Part IV

Availability of Rural Health Personnel

Chapter 10

The Supply of Health Personnel in Rural Areas

CONTENTS

Page
INTRODUCTION 219
PHYSICIANS 219
National Supply 219
Rural Supply. 232
MIDLEVEL PRACTITIONERS 249
Nurse Practitioners 250
Physician Assistants 252
Certified Nurse-Midwives 256
Certified Registered Nurse Anesthetists (CRNAs) 257
NURSES 259
National Supply 259
Rural Supply 265
OTHER HEALTH PROFESSIONALS 268
Dentists 268
Pharmacists 272
Optometrists 274
Allied Health Professionals 275
SUMMARY OF FINDINGS 282
physicians 282
Midlevel Practitioners 282
Nurses 283
Other Health Professionals 283
Boxes
Box Page
1O-A. Provider Profile: Physicians 220
10-B. Provider Profiles: Midlevel Practitioners 250
10-C. Provider Profiles: Nurses 259
10-D, Provider Profile: Dentists 269
10-E. Provider Profile: Pharmacists 272
10-F. Provider Profile: Optometrists 274
10-G. Provider Profiles: Allied Health Professionals 279

Figures

Figure Page
10-1. Supply of Physicians (MD and DO) by Sex: Estimated 1980 and 1986, Projected 1990 and 2000 231
10-2. Number of Counties Without Selected MD Specialties by Metropolitan/Nonmetropolitan Status, 1988 245
10-3. Distribution of Nurse Practitioners by Community Size, 1988 251
10-4. Distribution of Physician Assistants by Community Size, 1989 256
10-5. Employment Status of Registered Nurses in the United States, Selected Years, 1977-1988 260
10-6. Employed Registered Nurses (RNs) Per 100,000 Residents in the United States by State, March 1988 263
10-7. Registered Nurses (RNs) and Licensed Practical/Vocational Nurses (LP/VNs) in U.S. Community Hospitals: Total FTEs and FTEs per 100 Patients, 1981-88 266
10-8. First Year Enrollment in U.S. Schools of Pharmacy, Academic Years 1969-70 Through 1985-86 273
Tables
Table Page
10-1. Supply of Physicians (MDs) in the United States, Selected Years, 1963-88 219
10-2. Supply of Professionally Active Physicians (MDs and DOS) in the United States: Estimated 1986 and Projected 1990, 2000, 2030 221
10-3. Estimates of Physician Supply, Requirements, and Surplus, 1990 and 2000 221
10-4. Supply of Non-Federal MDs by State, 1980, 1985, 1988 222
10-5. Number of Professionally Active MDs Per 100,000 Residents by Region and State: Estimated 1986 and Projected 1990 and 2000 224
10-6. Enrollments and Graduates of Allopathic (MD) and Osteopathic (DO) Medical Schools: 1981-82, 1986-87, and Projected 1991-92 225
10-7. Supply of Active MDs in the United States by Specialty, 1970, 1980, and 1988 227
10-8. Professionally ActiveMDs in Primary Care: Rate Per 100,000 Residents and Distribution by Specialty, 1981 and 1988 229
10-9. Number of Professionally Active MDs in Primary Care and Nonprimary Care: Estimated 1986 and Projected 2000 and 2020 230
10-10. American Medical Association (AMA)Projected Changes in Physician Supply and Utilization by Specialty, 1985-2000 230
10-11. Comparison of Canadian and American Physician Supply for Selected Specialties, 1985 231
10-12. Distribution of MDs by Major Professional Activity, Selected Years, 1970-88 232
10-13. Board-Certified Osteopathic Physicians (DOs) by Specialty, 1986 233
10-14. Distribution of Osteopathic Physicians (DOs) by Geographic Region and State, 1986 234
10-15. Supply of Professionally Active Physicians in Primary Care and Nonprimary Care by Type of County, 1979 and 1988 235
10-16. Supply of Primary Care MDs by Specialty and Type of County, 1975 and 1988 236
10-17. Professionally Active MDs, Primary Care MDs, and DOs per 100,000 Residents in Metropolitan and Nonmetropolitan Areas by Region and State, 1987/1988 237
10-18. Physician-To-Population Ratios (1985), Percentage of DOs (1985), and Percent Change in Ratios (1975-85) in Small Nonmetropolitan Counties, by Region and State 239
10-19. Average Number of Hospital Medical Staff in SelectedSpecialties by Hospital Bed Size and Metropolitan/Nonmetropolitan Status, 1987 240
10-20. Average Travel Time to Physicians for Metropolitan and Nonmetropolitan Residents, 1983 242
10-21. Average Travel Time to Physicians for Nonmetropolitan Residents by Incomes Above or Below the Federal Poverty Level, 1983 243
10-22. Number and Resident Population of Nonmetropolitan Counties Without a Professionally Active Physician (MD or DO), 1988 244
10-23. Number and Resident Population of Counties Without a Primary Care MD by Type of County, 1988 244
10-24. Total MDs, Patient Care MDs, and Office-Based MDs Per 100,000 Residents by Type of County, 1979 and 1988 246
10-25. Supply of Primary Care Physicians in Metropolitan, Nonmetropolitan, and Small Nonmetropolitan Counties, 1975 and 1985 247
10-26. Foreign Medical Graduate (FMG) Physician Supply in Small U.S. Nonmetropolitan Counties, 1975 and 1985 248
10-27. Distribution of Primary Care MDs by Age in Metropolitan and Nonmetropolitan Counties, 1975 and 1985 248
10-28.Practice Location Preferences of Allopathic Medical School Seniors, 1979 and 1989. 249
10-29. Characteristics of Practicing Nurses Practitioners (NPs) by Community Population Size, 1988 252
10-30. Number of Physician Assistants (PAs), 1987, and Number of PA Training Programs, 1989, by Region and State 253
10-31. Distribution of Physician Assistants by Specialty, 1978 and 1986 254
10-32. Characteristics of Practicing Physician Assistants by Community Population Size, 1989 255
10-33. Distribution of Practicing Certified Nurse-Midwives (CNMs) by Community Population Size, 1982 and 1987 257
10-34. Number of Nurse Anesthetist Training Programs and Graduates, 1976-90 257
10-35. Supply of Certified Registered Nurse Anesthetists (CRNAs) and MD Anesthesiologists by State, 1986, Ranked by CRNAs and MD Anesthesiologists Per 100,000 Residents 258
10-36. Estimated Supply of Registered Nurses (RNs) Employed in Nursing by Region and State, 1980, 1984, and 1988 261
10-37. Registered Nurse (RN) and Licensed Practical/Vocational Nurse (LP/VP) Supply in U.S. Community Hospitals, 1981-88 263
10.38. Estimated Supply of Licensed Practical/Vocational Nurses (LP/VNs) by Region, 1983. 264
10-39. Registered Nurses (RNs) Employed in Nursing, 1988, and Employed Licensed Practical/ Vocational Nurses (LP/VNs), 1983, by Primary Employment Setting 264
10-40. Number of Programs Preparing Registered Nurses (RNs) and Licensed Practical/ Vocational Nurses (LP/VNs) and Number of Graduates: 1976-77 and 1981-82 through 1988-89 265
10-41. Metropolitan/Nonmetropolitan Distribution of Registered Nurses (RNs) Employed in Nursing in the United States by Region, 1980 and 1988 266
10-42. Estimated Number and Distribution of Registered Nurses Employed in Nursing by County Population Size, 1988 267
10-43. Characteristics of Registered Nurses (RNs) Employed in Nursing by County Population Size, 1988 268
10-44. Estimated Supply of Registered Nurses (RNs) and Licensed Practical Vocational Nurses (LP/VNs) in U.S. Registered Community Hospitals by Metropolitan/Nonmetr6politan, Frontier, and Sole Community Hospital Status, 1987 270
10-45. Supply and Distribution of Active Dentists by General and Specialty Practice, 1970, 1980, and 1986 271
10-46. Number of General Practice and Pediatric Dentists and Other Specialty Dentists Per 100,000 Residents by Type of County, 1981 and 1987. 271
10-47. Supply of Active Dentists in the United States: Estimated 1988 and Projected 1990-2020 272
10-48. Number of Dentists Per 100,000 Residents and Number of Counties Without General Practice or Pediatric Dentists by Type of County, 1987 272
10-49. Supply of professionally Active Pharmacists, Selected Years: Estimated 1970-1988, and Projected 1990-2020. 273
10-50. Supply of Professionally Active Optometrists, Selected Years: Estimated 1970-1988, and Projected 1990-2020 274
10-51. Number of Cities With Optometrists and Ophthalmologists by State, 1983 276
10-52. Distribution of optometrists by Community Population Size, 1989 277
10-53. Estimated Supply of Selected Allied Health Personnel Employed in the United States: 1970, 1975, 1980, and 1986, and Percent Change, 1975-86 278
10-54. Provider-to-Population Ratios for Selected Allied Health Professionals by Metropolitan/ Nonmetropolitan Area, 1980 281

