the final output block. The length of the authenticator (usual]}  32
bits for EFT authentication, according to the standard) is determined
jointl~  by the sender and receiver.

I i 1 f“ the kf AC checks  the ciphertex~,  then an ad~’ersar}.  is a~)le to
mount a known plaintext  attack on the key used for authentication,
If, however, the NIAC checks the plaintext,  ~hen  an ad~ersary  mus~
break both the MAC kc}’ and the encryption key in order to send fraudu-
lent messages,
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and encryption do not safeguard against replay of
messages (e.g., electronic fund transfers). There-
fore, various message sequence numbers or date
and time stamps are usually incorporated into the
text of the message. The ANSI X9.9 standard re-
quires a message identifier field to prevent replay.

Public-Key Ciphers

A symmetric cypher is an encryption method
using one key, known to both the sender and re-
ceiver of a message, that is used both to encrypt
and to decrypt a message. Obviously, the strength
of a symmetric cipher depends on both parties
keeping the key secret from others. With DES
cipher, for example, for which the algorithm is
known, revealing the encryption key permits the
message to be read by any third party.

An asymmetric cypher is an encryption scheme
using a pair of keys, one to encrypt and a second
to decrypt a message. 14 A special class of asym--

metric ciphers are public-key ciphers, for which the
encrypting key need not be kept secret to ensure
private communication. 15 Rather, Party  A can
publicly announce his encrypting key, PKA, allow-
ing anyone who wishes to communicate privately
with him to use it to encrypt a message. Party A’s
decrypting key, SKA, is kept secret, so that only
A (or someone else who has obtained the secret
decrypting key ) can easily convert messages en-
crypted with PKA back into plaintext.16

14 See Davies & Price, op. cit., ch.  8, for a more complete discussion
of asymmetric and public-key ciphers.

A discussion of the underlying principles of public-key ciphers, includ-
ing examples of the RSA  and knapsack algorithms, is given in: Martin
E. Hellman,  “The Mathematics of Public-Key Cryptography, ” Scien-
tific  American, vol. 241, No. 2, August 1979, pp. 146-157.

A pictorial example of the RSA public-key method can be found in
Computer Security (one of the Understanding Computers series) (Alex-
andria VA: Time-Life Books, 1986), pp. 112-117.

‘sThe public-key concept was first proposed by Whitfield Diffie  and
Martin Hellman  in “New Directions in Cryptography, ” IEEE Trans.
Information Theory, IT-22, 6, November 1976, pp. 644-654. Diffie  and
Hellman  also described how such a public-key cryptosystem  could be
used to “sign” individual messages and to simplify the distribution of
secret keys. Their work was the basis for Rivest, Shamir, and Adelman’s
practicaf  implementation of such a system in 1978, called the RSA cipher.
Some ciphers proposed for public-key systems have subsequently been
broken. For example, the Diffie-HelIman  “discrete exponentiaf” cipher
was broken several years later by Donald Coppersmith of IBM [G.
Kolata: “Another Promising Code Falls, ” Science, vol. 226, Dec. 16, 1983,
p. 1224]. The “trap-door knapsack” cipher, another public-key cipher
proposed in 1976 by Hellman  and Ralph Merkle,  was broken by Shamir
and Adelman  in 1982. (See Computer Security, op. cit., pp. 100-101; and
Hellman’s  1979 article in Scientific American.)

1~This section uses the notation PK for “public key” (usu~y,  the en-
crypting key) and SK for “secret key” (usually, the decrypting key).
For A and B to have two-way communication, two pairs of keys are
required: the “public” encryption keys PK ~ and PK1l,  and the secret
decryption keys SK,i and SK~Z.

Knowing the public encryption key–even when
the encrypted message is also available-does not
make computing the secret decrypting key easy,
so that in practice only the authorized holder of
the secret key can read the encrypted message.17

However, with the encrypting key being publicly
known, a properly encrypted message can come
from any source, so there is no guarantee of its
authenticity.

It is also crucial that the public encrypting key
be authentic. An imposter could publish his own
key, PKI, and for example, pretend it came from
A in order to read messages to A, which he could
intercept and then read using his own SKI. There-
fore, the strength of the public-key cipher rests on
the authenticity of the public-key and the secrecy
of the private key. A variant of a public-key sys-
tem allows a sender to authenticate messages by
“signing” them using an encrypting key, which
(supposedly) is known only to him. This is a very
strong means of authentication and is discussed
further in the following section on digital sig-
natures.

