Pesticide Residues in Food: Technologies for Detection

October 1988

NTIS order #PB89-136444

PESTICIDE RESIDUES IN FOOD

TECHNOLOGIES FOR DETECTION

ONGRESS OF THE UNITED STATES OFFICE OF TECHNOLOGY ASSESSMENT

Recommended Citation:

U.S. Congress, Office of Technology Assessment, Pesticide Residues *in* Food: Technologies *for Detection*, OTA-F-398 (Washington, DC: U.S. Government Printing Office, October 1988).

Library of Congress Catalog Card Number 88-600566

For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report)

Foreword

Pesticides are an integral part of agriculture today, but their use can lead to residues in agricultural products. Because of their potential adverse human health effects, the Federal Government sets limits on allowable levels of pesticide residues in food and animal feed and monitors these products to enforce those levels.

Federal monitoring and enforcement action is dependent on technical capability to detect pesticides. A major concern is that Federal regulatory agencies cannot practically monitor food for all pesticides of health concern. OTA was asked to assess whether existing and emerging technologies could improve Federal monitoring of pesticide residues in food. In addition, OTA examined the Federal research programs dedicated to improving Federal analytical capabilities for the detection of pesticides in food.

This study was requested by the House Committee on Energy and Commerce Subcommittee on Oversight and Investigations; the House Committee on Agriculture; and its Subcommittee on Domestic Marketing, Consumer Relations, and Nutrition. The Senate Committee on Agriculture, Nutrition, and Forestry and the House Agriculture Subcommittee on Department Operations, Research, and Foreign Agriculture endorsed the request.

OTA appreciates the valuable assistance of the study's workshop participants and observers, authors of commissioned technical papers, and the many other individuals from the public and private sectors who provided information throughout the course of this assessment and reviewed a draft of the report. As with all OTA studies, the content of this report is the sole responsibility of OTA.

OTA Workshop Participants: Technologies To Detect Pesticide Residues in Food, Mar. 14-16, 1988

Henry Conacher Food Research Division Health and Welfare Canada Ottawa, Canada

John Cowell

Environmental Sciences Department

Monsanto Co. St. Louis, MO

William Cusick

Chemistry Laboratory Services Department of Food and Agriculture

Sacramento, CA

Richard Ellis Chemistry Division

Food Safety and Inspection Service U.S. Department of Agriculture

Washington, DC

Silvia Canseco Gonzalez

Plant and Animal Health Office

Agriculture Department Cozoacan, Mexico City

Kenneth Hill

Environmental Chemistry Laboratory Agricultural Research Service U.S. Department of Agriculture

Beltsville, MD

Kenneth Hunter Westinghouse Bio-Analytic Systems Corp.

Rockville, MD

Lyle Johnson

Analytical Bio-Chemistry Laboratories, Inc.

Columbia, MO

Bruce Kropscott Analytical and Environmental Chemistry

Dow Chemical Co./USA

Midland, MI

Harry Lento

Corporate Analytical Chemistry

Campbell Soup Co.

Camden, NJ

Julius Menn

Plant Science Institute

Agricultural Research Service

U.S. Department of Agriculture

Beltsville, MD

Ralph Mumma

Pesticide Research Laboratory Pennsylvania State University

University Park, PA

W. Harvey Newsome Pesticide Section

Food Research Division

Health and Welfare Canada

Ottawa, Canada

Cynthia Peck

Analytical and Environmental Chemistry

Dow Chemical Co./USA

Midland, MI

Jack Plimmer

Environmental Chemistry Laboratory

Agricultural Research Service U.S. Department of Agriculture

Beltsville, MD

Leon Sawyer

Center for Food Safety and Applied Nutrition

Food and Drug Administration

U.S. Department of Health and Human Services

Washington, DC

Jim Seiber

Department of Environmental Toxicology

University of California

Davis, CÅ

Sarah Taylor

Congressional Research Service

The Library of Congress

Washington, DC

Charles Trichilo

Residue Chemistry Branch

Office of Pesticides and Toxic Substances

Environmental Protection Agency

Washington, DC

NOTE: OTA appreciates and is grateful for the valuable assistance and thoughtful critiques provided by the workshop participants. The workshop participants do not, however, necessarily approve, disapprove, or endorse this report. OTA assumes full responsibility for the report and the accuracy of its contents.

OTA Project Staff Pesticide Residues in Foods: Technologies and Methodologies for Detection

Roger C. Herdman, Assistant Director, OTA Health and Life Sciences Division

Walter E. Parham, Food and Renewable Resources Program Manager

Susan Shen, Project Director

Contractors

H. Anson Moye, *University of Florida*Allen Ruby, *In-House Contractor*Lisa Olson, *Editor*

Adminisrative ● aff

Ellis Lewis, Administrative Assistant
Nellie Hammond, Secretary
Carolyn Swann, Secretary

Abbreviations and Acronyms

ADI	—Acceptable Daily Intake	LC	-liquid chromatography
AFID	—alkali flame ionization detector	LIMS	—Laboratory Information Management
AOAC	—Association of Official Analytical		Systems
	Chemists	LOQ	—limits of quantitation
CCPR	—Codex Alimentarius Committee on	LUO	—laboratory unit operations
	Pesticide Residues	MOG	-Mills, Onley, and Gaither
CDFA	-California Department of Food and	MOU	-memorandum of understanding
	Agriculture	MRP	—multiresidue procedure
CES	—compound evaluation system	MRL	—maximum residue limits
CFSAN	-Center for Food Safety and Applied	MRM	—multiresidue method
	Nutrition (of FDA)	MS	—mass spectrometry
DDT	—dichlorodiphenyl trichloroethane	MSD	—mass selective detector
ECD	—electron capture detector	NBS	—National Bureau of Standards
EDB	—ethylene dibromide	NOEL	—No Observable Effect Level
ELISA	-enzyme-linked immunosorbent assay	NPD	—nitrogen-phosphorus detector
EPA	—Environmental Protection Agency	NRP	—National Residue Program
FDA	—Food and Drug Administration	NTIS	—National Technical Information Service
FFDCA	-Federal Food, Drug, and Cosmetic	OMA	—Official Methods of Analysis
	Act	PAM	—Pesticide Analytical Manual
FIA	—Federal Insecticide Act	Рc	—paper chromatography
FIFRA	-Federal Insecticide, Fungicide, and	PCB	—polychlorinated biphenyls
	Rodenticide Act	PICRC	—Pesticide and Industrial Chemicals
FMIA	—Federal Meat Inspection Act		Research Center (of FDA)
FOI	—Freedom of Information	RRT	—relative retention time
FPD	—flame photometric detector	SF	—supercritical fluid
FR	—Federal Register	SFC	—supercritical fluid chromatography
FSIS	—Food Safety and Inspection Service	SFE	—supercritical fluid extraction
FTE	—full-time equivalents	SI	—Surveillance Index
GC	-gas chromatography	SIM	—single ion monitoring
GLC	-gas liquid chromatography	SPE	—solid phase extraction
GPC	—gel permeation chromatography	SRM	-single residue method
HECD	—Hall microelectrolytic conductivity	TDRC	-Total Diet Research Center (of FDA)
11202	detector	TDS	-Total Diet Study
HPLC	-high performance liquid chroma-	TLC	—thin layer chromatography
III LC	tography	UAR	—unidentified analytical response
IR	—infrared (detector)		RS—United States Department of Agricul-
ITD	—ion trap detector	22211111	ture/Agricultural Research Service
I UPAC	—International Union of Pure and Ap-	UV/VIS	—ultraviolet-visible (light detector)
101710	plied Chemistry		(1910)
	phot chemistry		