The Supply of Health Personnel in Rural Areas

INTRODUCTION

The health care services in rural areas' depend on the presence and skills of the professionals who provide them.

The rural supply of health professionals is dependent on both the size of the national pool of professionals and the distribution of that pool between urban and rural areas. Reduction in the size of the national pool of health professionals may have a greater impact on rural than on urban areas. Conversely, increases in the national pool may not be reflected uniformly across all areas.

This chapter describes the supply of physicians, ${ }^{2}$ midlevel practitioners, ${ }^{3}$ nurses, and selected other
health professionals nationwide and in rural areas. ${ }^{4}$ Although there are no uniformly accepted standards of adequacy against which to compare these supply figures, this chapter presents trends over time and contrasts availability across urban and rural areas to lend some insight into relative adequacy.

PHYSICIANS

National Supply

Over the last two decades, physician supply relative to the U.S. population has greatly increased. From 1963 to 1988, the total number of physicians (MDs only) in the United States more than doubled (table 10-1), while the U.S. population increased by only 31 percent (39,671). 6 The total physician-to-

Table 10-1—Supply of Physicians (MDs) in the United States, Selected Years, 1963-88a

	Aggregate supply						Percent change, 1963-88
	1963	1973	1978	1983	1985	1988	
Total physicians. . . .	276, 475 ${ }^{\text {c }}$	366,379	437,486	519,546	552,716	585,597	111.8
Physicians per 100,000 population. .	146	174	196	218	228	237	62.3
Total U.S. population (in thousands)	189,242	210,908	223,400	238,189	242,946	247, 508 ${ }^{\text {d }}$	30.8

${ }^{2}$ Data for 1988 as of Jan. 1. Data prior to 1988 as of Dec. 31.
bIncludes MDs i_{n} patient care, research, administration, and 'caching; MDs in Federal service; and inactive MDs . Includes 1,335 physicians, addresses unknown, who are not distributed according to sources of medical educ at ion.
c 1987 population estimates were used to calculate 1988 MD ratios. Prior to 1988 , population estimates used were for the same year as MD data.
d_{1987} population estimate.
SOURCES : U.S. Department of Health and Human Services, Health Resources and Services Administration, Sixth Report to the President \& Congress on the Status of Health Personnel in the United States, D H S Pub. No. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 3-1; American Medical Association, unpublished data, provided by staff at the U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Rockville, MD, 1990.

[^0]
Box 10-A—Provider Profile: Physicians

Both allopathic (MD) and osteopathic (DO) physicians undergo 4 years of undergraduate medical training (671). In 1989 there were 126 colleges of allopathic medicine and 15 colleges of osteopathic medicine in the United States (673). Allopathic schools teach traditional medicine, while osteopathic schools take a more holistic approach and emphasize the importance of the musculoskeletal system in the overall health of an individual (148). The curricula in allopathic and osteopathic schools, however, have become more similar over the years, and the quality of osteopathic physicians has been increasingly recognized by Federal and other groups (148).

After graduating, allopathic and osteopathic physicians can begin general practice or enter a residency program in their chosen specialty. Residency programs last from 3 to 7 years, depending on the specialty (673). Graduates of osteopathic schools can enter either allopathic or osteopathic residency programs, although the vast majority spend their first postgraduate year in an osteopathic internship as required by the American Osteopathic Association (673).

On completion of residency training, physicians can take a certification examination in their medical specialty. Compared with approximately onefourth of osteopathic physicians, most allopathic physicians today are board-certified specialists (671).
population ratio ${ }^{7}$ increased by 62 percent over this period, and it is projected to continue to increase further through the year 2020 (table 10-2) (673). ${ }^{89}$ This growth was largely due to Federal and State efforts in the 1960s and early 1970s to combat a perceived physician shortage (129).

In the early 1980s, Federal efforts leveled off after the Graduate Medical Education National Advisory Committee (GMENAC) predicted an oversupply of
physicians by the year 1990 (654). Since the GMENAC report, supply forecasting methodology and results have been extensively debated and revised. Table 10-3 compares three alternative sets of projections for the years 1990 and 2000. Recently, the Council on Graduate Medical Education (COGME) reviewed and critiqued various projections and concluded that, in the aggregate, there is now or soon will be an oversupply of physicians in the United States, but that the extent of the oversupply is impossible to quantify at present (672). It also concluded that the supply of primary care physicians is in jeopardy, and that expansions in training programs will be needed to prevent future shortages (672).

Despite considerable growth in aggregate physician supply, there were still 1,944 designated primary care Health Manpower Shortage Areas (HMSAs) in 1988, with a resident population of almost 34 million (see table 11-5). An estimated 4,104 primary care physicians would have been required to remove these designations. Twenty-nine percent of all rural residents lived in primary care HMSAs in 1988, compared with 9.2 percent of urban residents (see table 11-5). ${ }^{10}$

National figures obscure considerable State and regional variations in physician supply. In 1988, when the national ratio was 229 non-Federal ${ }^{11}$ MDs per 100,000 residents, ratios in the States ranged from a low of 135 in Mississippi to a high of 349 in Maryland (table 10-4) (39). Not all of these physicians provided patient care; the number of MDs in direct patient care per 100,000 residents ranged from 115 in Idaho to 270 in Massachusetts (table 10-4) (39).