Davies and Price 18 review and illustrate the
functional requirements for a general public-key
cryptosystem. A brief overview follows here, but
a detailed description of the underlying mathe-
matics is beyond the scope of this appendix,

If encipherment is performed by some function
E{ K,) and decipherment by another D(Kd), then in
order to make the decipherment function the in-
verse of encipherment, the encrypting key, Ke, and
the decrypting key, Kd, must be related somehow.
Suppose both keys are derived from a randomly
selected starting key, or seed key, K, such that
Ke.= F(Ks) and Kd = G(Ks), where the functions F,
G, D, and E defined above are published. Party
A would then select a KS (which would be kept
secret), use it to calculate Ke and Kd, and publish
Ke, as his public key, PKA, while keeping Kd secret
as the secret key, SKA.

If P is the plaintext message and C is the en-
crypted message, then C =E(P) and P= D(E(P));
that is, D(E(P)) must be the inverse of E. However,
because E is really the function E(K,) and is pub-
lic, the function E must not be readily invertible
or else an opponent can readily calculate P given
C and E. This property is described as making E

ITUse of the two keys might also be used to separate access to “read”
and 4 ‘write’ data functions. For example, by controlling dissemination
of the encryption key, one might control write access; by controlling
dissemination of the decryption key, read access.

lhDavies &  price, Op. cit.. Ch. 8“
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(and also the function F, which generates K, from
Ks one-way functions that cannot readily be in-
verted.

The requirements that E be a noninvertible, one-
way function and that D(E(P)) be its inverse are
reconcilable when E is not invertible without
knowledge of Ke, but the inverse of E is readily
obtained using the secret key Kd. Thus, knowledge
of the secret key is a‘ ‘trapdoor, which makes the
inverse of E simple to implement. E(P), where
E = E(Ke), is a one-way function with a trapdoor
D(E(P)), which allows it to be inverted. Knowledge
of Kd springs the trapdoor. 19

A public-key cryptosystem consists of encryp-
tion and decryption functions, together with meth-
ods for generating pairs of keys from the random
seed values. The one-way property of a “one-way
function, ” such as E, is really only a matter of com-
putational complexity. The encryption function
should be relatively easy to carry out, given Ke. and
E, but given the ciphertext C = E(P), the plaintext
P =D(E(P)) should be very hard to calculate and
should require a very large number of steps, un-
less Kd is known.

In principle, it should be possible to calculate
values of C for many values of P and then to sort
and tabulate the pairs of (Pi, Ci) to obtain an ex-
plicit inversion of E. Because this type of exhaus-
tive search process requires a large number of com-
putational steps and large computer memory size,
both of which grow exponentially with the key size,
E is effectively a one-way function if the explicit
inversion requires a very large number of (P,C)
pairs.

Like all of modern cryptography, public-key
cryptosystems rely heavily on mathematics and,
in particular, on number theory. The RSA cipher. 20 and the trap-is based on modular arithmetic

‘<’See Ijavies  & I’rice,  op. cit.,  ch. /3 for a more thorough explanation.
I)iffie  and Hellman  introduced the concept of trapdoor one-way func-
tions in their 1976 paper {op.  cit.1,  but did not present any examples.
In their 1978 paper, Rivest,  Shamir, and Adelman  presented their im-
plementation of a public-key system using a one-way trapdoor function.
See also R.L. Rivest,  A. Shamir, and L. Adelman  “A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems,  ” Commurri-
cations of the ACM,  vol. 21, No. 2, February 1978; and Hellman’s  ar~i-
cle  in the August 1979 issue of Scientific American op. cit.

‘(} Finite arithmetic with modulus m (modular arithmetic) has the oper-
ations of addition, multiplication, subtraction, and division defined. A
prime number—e,g.,  3, 5, or 7 in modulo  10 arithmetic—has no factors
other than 1 and itself. Finite arithmetic with a prime modulus p has
the additional property that multiplication always has an ini’erse.  This
property is crucial for cryptography}’.

