The product-limit estimator for the distribution of lifetime cost, S(c) is given by:

~(c) -
$$^{\prime}H_{J< c}$$
 P_{J} ,

where c is a level of lifetime cost attained by a case who died.

j is a ranking from 1 to J for the J levels of lifetime cost attained by cases who died.

P_j is the proportion of cases surviving to attain higher cost levels among all cases observed to attain the jth cost level.

'n is the product calculated over all j less than c. $_{\mathbf{J} < \mathbf{c}}$

;(c) is the estimated proportion of all cases whose lifetime cost will be more than c.

The product-limit estimate of median lifetime cost is the cost level c for which S(c) - 0.5; the estimate of mean lifetime cost is the area beneath a plot of S(c); namely,

$$\hat{\mu} = \sum_{j} \hat{S}(c_{j}) (c_{j} - c_{j-1})$$

Ninety-five percent confidence limits are presented for this mean lifetime cost, using the variance estimator

$$Var(\sim) - {(A^2 \sim \%)/[n \sim (n \sim {}^{-d \sim})]}$$

where d_c is the number of cases who die at cost level c, and

n_c is the number of cases who attain a cost of c or more, and

 $\mathbf{A}_{c} = \sum_{\mathbf{J} > \mathbf{c}} (\mathbf{C})$ (Cj C.l-~)