Table 10-5 shows projections of the number of active MDs per 100,000 residents in each State, geographic region, and division for 1990 and 2000. In 1986, when the national ratio was 216 per 100,000 , the East South Central division had the

[^1]Table 10-2-Supply of Professionally Active Physicians (MDs and DOS) in the United States: Estimated 1986 and Projected 1990,2000, and 2020

Table 10-3—Estimates of Physician Supply, Requirements, and Surplus, 1990 and 2000°

Data source	1990			2000		
	supply	Requirements	Surplus	supply	Requirements	Surplus
BHPr ${ }^{\text {², }}$	597,040	570,500	26,540	708,600	637,000	71,600
Original GMENAC ${ }^{\text {c }}$	535,750	466,000	69,750	642,950	498,250	144,700
Revised GMENAC.	535,750	473,000	62,750	642,950	505,750	137,200
AMA',	592,000	NA	NA	693,000	NA	NA

NOTE: NA = not available.
${ }^{\text {a }}$ Includes osteopathic physicians.
bTh Bureau of Health professions (BHPr) model assumes that residents $=1.00$ full-time equivalent (FTE).
${ }^{c}$ The Graduate Medical Education National Advisory Committee (GMENAC) model assumes that residents " . 35 FTE.
'This model also assumed that residents $=.35 \mathrm{FTE}$.
eTh American Medical Association (AMA) model assumes that residents $=1.00 \mathrm{FTE}$.
SOURCES: U.S. Department of Health \& Human Services, Health Resources and Services Administration, Bureau of Health Professions, Division of Medicine, Council on Graduate Medical Education: First Report of the Council, vol. II (Rockville, MD: July 1, 1988); Weiner, J.P., "Forecasting Physician Supply: Recent Developments," Health Affairs vol. 8, No. 4, pp. 173-179, winter 1989, Exhibit 1. Based on data from: W.D. Marder, P.R. Kletke, A.B. Silberger, et al., PhysicianSupply and Utilization by Specialty: Trends and Projections (Chicago, IL: American Medical Association, 1988); M.A. Bowman, J.M. Katzoff, Garrison, L.P., et al., "Estimates of Physician Requirements for 1990 for the Specialties of Neurology, Anesthesiology, Nuclear Medicine, Pathology, Physical Medicine and Rehabilitation, and Radiology, " Journal of the American Medical Association vol. 250, No. 19, pp. 2623-2627, November 1983; U.S. Department of Health \& Human Services, Health Resources Administration, Office of Graduate Medical Education, Report of the Graduate Medical Education National Advisory Committee (GMENAC) to the Secretary of the Department of Health and Human Services, vol. I: Summary Report, DHHS pub. No. (HRA) 81-651 (Washington, DC: U.S. Government Printing Office, April 1981); U.S. Department of Health \& Human Services, Health Resources and Services Administration, Bureau of Health Professions, Sixth Report to the President \& Congress on the Status of Health Personnel in the United States, DHHS Pub. No. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988).

Table 10-4-Supply of Non-Federala ${ }^{\text {a }}$ MDs by State, 1980 , 1985, and $1988^{\text {b }}$

Table 10-4—Supply of Non-Federala ${ }^{\text {a }}$ MDs by State, 1980, 1985, and 1988^{b}-Continued