I n modulus 10 arithmetic, for example, the number 57 would be rep-
resented by its remainder, 7 : ,57 10 = 5, with a remainder of 7. Itlore
general}’, the remainder always has a value between O and (m 1), where
m is the modulus Thus, in modulus 3 arithmetic, 57 would be reprc’-
sented  by the remainder of 0: in modulus I 1 arithmetic by the remainder
of 2, etc

door knapsack cipher is based on combinatorial
mathematics as well, The mathematical problems
underlying the RSA cipher and the knapsack
public-key cipher belong to a class of problems
called “nondeterministic, polynomial-time prob-
lems, ” or NP problems. The computational burden
of finding a solution to the hardest NP problems,
using published methods, grows very rapidly as
the size of the problem increases. It is strongly be-
lieved (but not proved) that the burden must grow
very rapidly, no matter what method of solution
is used. However, once the solution is found, it can
be checked very easily. 21 Even so, it is possible
that advances in mathematics and computer sci-
ence may undermine public-key cryptosystems
based on “one-way” functions. One instance of this
was the “breaking” of the trapdoor knapsack ci-
pher. Box G describes this cipher.

The knapsack cipher system was thought to be
effectively unbreakable (computationally but not
unconditionally secure) and Merkle issued an open
challenge to cryptologists in 1976 to break it, In
1982, Adi Shamir at the Massachusetts Institute
of Technology (MIT) broke the cipher analytically.
Soon afterward, Leonard Adelman, a former col-
league of Shamir, used Shamir’s method and an
Apple II computer to break an example of the
knapsack cipher.

Another public-key system, called the RSA sys-
tem, was announced in 1978. The RSA system is
computationally more complex to implement than
the trapdoor knapsack cipher and it has not yet
been broken. Also, the RSA system does not ex-
pand the plaintext message the way the knapsack
cipher does, Message expansion occurs with the
knapsack cipher because the sum of the “hard”
knapsack vector used in the knapsack public key
is larger than the sum of the “easy” vector used
in the secret key. Therefore, more binary bits are
required to represent the ciphertext than to repre-
sent the plaintex!.

The RSA Public-Key System

The RSA public-key system is thought to be the
most computationally secure, commercially avail-
able public-key system. It also enables the prob-

The exponential function a’ in modulus p arithmetic is valuable as
a one-wa~,  function: calculating the exponential y = ax is eas}’.  but cal-
culating Its interse,  x = Iogcly  is difficult for large p.

‘1 See Hellman’s  article in the Augyst 1979 Scientific American op.
cit.
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Box G.—The Trapdoor Knapsack Cipher

The trapdoor knapsack system was proposed by Ralph Merkle and Martin Hellman in 1976.1

The “knapsack puzzle” or “knapsack problem” is well-known in mathematics and can be summa-
rized briefly as the following problem:

Suppose you are given a set of N weights of assorted (and known) integer sizes. You want to use them
to balance a knapsack that holds an unknown combination of the same weights. You are given the values
of the set of integer weights (called the knapsack vector) and the weight to be matched (called the knapsack
total). Find the subset of the N weights that will exactly balance the knapsack!

Although it is possible to find examples of this problem that are fairly easy to solve by exhaustive
search— when N is a small number or when each weight is heavier than the sum of the proceeding weights,
for example–all of the known methods of solving the general knapsack problem have a computational
requirement that grows exponentially in the key size and, therefore, are impossible to implement for rea-
sonably large key sizes. An exhaustive search is quite lengthy for large N. Suppose that N is 5. Then,
the knapsack vector has five components (one corresponding to each weight), each of which could be equal
to 1 (the weight is used to try to balance the knapsack) or O (the weight is not used in this try). There
are 2S or 32 possible vectors to be tried in an exhaustive search. If N were 10, up to 1,024 tries would
be covered in an exhaustive search. If N were 1,000, an exhaustive search would clearly be infeasible.

Sometimes the problem is posed differently, as a cylindrical knapsack of fixed length and a set of
rods of different lengths, with the problem being to find the subset of rods that will completely fill the
knapsack. In either case, the problem is an example of the general class of NP problems. The “trapdoor”
knapsack problem is a special case, which is not computationally difficult to solve provided that one has
special information that enables the problem to be solved more easily than for the general case. In this
case, the “trapdoor” enables the intended recipient who knows the secret key (the trapdoor information)
to solve the knapsack problem and reveal the plaintext message without having to do an exhaustive search.