State	1980		1985		1.988		Percent change in rate, 1980-1988	Non-Federal patient care MDs per 100,000 civilian residents, 1988
	```Total non- Federal MDs```	```Rate per 100,000 civilian residents}\mp@subsup{}{}{c```	```Total non- Federal MDs```	```Rate per 100,000 civilian residents}\mp@subsup{}{}{c```	```Total non- Federal MDs```	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { civilian } \\ & \text { residents } \end{aligned}$		
West Virginia.	2. 745	241	3,319	$17{ }^{7}$	3,396	179	27.0	152
Wisconsin.	. 859	166	8,969	$18{ }^{\circ}$	9,491	197	18.7	167
Wyoming.	567	120	707	140	719	147	2z. 5	126
Total ${ }^{\text {d }}$.	439,301	195	522,315	220	554,155	229	17.4	189

a"Federal" and "non-Federal" status are self-reported. Physicians are asked to list their status as "Federal" if they are military, Public Health Service, Veterans Administration, or other.
$\mathrm{b}_{\mathrm{MD}}$ data for 1988 as of Jan. 1. Prior MD data as of Dec. 31.
${ }^{c} 1987$ population estimates were used to calculate 1988 MD ratios. Prior to 1988 , population estimates used were for the same year as MD
data.
Excludes physicians and residents in the U.S. possessions.
SOURCE: American Medical Association, unpublished data, provided by staff at the U.S. Department of Hea: th and Human Serv: ces, Health Resources and Services Administration, Bureau of Health Professions, Rockville, MD, 1990.

Table 10-5—Number of Professionally Active MDs Per 100,000 Residents by Region and State: Estimated 1986 and Projected 1990 and 2000

	MDs per 100,000 residents			Percent change	
	1986	1990	2000	1986-1990	1986-2000
United States ${ }^{\text {b }}$. .	216.4	223.4	247.8	6.2	17.6
Hortheast...	270.2	303.0	372.7	11.8	37.7
New England.	283.3	314.2	387.2	10.6	36.4
Connecticut.	294.1	327.0	402.1	10.9	36.7
Maine.	165.6	176.5	207.7	6.0	25.4
Massachusetts.	330.7	378.4	496.2	14.2	49.9
New Hampshire.	175.6	174.5	172.3	-0.5	-1.6
Rhode Island. . . .	236.1	259.7	317.0	9.7	33.9
Vermont.	254.5	269.2	305.4	5.5	19.6
Middle Atlantic.	265.7	299.0	367.1	12.4	38.0
New Jersey.	223.4	244.4	282.5	9.4	26.4
New York.	308.1	354.9	444.8	14.9	44.1
Pennsylvania. . . . . . .	229.4	255.6	319.4	11.3	39.2
Midwest.	194.5	207.3	243.2	6.2	24.7
East North Central . .	195.8	208.1	244.4	6.1	24.5
Illinois.	225.5	245.5	295.5	8.9	31.0
Indiana.	152.1	159.2	184.2	4.6	21.0
Michigan.	188.4	195.7	224.4	3.7	19.1
Ohio.	195.6	210.4	253.6	7.2	29.7
Wisconsin. . . . . . . .	188.8	195.8	217.2	3.7	14.8
West North Central . . . . . . . .	191.4	205.4	240.4	7.3	25.6
Iova.	156.4	160.6	186.0	2.6	18.5
Kansas . . . . . . . . . . . . . . .	188.3	202.4	234.6	7.4	24.4
Minnesota.	232.5	251.1	298.6	7.7	28.4
Missouri. .	193.7	211.2	249.3	8.8	28.4
Nebraska.	179.0	189.2	210.2	5.6	17.3
North Dakota.	162.7	172.3	193.7	5.5	19.1
South Dakota.	138.3	149.2	171.5	7.2	23.9
south	182.7	184.9	194.5	4.0	9.6
South Atlantic.	206.0	198.0	206.8	4.2	9.0
Delaware.	181.4	201.0	232.7	10.5	28.1
District of Columbia.	731.3	998.8	587.8	36.5	117.1
Florida.	181.0	173.4	153.0	-3.8	-15.4
Georgia.	163.7	177.3	191.8	7.9	17.1
Maryland.	358.7	396.0	465.0	10.3	29.6
North Carolina.	174.4	187.6	208.9	7.5	19.5
South Carolina. .	148.2	150.9	154.3	1.3	4.0
Virginia.	210.2	227.6	257.7	8.1	22.4
West Virginia	169.3	173.5	201.1	2.4	18.3
East South Central . . . . . .	161.2	167.5	186.6	3.7	15.5
Alabama	147.5	154.6	170.7	4.7	15.6
Kentucky.	166.5	170.8	192.5	2.4	15.6
Mississippi.	132.3	138.3	154.0	4.5	15.9
Tennessee.	184.6	191.4	212.4	3.3	14.6
West South Central. .	165.3	173.1	178.6	4.2	7.9
Arkansas. .	146.8	149.3	158.6	1.4	7.5
Louisiana.	176.7	183.4	196.1	3.4	10.8
Oklahoma.	149.0	158.1	178.3	6.0	19.5
Texas. . . . . . . . . .	168.2	176.9	177.1	4.8	4.8
West.	228.1	235.6	245.3	3.1	7.5
Mountain.	188.2	180.2	171.2	-4.2	-8.9
Arizona. .	187.3	173.7	149.7	-6.8	-19.7
Colorado. .	230.7	227.7	224.5	-1.2	-2.5
Idaho..	134.1	127.0	132.5	-5.1	-0.6
Montana.	161.3	163.0	182.8	0.6	13.0
Nevada.	158.5	141.1	119.9	-10.6	-23.9
New Mexico	186.5	208.4	243.0	11.3	30.0
Utah.	185.6	170.1	156.6	-8.0	-15.5
Wyoming . . . . . . . . . . . . .	141.2	115.6	104.9	-17.6	-25.4

Table 10-5—Number of Professionally Active MDs Per 100,000 Residents by Region and State: Estimated 1986 and Projected 1990 and 2000-Continued


Table 10-6-Enrollments and Graduates of Allopathic (MD) and Osteopathic (DO) Medical Schools: 1981-82,1986-87, and Projected 1991-92


NOTE: For allopathic and osteopathic schools, first-year enrollments are actual for 1981-82 and 1986-87 and are projected for 1991-92; graduates are actual for 1981-82 and 1986-87 and are projected for 1991-92. MD first-year enrollments include students transferring from 2-year schools, other degree programs, and foreign medical schools. DO first-year enrollments and graduates for 1986-87 are preliminary estimates.
SOURCE: U.S. Department of Health \& Human Services, Health Resources and Services Administration, Bureau of Health Professions, Seventh Report to the President \& Congress on the Status of Health Personnel in the United States, DHHS Pub. No. HRS-P-OD-90-1 (Rockville, MD: HRSA, June 1990), table VI-A-11.
lowest ratio (161) and New England had the highest (283) (673). ${ }^{12}$ Although most States may expect an increase in coming years, substantial decreases are projected for some (e.g., Colorado, Nevada, and Wyoming) (673).

Doctors of osteopathy (DOs) represent a small but increasing proportion of total active physicians in
the United States (table 10-2) (673). Their growth in importance is expected to continue into the next century, even though enrollments in both osteopathic and allopathic schools are projected to decrease (table 10-6) (673). The number of osteopathic medical schools increased from 5 in 1968 to 15 in 1989 (148). ${ }^{13}$ As of September 1, 1989,

[^2]there were 27,627 active DOS in the United States (711).

Distribution by Specialty: Primary v. Nonprimary Care

Growth in physician supply has been accompanied by a trend towards more specialized practice. The period 1970 to 1988 saw a 68 percent increase in the total number of professionally active MDs, but the number of MDs in general/family practice increased by only 20 percent during this time (table 10-7) $(39,671)$. Specialties experiencing the greatest increases in absolute number during this period included radiology, ${ }^{14}$ plastic surgery, gastroenterology, neurology, pulmonary and cardiovascular specialties, and anesthesiology $(39,671)$.

This trend towards specialization has widened the gap between supplies of primary and nonprimary care physicians. ${ }^{\text {s }}$ Between 1981 and 1988, MD-topopulation ratios increased more quickly for nonprimary care specialists than for primary care physicians (table 10-8) $(39,672)$. Furthermore, ratios for family/general practitioners showed the smallest increase ( 8 percent) of the three primary care specialties for which information is available (table 10-8). The slower rates of increase for primary care MDs in general, and for family and general practitioners in particular, are projected to continue through the year 2020 (table 10-9) (673). The AMA predicts that, unlike the supply of other physicians, the supply of general and family practitioners and general surgeons will not keep pace with growth in the demand for their services (table 10-10) (369).

A recent study examined data from the 1983 and 1987 Association of American Medical Colleges Graduation Questionnaire to determine trends in evolution of specialty choice among allopathic medical school seniors. During this period, the number of seniors indicating a choice for any primary care specialty decreased, with the most dramatic decrease occurring in general internal
medicine (65). Specialties showing the greatest increases among male seniors included the pediatric and internal medicine subspecialties, rehabilitation medicine, and public health (65).

Primary care physicians are almost twice as likely as nonprimary care physicians to practice in rural areas. In 1988, 15.9 percent of all professionally active primary care physicians (MDs and DOS) were in rural areas, compared with 8.0 percent of active nonprimary care physicians (MDs only) (686). ${ }^{16}$ The trend towards nonprimary care will thus have a disproportionately negative effect on rural areas.

The proportion of primary care MDs who are office-based has declined as more of these physicians enter research, administration, teaching, and hospital-based positions (68). Rural areas have suffered more than urban areas from this trend. From 1963 to 1986, the ratio of office-based primary care MDs to area residents increased by 2 percent in urban areas but decreased by 8 percent in rural areas (68).

## Trends in the Supply of General and Family Practitioners

The "classic" primary care physician is the family practitioner (FP). This specialty was first recognized in 1969 with the establishment of the American Board of Family Practice (11). The predecessors of board-certified FPs were general practitioners (GPs), who received no specialty training and typically went into practice after 1 year of graduate internship. GPs still make a significant contribution to the primary care work force, but their numbers have been decreasing. In 1963 there were over 73,000 GPs in the United States. By 1986, there were only slightly more than 25,000 GPs, and most (60 percent) were over the age of $55(11,68)$. In 1940, approximately 75 percent of physicians in patient care were GPs (37). By 1970, general and family practitioners (combined) represented only 19 per-

[^3]Table 10-7-Supply of Active MDs in the United States by Specialty, 1970, 1980, and 19888 b-Continued

	Active MDS						Percent change in in number, 1970-1988
	1970		1980		1988		
	Number	Rate per 100,000 residents	Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	
Physical medicine and rehabilitation. . , . . . . . . .	1,479	0.7	2,146	0.9	3,729	1.5	152.1
Psychiatry.	21,146	10.2	27,481	11.9	33,679	13.6	59.3
Public health	3,833	1.8	3,126	1.4	3,050	1.2	-20.4
Radiology ${ }^{\text {² }}$.	3,360	6.4	20,282	8.8	26,833	10.8	698.6
Other and unspecified. .	19,415	9.3	23,798	10.3	24,779	10.0	27.6

a Includes Federal MDs and MDs in U.S. possessions. Data for 1988 are as of Jan. 1. Data for 1970 and 1980 are as of Dec. 31. bI its publication of 1981 data, the American Medical Association (AMA) began differentiating additional subspecialists in internal medicine, pediatrics and surgery. Separate estimates were made available for internal medicine subspecialties of allergy and immunology, diabetes, endocrinology, geriatrics, hematology, immunology, infectious diseases, nephrology, nutrition, oncology and rheumatology. Separate estimates in pediatrics were provided for the subspecialties of adolescent medicine, neonatal-perinatal medicine, peiatric endocrinology, pediatric hematology/oncology, and pediatric nephrology. Separate estimates for surgical subspecialties were made available for abdominal surgery, cardiovascular surgery, hand surgery, head and neck surgery, pediatric surgery and traumatic surgery. In this table, these subspecialties were formerly included in AMA published data under internal medicine, pediatrics and general surgery. When excluded from these categories, the total number of general internists, general pediatricians, and general surgeons presented for 1988 decrease to 72,038 , 34,669 , and 32 , 339 , respectively.
cRatlos are based on total population plus civilian population in U.S. possessions. 1987 population estimates were used to calculate 1988 MD ratios.
dAdiustedtoincludeMDswhoseaddresseswereunknown or who were not classified according to specialty.
frcilides MDs who were inactive, not classified according to specialty, or whose addresses were unknown.
Includes forensic pathology.
${ }^{8}$ Includes general preventive medicine.
includes diagnostic and therapeutic radiology, radiation oncology, and nuclear medicine.
${ }^{1}$ Includes emergency medicine.
SOURCES: U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Sixth Report to the President \& Congress on the Status of Health Personnel in the United States, DHHS Pub. No. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 3-3; American Medical Association, unpublished data, provided by staff at the U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Rockville, MD, in 1990.
Table 10-7-Supply of Active MDs in the United States by Specialty, 1970, 1980, and 1988a ${ }^{\text {b }}$

	Anat..- Mn-						Percent change in in number, 1970-1988
	$4 / 11$		1980		1988		
	umb	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	Number	$\begin{aligned} & 100,000 \\ & \text { residents }{ }^{\text {c }} \end{aligned}$	Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	
Estimated active ${ }^{\text {u }}$	314,196	150.0	440,357	190.4	536.185	216.6	70.7
Professionally active ${ }^{\text {e }}$	310,845	149.4	414.916	179.4	521.328	$210 \cdot 6$	67.7
General and family pract ce	57,948	27.8	60,049	26 。	69,339	28 -	19.7
Medical Specialties	77,214	37.1	125,755	54.4	170,502	68.9	120.8
Allergy.	1,719	0.8	1,518	0.7	1,471	0.6	-14.4
Cardiovascular diseas	6,476	3.1	9,823	4.2	15,132	6.1	133.7
Dermatology.	4,003	1.9	5,660	2.4	7,041	2.8	75.9
Gastroenterology.	2,010	1.0	4,046	1.7	6,868	2.8	241.7
Internal medicine.	41,872	20.1	71,531	30.9	94,674	38.3	126.1
Pediatrics allergy	391	0.2	461	0.2	378	0.2	-3.3
Pediatric cardiology.	487		ก9	.	931	. 4	91.2
	17,941	0.6	28, ${ }^{4} 2$	10.3	38,231	10.4	113.1
Pulmonary diseases.	2,315	8.1	${ }^{3} \cdot{ }^{1}$	2.3	5.776	5.3	149.5
Surgical specialties.	86,042	41.3	110,775	47:9	132,409	53.5	53.9
General surgery.	29,761	14.3	34,034	14.7	37,792	15.3	27.0
Neurological surgery.	2,578	1.2	3,341	1.4	4,217	1.7	63.6
Obstetrics and gynecology.	18,876	9.1	26,305	11.4	32,278	13.0	71.0
Ophthalmology.	9,927	4.8	12,974	5.6	15,581	6.3	57.0
Orthopedic surgery.	9,620	4.6	13,996	6.1	18,234	7.4	89.5
Otolarynology.	5,409	2.6	6,553	2.8	7,182	3.2	44.4
Plastic surgery.	1,600	0.8	2,980	1.3	4,356	1.8	172.3
Colon and rectal surgery..	667	0.3	719		860	0.3	28.9
Thoracic surgery.	1,809	0.9	2,133	0.3	2,124	0.9	17.4
Urology.	5,795	2.8	7,743	0.9	9,155	3.7	58.0
Other specialties.	89,641	43.1	110334	$51 .{ }^{3}$	149,078	60.2	66.3
Aerospace medicin-	1,188	0.6	- 587	0.3	685	0.3	-42. 3
Anesthesiology.	10,860	5.2	15.958	6.9	24,258	9.8	123.4
Child psychiatry. ${ }^{\text {a }}$	2,090	1.0	3271	1.4	4,107	1.7	96.5
Neurology	3,074	1.5	5. 685	2.5	8,663	3.5	181.8
Occupational medicin.	2,713	1.3	2358	1.0	2,701	1.1	-0.4
Pathology ${ }^{\text {f }}$...... ${ }^{\text {b }}$	10,483	$5 \cdot 0$	13: 642	5.9	16,594	6.7	58.3

Table 10-7-Supply of Active MDs in the United States by Specialty, 1970, 1980, and 1988a b-Continued

	Active MDS						Percent change in in number, 1970-1988
	1970		1980		1988		
	Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	
Physical medicine and rehabilitation.	1,479	0.7	2,146	0.9	3,729	1.5	152.1