The intended receiver and originator of the public and secret keys builds a secret structure into
the knapsack problem. The receiver generates the keys by first generating an “easy” knapsack vec-
tor, called a super-increasing vector, in which each weight is larger than the sum of the preceding
weights. The sum of the super-increasing knapsack vector is the heaviest possible knapsack. The
receiver then chooses a modulus m larger than this maximum weight and a multiplier a such that
m and a are relatively prime. The “hard” knapsack vector is constructed by multiplying the “easy”
vector by a, using modulus m arithmetic. The “hard’ knapsack vector, arranged in order of increas-
ing weight, forms the public (encryption) key. The “easy” vector, along with the values used for
m and a, are kept as the secret key.

Merkle and Hellman’s public-key system was based on special key pairs that were used to en-
crypt and decrypt plaintext. Briefly (see Computer Security, pp. 100-101), each character in the
plaintext was assigned a numerical value and all the numbers were then summed together. The
secret key enabled the individual numbers to be recovered and, from them, the plaintext.

‘ For the history of the trapdoor knapsack system, see Computer. Securit.v, one of the Understanding Computers series (Alexandria, VA:
Time-I,ife  Books, 1986), pp. 100-101; Davies & Price. Security for Computer IVetworks; An Introduction to Data Securitxy  in Teleprocessing
and Electronic Funds Transfer, (New York, NY: J. Wiley & Sons, 1984), p. 251; and Martin E. Hellman, “The Mathematics of Public-Key
Cryptography, ” Scientific ,4merican,  vol. 241, No. 2, August 1979, p. 148.
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lem of disputes between sender and receiver to be
resolved through the method of digital signatures. 22

The RSA system is based on a problem that is
even older than the knapsack problem: that of “fac-
toring” a large number (finding all the prime num-
bers that divide it evenly) .23 This is another com-
putationally “one-way” problem in that factoring
a large number takes much longer (by hand or by
computer) than does verifying that two or more
numbers are prime factors of the same large
number.

The proprietary RSA system is thought to be
based on the relative difficulty of finding two large
prime numbers, given their product. The recipient
(and originator of the key pair) randomly selects
two large prime numbers, called p and q. These
prime numbers are kept secret. Another (odd) in-
teger e is chosen, which must pass a special math-
ematical test based on values of p and q. The prod-
uct, n, of p times q and the value of e are announced
as the public encryption key. Even though their
product is announced publicly, the prime factors
p and q are not readily obtained from n. Therefore,
revealing the product of p and q does not com-
promise the secret key, which is computed from
the individual values of p and q.24

The RSA public (encrypting) key consists of two
integers, n and e, where n is the product n=(p)(q).

zzoth~~  ~UbliC.key  systems have  been developed, some e~fier  ‘hm
RSA, but have not gained as wide an acceptance in commercial mar-
kets. There continue to be new developments in public-key cryptogra-
phy (see, e.g., S. Goldwaaser, S. MicaIi, and R. Rivest, MIT Laboratory
for Computer Science, “A Digital Signature Scheme Secure Against
Adaptive Chosen Message Attack, Rev. Apr. 23, 1986), but some of these
are of more academic interest than immediate practicability for safe-
guarding communications.

23FOT  diassions  of the underlying  mathematics, see  Davies  & ~ice~

op. cit., ch. 8; Rivest Shamir, and Adelman  in the February 1978 Com-
mum”cations  of the ACM, and Hellman  in the August 1979 Scientific
American op. cit.; Computer Security, op. cit., pp.  112-115, has an illus-
trated example.

The relationship between the RSA exponential functions used to en-
cipher and decipher follows from an identity due to Euler and Fermat
which demonstrates the properties that e and d must have, givenp and

‘“ Zicerttin spWi~  v~ues  of (p)(q) can be factored easily—when P ~d
q are nearly equal, for instance. These special cases need to be avoided
in selecting suitable keys.

If each block of the plaintext message is repre-
sented as an integer between O and (n – 1), then en-
cryption is accomplished by raising the plaintext
to the eth power, modulus n.