Psychiatry. .	21,146	10.2	27,481	11.9	33,679	13.6	59.3
Public health.	3,833	1.8	3,126	1.4	3,050	1.2	-20.4
Radiology ${ }^{\text {a }}$. . . . . . . . . . . . . .	3,360	6.4	20,282	8.8	26,833	10.8	698.6
Other and unspecified. . . . .	19,415	9.3	23,798	10.3	24,779	10.0	27.6

${ }^{\text {a }}$ Includes Federal MDs and MDs in U.S. possessions. Data for 1988 are as of Jan. 1. Data for 1970 and 1980 are as of Dec. 31.
$b I_{n} i t s$ publication of 1981 data,the American Medical Association (AMA) began differentiating additional subspecialists in internal medicine, pediatrics and surgery. Separate estimates were made available for internal medicine subspecialties of allergy and immunology, diabetes, endocrinology, geriatrics, hematology, immunology, infectious diseases, nephrology, nutrition, oncology and rheumatology. Separate estimates in pediatrics were provided for the subspecialties of adolescent medicine, neonatal-perinatal medicine, peiatric endocrinology, pediatric hematology/oncology, and pediatric nephrology. Separate estimates for surgical subspecialties were made available for abdominal surgery, cardiovascular surgery, hand surgery, head and neck surgery, pediatric surgery and traumatic surgery. In this table, these subspecialties were formerly included in AMA published data under internal medicine, pediatrics and general surgery. When excluded from these categories, the total number of general internists, general pediatricians, and general surgeons presented for 1988 decrease to $72,038,34,669$, and 32 , 339 , respectively.
$c_{\text {Ratios are }}$ based on total population plus civilian population in U.S. possessions. 1987 population estimates were used to calculate 1988 MD ratios.
'Adjusted to include MDs whose addresses were unknown or who were not classified according to specialty.
'Excludes MDs who were inactive, not classified according to specialty, or whose addresses were unknown.
'Includes forensic pathology.
Includes general preventive medicine.
'Includes diagnostic and therapeutic radiology, radiation oncology, and nuclear medicine.
'Includes emergency medicine.
SOURCES: Us. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Sixth Report to the President \& Congress on the Status of Health Personnel in the United States, DHHS Pub. Nb. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 3-3; American Medical Association, unpublished data, provided by staff at the U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health professions, Rockville, MD, in 1990.

Table 10-8—Professionally Active MDs in Primary Care: Rate Per 100,000 Residents and Distribution by Specialty, 1981 and $1988^{\text {a }}$

1981	1988	Percent change 1981 to 1988
Rate per 100,000 residents: ${ }^{\text {b }}$		
All active . . . . . . . . . . . . . . . . . 184.5	210.6	14.1\%
primary care. . . . . . . . . . . . . . . . 63.7	71.1	11.6
Family/general practice. . . 26.0	28.0	7.7
General internal medicine. 25.8	29.1	12.8
General pediatrics . . . . . . . . 12.0	14.0	16.7
Nonprimary care. . . . . . . . . . . . . 120.	139.5	15.5
Percent Distribution		
All active . . . . . . . . . . . . . . . . . 100.0100 .0		
Primary care. . . . . . . . . . . . . . . . 34.5	33.8	
Family/general practice. . . 14.1	13.3	
General internal medicine. 14.0	13.8	
General pediatrics . . . . . . . . 6.5	6.7	
Nonprimary care. . . . . . . . . . . . . 65.5	66.2	

a Data for 1988 are as of Jan. 1. Data for 1986 are as of Dec. 31.
$\mathrm{b}_{1} 987$ population estimates were used to calculate 1988 MD ratios. Prior to 1988, population cestimates used were for the same year as MD data.
cincludes MDs in patient care, research, administration, and teaching. Excludes inactive, not classified, and address unknown categories.
SOURCE: U.S. Department of Health \& Human Services, Health Resources and Services Administration, Bureau of Health Professions, Division of Medicine, Council on Graduate Medical Education: First Report of the Council, vol. 2 (Rockville, MD: July 1, 1988), table 6; American Medical Association, unpublished data, provided by staff at the U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Rockville, MD, 1990.
cent of all professionally active physicians; by 1988, they represented only 13.3 percent (39).

The continuing attrition of GPs, and the fact that there has not been a significant increase in recent years in the number of FPs, raises concern about the adequacy of the future supply of these key primary care providers. One indicator of declining interest in family practice is the 1988 decrease in the percent of available first-year family practice residency positions in the National Residency Match Program that had been filled. The "fill rate,' which had consis-
tently been greater than 80 percent, fell to 73 percent in 1988 (94). Similar declines were seen in the fill rates for other primary care fields, including general internal medicine and pediatrics (94).

Urban areas compete heavily with rural areas for FPs. A recent survey of hospitals (both rural and urban) in five geographic regions showed that FPs are in the greatest demand (514). The American Academy of Family Physicians (AAFP) anticipates that the continued growth of managed care systems such as health maintenance organizations (HMOs)-which are disproportionately located in urban areas-will result in a strong demand for FPs (11). Such systems seek FPs and other primary care providers because they offer a broad range of services, can act as "gatekeepers" and thereby control referrals to more expensive specialists, and are generally seen as efficient utilizers of resources. At present, of the 94 percent of FPs in patient care, an estimated 23 percent were employed by HMOs, 12 percent were in independent practice associations, and 15 percent were in preferred provider organizations(n).

In contrast to the United States, Canada has resisted the trend towards specialized medical practice. Although it has 19 percent fewer MDs per capita than does the United States, Canada, in 1985, had a general/family practitioner-to-population ${ }_{\text {ratio }}$ of 89 compared with the U.S. ratio of 28 (table 10-11) (129). Approximately 50 percent of all practicing physicians in Canada are in general or family practice (3a), compared with 13 percent of physicians ${ }^{17}$ in the United States (table 10-8)(39).

## Other Characteristics of the MD Population

Female physicians are an increasing proportion all physicians. Between 1980 and 2000, the percentage of physicians who are female is projected to more than double, from 11 percent to 23 percent (figure 10-1) (671). The implications of this trend for health personnel policy may be significant, since studies have shown that women physicians see fewer patients and work fewer hours than their male counterparts $(95,308,481)$. Female physicians are more likely than their male counterparts to choose salaried positions (378) and are less likely to practice in rural areas (184).

The proportion of MDs who are graduates of foreign medical schools (FMGs) nearly doubled

Table 10-9—Number of Professionally Active MDs in Primary Care and Nonprimary Care: Estimated 1986 and Projected 2000 and $2020^{\circ}$

Specialty 1986	2000	2020	Percent change 1986-2020
primary care. . . . . . . . . . . . . . . . . . . . . . . . . . . . 182,110	223,920	262,010	43.9
General/family practice. . . . . . . . . . . . 71,320	82,780	97,520	36.7
General internal medicine. . . . . . . . . . 76,260	94,280	111,130	45.7
General pediatrics. . . . . . . . . . . . . . . . 34,530	46,860	53,360	54.5
Primary care with obstetrics/gynecology. . . . . . . . . . . . . . 215,540	268,040	314,530	45.9
Other medical specialties. . ., , . . . . . . . . . . 60,700	99,170	115,820	90.8
Surgical specialties . . . . . . . . . . . . . . . . . . . . 134,440	165,550	182,770	35.9
Other specialties . . . . . . . . . . . . . . . . . . . . . . . 144,530	193,240	228,710	58.2
Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521,780	681,890	789,300	51.3\%

NOTE: Figures may not add to totals due to rounding.
${ }^{\text {a }}$ Includes MDs in patient care, research, administration, and teaching, and MDs in Federal service. 1986 figures include approximately 90 percent of the physicians who are not classified according to activity status by the American Medical Association and whose addresses are unknown.
$b_{\text {Figures may not add to totals due to rounding. }}$
SOURCE: U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Seventh Report to the President \& Congress on the Status of Health Personnel in the United States, DHHS Pub. No. HRS-P-OD-90-1 (Rockville, MD: HRSA, June 1990), table VI-A-14.

Table 10-10--American Medical Association (AMA) Projected Changes in Physician Supply and Utilization by Specialty, 1985-2000

	$\frac{\text { Percent }}{\text { Supply }}$	$\frac{1985-2000}{\text { Utilization }^{*}}$	Difference between growth in utilization and Supply ${ }^{\text {b }}$
All MDs:	23.8\%	14.5\%	9.3\%
General/family practice.	9.9	13.0	-3.1
Internal medicine.	36.6	24.0	12.6
General internal medicine. .	27.0	24.6	2.4
Medical subspecialties. . . . . . . .	51.8	23.4	28.4
All surgical specialties.	13.1	17.0	-3.9
General surgery.	0.5	16.5	-16.0
Surgical subspecialties. . . . . . . .	19.9	17.1	2.8
Pediatrics.	38.8	7.0	31.8
Obstetrics/gynecology.	24.3	2.8	21.5
Psychiatry.	14.0	19.4	-5.4
Emergency medicine. . . . . . . . . . . . . . . . . . . . . . .	69.4	6.2	63.2

[^4]Table 10-11—Comparison of Canadian and American Physician Supply for Selected Specialties, 1985


Figure 10-1-Supply of Physicians (MD and DO) by Sex: Estimated 1980 and 1986, Projected 1990 and 2000a

a ${ }_{\text {ncludes all professionally active physicians. Estimates of MDs adjusted }}$ to include approximately 90 percent of physicians who are not classified according to activity status by the Ameriian Medical Association and whose addresses are unknown.
SOURCE: Office of Technology Assessment, 1990. Data from U.S. Department ofHealthandHuman Services, Health Resources and Services Administration, Bureau of Health Professions, Sixth Report to the President and Congress on the Status of Health Personnel in the United States, DHHS Pub. No. HRS-P. OD-88-1 (Rockville, MD: HRSA, June 1988), table 3-46.
between 1963 and 1983, increasing from 13 to 23 percent of all U.S. physicians, but it has since declined slightly (to 21.7 percent in 1988)(39,671). This proportion may decrease further if Federal policies restricting the number of FMGs allowed to practice in the United States are implemented (388).

Table 10-12 shows changes in the distribution of MDs across various professional activities over the past two decades. Fluctuations from year to year in the proportion of MDs who were not classified according to activity status or whose addresses were unknown prevent determination of any consistent trends. Nevertheless, a slow but steady increase in the proportion of MDs who are in research, a recent decrease in the proportion who are in office-based patient care, and an increase in the proportion who are inactive (i.e., retired) can be detected $(39,671)$.

## Doctors of Osteopathy

DOs are considerably more likely than are MDs to be primary care physicians. Of board-certified DOs

Table 10-12—Distribution of MDs by Major Professional Activity, Selected Years, 1970-88 ${ }^{\text {ab }}$

| Activity | 1970 | 1975 | 1980 | 1983 | 1985 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |

a Data for 1988 are as of Jan. 1. Prior data are as of Dec. 31.
$\mathrm{b}_{\text {Includes }}$ MDs in Federal service.
${ }^{\mathrm{c}}$ Percentages may not add to 100 due to rounding.
SOURCE: U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Sixth Report to the President and Congress on the Status of Health Personnel in The United States, DHHS Pub. No. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 3-5; American Medical Association, unpublished data, provided by staff at the U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Rockville, MD, 1990.
in 1986, ${ }^{18} 39$ percent were in general practice, ${ }^{19}$ and an additional 21 percent were in internal medicine, obstetrics/gynecology, or pediatrics (table 10-13) (671). However, the percentage of DOs in general practice decreased slightly from 1982 to 1986 , from 41 to 39 percent (671), raising the question of whether osteopathic graduates are following allopaths' trends in preferring specialized to general practice. ${ }^{20}$ The distribution of DOs by State is rather uneven, with the highest concentrations in States where osteopathic schools are located (table 10-14) (e.g., Michigan, Pennsylvania, and Ohio) (671).

## Rural Supply

## Prevalence of Rural Physicians

The number of professionally active physicians (MDs and DOs) per 100,000 residents was more than twice as high in urban as in rural areas in 1988 (table $10-15)^{21}(686)$. For primary care physicians, urbanrural differences are less dramatic but still pronounced (table 10-15). Within rural counties, ${ }^{22}$ physician-to-population ratios are related to county

[^5]${ }^{22}$ Here and elsewhere in this Chapter, "rural counties" and "urban counties" refer to nonmetro and metro counties, respectively.

Table 10-13-Board-Certified Osteopathic Physicians (DOS) by Specialty, 1986 ${ }^{\text {a }}$

Certification board	Number of DOS 1986	Percent of boardcertified DOS
Anesthesiology.	227	3.5
Dermatology.	58	0.9
Emergency medicine.	108	1.6
General practice.	2,582	39.3
Internal medicine.	1,020	15.5
Neurology/psychiatry.	139	2.1
Nuclear medicine.	80	1.2
Obstetrics/gynecology.	180	2.7
Opthamology/otorhinolaryngology..	330	5.0
Pathology.	226	3.4
Pediatrics.	170	2.6
Proctology.	72	1.1
Public health/preventive medicine	64	1.0
Radiology.	452	6.9
Rehabilitation medicine.	82	1.2
General surgery.	398	6.1
Necrologic surgery.	17	0.3
Orthopedic surgery.	193	2.9
Plastic \& reconstructive surgery.	3	0.0
Thoracic surgery.	32	0.5
Urologic surgery.	59	0.9
Other.	85	1.3
Total.	6,566	100.0
${ }^{\text {a Only }} 26$ percent of all DOs were board-certified in 1986.		
SOURCE: U.S. Department of Health \& Human Services, Health Resources and Services Administration, Bureau of Health Professions, Sixth Report to The President \& Congress on The Status of Health Personnel in the United States, DHHS Pub. No. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 3-13.		

size, ${ }^{23}$ with the smallest rural counties having fewer than one-half as many primary care physicians and approximately one-ninth as many nonprimary care physicians per capita as the largest rural counties.

The supply of different types of primary care specialists (MDs only) likewise varies considerably by county size (table 10-16) (686). General/family practitioners are by far the most evenly distributed across all county types and sizes, although even these physicians are much less common in very small counties. Other primary care specialists are less evenly distributed. Rural counties have fewer