The secret (signing and/or decrypting) key, d, is
computed from p, q, and e as the “multiplicative
inverse” of e, modulus (p–I)(q–1); that is, the
product of d and eis1,modulus(p–l)(q–1). Thus,
individual knowledge of p and q are thought to be
necessary to create the secret key. Decryption is
accomplished by raising the ciphertext to the dth
power, modulus n.

It is possible to break the RSA cipher if the prime
factors p and q can be determined by factoring the
value of n that was given in the public key. Many
factoring algorithms exist, some based on the work
of Fermat, Legendre, and Gauss. Others have been
developed more recently to take advantage of com-
puters and special processors to do fast factori-
zation.

Depending on the factorization method used, it
is possible to estimate the number of computa-
tional steps required to factor a number, n. The
number of steps and the speed with which they can
be performed determine the time required to fac-
tor n. The number of steps required to factor n—
thus, the work and time required to “break” the
RSA cipher by the factorization approach (finding
p and q)–increases rapidly as the number of digits
inn increases.25 Thus, an important feature of the

zsAccording t. Davies & Rice,  op.  cit., pp. 242-244, them-y shows
that, for the better-known factorization algorithms, the relationship be-
tween the number of steps and n is exponential. In the early 1980s, ex-
perimental work doing fast factorization using a number of techniques,
including special processors, pointed to a “limit” of 70 to 80 decimal
digits for factoring in one day.

Advances in theory and in microprocessor and computer technologies
can serve to make estimates of this type obsolete. For example, Rivest,
Shamir, and Adelman’s  1978 article in the Communications of the ACiV
(February 1978, p. 125) provided a table estimating the number of oper-
ations required to factor n using the fastest-known method then. As-
suming that a computer was used and that each operation took one
microsecond, the authors estimated that a 50-decimal-digit value of n
could be factored in under 4 hours, a 75-digit value in 104 days, a 100-
digit value in 74 years, and that a 200-decimal-digit n would require
almost 4 billion years to factor.
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RSA cipher is that the desired level of security
(measured by the work required to break the ci-
pher, or its “work factor”) can be tailored from a
wide range of levels simply by varying the num-
ber of digits in the key.

Davies and Price report on a new factorization
method using parallel computation by special,
large-scale integration (LSI) devices. Assuming
that the parallel LSI devices use 128-bit arithmetic
and run off a 1O-MHZ clock, a 100-decimal-digit
value of n would take a little over 2 years to fac-
tor, a 150-digit n would take 6,300 years to factor,
and a 200-digit n would take 860,000 years to fac-
tor.26 Current implementations of the cipher use
keys of 200 digits or longer; that is, the number
n has 200 or more decimal digits.

Rivest, Shamir, and Adelman formed RSA Data
Security, Inc., in 1982 and obtained an exclusive
license for their invention from MIT, which owned
the patent.27 RSA Data Security has developed
proprietary software packages implementing the
RSA cipher on personal computer networks. These
packages, being marketed commercially, provide
software-based communication safeguards, includ-
ing message authentication, digital signatures, key
management, and encryption. Another offering is
designed to safeguard data files and spreadsheets
being transmitted between intelligent worksta-
tions, electronic mail networks, and files being
stored locally. The RSA Data Security package
that safeguards electronic mail and spreadsheets
sells for about $250, including one copy of the pro-
gram, a key generating program, and a registered
and authenticated user identification number.

Digital Signatures
Encryption or message authentication alone can

only safeguard a communication or transaction
against the actions of third parties. They cannot
fully protect one of the communicating parties
from fraudulent actions by the other (forgery or

2%ee  Davies & Price, op. cit., pp. 243-244.
ZTOther  “~ver9ity  rese~ch  in cryptography has ~so  been Patented

and licensed. For instance, Stanford University has four cryptography
patents available for licensing on a non-exclusive basis, for a wide range
of potential applications (including protection of tape and disk drives;
time-shared computers; satellite, microwave, and mobile radio commu-
nications equipment; computer terminals; and electronic banking). Stan-
ford University considers that one of these patents (Public Key Crypto-
graphic Apparatus and Method, U.S. Patent #4,218,582, Aug. 19,1980,
Martin E. Hellman  and Ralph C. Merkle),  covers any public-key system
in any implementation.

Source: Letter dated 9/29/86 to OTA from Lisa Kuuttila,  Stanford
Office of Technology Licensing, Re: Stanford Dockets S77-012,-015, -048;
S78-080, “Encryption Technology. ”

repudiation of a message or transaction, for exam-
ple) and cannot in themselves resolve contractual
disputes between the two parties. Paper-based sys-
tems have long been based on mechanisms like let-
ters of introduction for identification of the par-
ties, signatures for authenticating a letter or
contract, and sealing a (physical) envelope for
privacy. The contractual value of paper documents
hinges on the recognized legal validity of the sig-
nature and on the laws against forgery.

It is possible to provide equivalent functions for
electronic documents by using a digital signature
to authenticate the contents and also prove who
originated the document (because only one party
knows the secret information used to create the
signature). A digital signature can be created using
a symmetric cipher (such as DES), but in general
asymmetric ciphers provide for more efficient oper-
ations. The digital signature method in most com-
mon use commercially is based on the RSA ci-
pher.28 The digital signature can be used with
encipherment if privacy is required.

The equivalent of a “letter of introduction” is
still necessary to verif y that the correct public key
is used to check the digital signature since an ad-
versary might try to spoof the signature system
by substituting his or her own public key and sig-
nature for the real author’s. This letter of intro-
duction could be accomplished by several means.
The RSA Data Security system provides “signed
key server certificates” by attaching the corpora-
tion’s own digital signature to the users’ public
keys so that users can attach their certified public
signature keys to their signed messages. Note that
although a public-key cipher system is used to set
up the digital signature system, the actual text of
the message can be sent in plaintext, if desired,
or it can be encrypted using DES or the public-
key cipher.29

The RSA Data Security digital signature sys-
tem works as follows:

First, a cryptographic “hashing” algorithm cre-
ates a shorter, 128-bit “digest” of the message. The
message digest, similar to a checksum, is virtually

28sw  Davie8  & price,  op. cit.,  ch.  9, for a general treatmerIt  of digit~

‘i%-?
atures  and alternative methods.
For example, if the RSA digital signature is used to sign and en-

crypt, the sender’s secret key is used to sign the message and the in-
tended recipient’s public key is used to encrypt the message. The recip-
ient uses his secret key to decrypt the message and the sender’s public
key to check the signature. In practice, the RSA digital signature sys-
tem is used to transmit a DES key for use in encrypting the text of
a message because DES can be implemented in hardware and is much
faster than using the RSA algorithm to encrypt text in software.
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unique30 to each text. If a single bit of the plain-
text message is altered, the message digest will
change substantially. A one-way hashing function
is used to prevent the document from being recon-
structed from the digest.

Next, the message digest is encrypted with the
author’s secret key.

31 In the RSA system, each
key is the inverse of the other; that is, each key
can decipher text enciphered with the other key.
Therefore, using Party A’s public key to decipher
a message into sensible plaintext proves that Party
A’s secret key was used to encipher the message.
The integrity of this system hinges on preventing
the secret key from being compromised and ensur-
ing that an imposter does not post his own public
key and pretend that it is the real Party A’s.

j(’According to the tender. the probabilit~  of two different plaint exts
ha~ing  the  same message digest is on the order of one in a trillion

‘1 Note that for ordinary encryption to preserte pri~acj,  th(’  rcclpl-
ent “s public key is the  one used LO encr}.pt.

The enciphered message digest is attached to the
text and both are sent to the intended recipient.
The recipient removes the appended message di-
gest and runs the text of the message through the
same hashing function to produce his own copy of
the message digest. Then, the recipient deciphers
the message digest that was sent along with the
message, using the supposed author’s public key.

If the two message digests are identical, then
the message did indeed come from the supposed
author and the contents of the text were received
exactly as sent, unless someone has learned the
author’s secret key and used it to forge a message
digest for a message of his own or one that he has
altered.

If the author wants to keep the text of the mes-
sage private, so that only the intended recipient
can read it, he or she can encrypt the signed mes-
sage, using the recipient’s public key. Then, the
recipient first uses his or her own secret key to
decrypt the signed message before going through
the procedure described above.