than one-third as many general internists, approximately one-fourth as many general pediatricians, and slightly more than one-fifth as many obstetrician/ gynecologists per capita as urban counties have (686).

Wide variations in rural physician supply exist among States and regions (table 10-17) (511). The South consistently has rural physician-to-population ratios below the national rural average for all MDs, DOs, and primary care MDs. Numbers of primary care MDs per 100,000 residents in rural areas range from 41.7 in Alabama to 99.1 in New Hampshire (table 10-17) (511). An in-depth study of physician supply in small (fewer than 10,000 residents) rural counties also found considerable regional and State

[^6]Table 10-14-Distribution of Osteopathic Physicians (DOS) by Geographic Region and State, 1986a

	Number of DOS	Percent of DOs ${ }^{\text {b }}$
Northest. .	6,194	24.3
Connecticut. . . . . .	58	0.2
Maine. . . .	309	1.2
Massachusetts. . . . . .	171	0.7
New Hampshire. . . . .	19	0.1
Hew Jerseý. . . . . . .	1,444	5.7
Inon YorkC. . . . . . . .	799	3.1
Pemarylvaiac. . . . .	3,252	12.8
Rhode Island . . . . .	110	0.4
Verrmont . . . . . . .	32	0.1
Midmest.	9,752	38.2
Illinois	802	3.1
Indiana . . . . . . . .	300	1.2
Imp...	672	2.6
Kansas	320	1.3
Hichisama ${ }^{\text {c }}$.	3,555	14.0
Minnesota. .	83	0.3
Missouri ${ }^{\text {c }}$.	1,521	6.0
Nebraska. . . . .	27	0.1
North Dakota.	10	
Onio ${ }^{\text {c }}$	2,141	8.4
South Dakota	34	0.1
Wisconsin.	287	1.1
south.	5,275	20.7
Alabama	48	0.2
Arkansas.	48	0.2
Delaware.	92	0.4
District of Columbia	19	0.1
FloridaC. . . . . . .	1,638	6.4
Georgia	222	0.9
Rentucky .	75	0.3
Louisiana	28	0.1
Maryland	68	0.3
Mississippi.	50	0.2
North Carolina	67	0.3
Otaboan ${ }^{\text {C..... }}$.	878	3.4
South Carolina . . . .	34	0.1
Tennessee.	102	0.4
Tras ${ }^{\text {c }}$. .	1,586	6.2
Virginia. . .	$104$	0.4
west Virginia	216	0.8
Hest.	$2,791$	11.1
Alaska	29	0.1
Arizona	717	2.8
Califomia ${ }^{\text {c }}$.	727	2.9
Colorado.	396	1.6
Havaii	42	0.2
Idaho .	40	0.2
Montana . . . . . . . .	34	0.1
Nevada.	63	0.2
New Nexico	154	0.6
Oregon.	254	1.0
Otah. . . . . . . . . . .	22	0.1
Vashington.	298	1.2
Hyoring . . . . . . . . .	15	0.1
Public Health Service . .	116	0.4
O.S. Total . . . . . .	24,128	100.0

[^7]Table 10-15--Supply of Professionally Active Physicians in Primary Care and Nonprimary Care by Type of County, 1979 and 1988 ${ }^{\text {b }}$

county classification and county size	A l act ive ${ }^{\text {a }}$					Primary care ${ }^{\text {c }}$					Nonprimary care ${ }^{\text {a }}$				
	1979		1988		Percent change in rate 1979-88	1979		1988		Percent change in rate, 1979-88	1979		1988		Percent change in rate, 1979-88
	Number	$\begin{gathered} \text { Rate per } \\ 100,000 \\ \text { population } \end{gathered}$	Nunber	$\begin{gathered} \text { Rate per } \\ 100,000 \\ \text { popul ati on } \end{gathered}$		Number	$\begin{aligned} & \text { Rate per } \\ & \text { 100,000 } \\ & \text { popul ati on } \end{aligned}$	Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { popul ati on } \end{aligned}$		Number	$\begin{gathered} \text { Rate per } \\ 100,000 \\ \text { population } \end{gathered}$	Number	$\begin{gathered} \text { Rate per } \\ 100,000 \\ \text { popul at } i \text { on } \end{gathered}$	
Metro . . . . . . . . .	. 312, 529	181.7	424, 192	225.3	24.0	128, 520	74.7	161, 349	86.8	16.1	184,009	107.0	262,843	138.5	29.5
Nonnetro.	. . 41,002	78.0	53, 338	96.7	24. 1	24, 070	45.8	30, 461	55.3	20.8	16,932	32.2	22,877	41.4	28.7
50, 000 and over..	. 17, 950	101.8	24, 249	128.0	25.8	8,987	751.0	11,691	61.8	21.4	8,963	50.8	12, 558	66.2	30.3
25, 000 to 49,999.	. 13, 261	77.5	17, 153	95.7	23.4	7,846	45.9	10,059	56.1	22.4	5,415	31.7	7, 094	39.5	24.9
10, 000 to 24,999.	. 7,924	57.2	9, 766	68.3	19.3	5, 691	41.1	6,936	48.5	18.1	2, 233	16.1	2, 830	19.8	22.6
5,000 to 9,999.	. . 1,510	47.9	1, 759	56.2	17.1	1, 244	43.5	1,438	45.9	16.2	266	8.4	321	10.2	21.3
2,500 to 4,999. .	. . 311	44.5	359	52.7	18.4	264	- 37.8	296	43.4	15.0	47	6.7	63	9. 2	37.5
Fever than 2,500 .	. . . 46	28.2	52	32.5	15.2	38	23.3	41	25.6	9.9	8	4.9	11	6.9	40.1
Popul ation < 10, $<=6$ persons/	$00:$														
square mile.	. . 620	47.0	783	59.9	27.4	495	37.5	620	47.4	26.4	125	9.5	163	12.5	31. 5
$\begin{aligned} & >6 \text { persons/ } \\ & \text { square mile.... } \end{aligned}$	. . 1,257	46.2	1,408	52.2	13.0	1,057	38.9	1,167	43.3	11.4	200	7.4	241	8.9	21. 6
U. S. total ... ..	. . 353, 531	157.4	477, 530	196.2	24.6	152,590	67.9	191, 810	79.7	17.2	200, 941	89.5	285, 720	116.5	30.2

alncludes American Medical Association and American osteopathic Association data. Includes physicians in research, administration, and teaching, and physicians in federal
service.
b1988 MO data as of Jan. 1. Data for 1979 as of Dec. 31.
CIncludes general/family practice, internal medicine, pediatrics, obstetrics/gynecology, and 1987 Do patient care.
dMDs only.
e1987
el987 population est imates were used to calculate 1988 HO and 1987 DO ratios. 1979 population estimates were used to calculate 1979 MD and DO ratios.
SOURCE: U. Departnent of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, office of Data Analysis and Managenent, Rockville, MQ, unpublished data fromthe Area Resource file System provided to OTA in 1989 and 1990.
Table 10－16－Supply of Primary Care MDs by Specialty and Type of County， 1975 and 1988 ${ }^{\text {a }}$

						fionoral intornal montrino				
	417				Percent change in rate 1975－88	19／3		1988		Fercent change in rate 1975－88
	Number	Kate per 100，000 residents ${ }^{b}$	Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents }{ }^{\text {b }} \end{aligned}$		Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents }{ }^{\text {b }} \end{aligned}$	
Metro．．．．．．．．．．．．．．．．．．．．．	37，916	22.5	47，771	25.4	12.9	45.157	24.7	74.624	39.6	60.3
ors etro．	13，595	27.0	16，251	29.5	9.1	2，855	5.5	6，207	11.3	104.5
50,000 and oryer．．．．．．．	3，981	23.8	5，021	26.5	11.6	1，546	8,9	3147	－6． 6	86.7
25,000 to $49,999 . . . . . .$.	4，495	27.4	5，304	29.6	7.8	906	5.4	2，020	－1．3	107.1
10，000 to $24,999 . . . . . . .$.	3.934	29.7	4，591	32.1	8.2	355	®． 6	914	6.4	144.3
5．900 t 9，989．．．．．．	931	30.	1，070	34.2	12.7	41	0	108	3.4	177.9
	218	31.3	235	34.5	11.4	7	号． 0	4	$2 \cdot 1$	105.7
Fecper tN ${ }^{\text {¢ }}$ ¢ $500 \ldots . .$.	36	z2． 0	30	18.8	－14．7	0	$\bigcirc$	14	$2 \cdot 5$	0.0
Population＜10，000：   ＜＝ 6 persons／sq．mile．．	427	32.8	484	37.0	12.9	16	12	48	3.7	218． 1
$6+$ persons／sq．mile．．．	761	28.6	857	31.8	11.2	32	1.1	81	3.0	165.6
U．S．total	51，511	23.5	64，022	26.3	118	48.012	203	80.831	332	639
					rercent change in rate1975-88	Ohatatrinalmmanninav				
	いい		1 198			1975		1988		Percent change in rate1975-88
	Number	$\begin{aligned} & \text { Kate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$		Rate per100,000Number residents ${ }^{b}$		Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents }{ }^{\text {b }} \end{aligned}$	
Metro	18． 651	103	30.615	163	585	18.654	108	26.993	143	32.6
onmetro．	1，351	2.6	2，646	A．${ }^{8}$	81.7	1． 653	$\bigcirc{ }^{2}$	2，908	5.3	$8^{2.4}$
59,000 and oryer．	783	4.6	1，446	II． 6	65.6	949	． 6	1，581	8.3	4.4
2 1，000 to $\mathbf{2}^{9}, 999 . . . \therefore$ ．	436	2.6	$\bigcirc 93$	5.0	89.4	554	3.4	993	5.5	${ }^{4.8}$
10.000 to 4 ，999．．．．．．．	123	0.9	78	1.9	117.9	139	1.0	303	${ }_{0} .1$	$1{ }_{1}^{6} 0.7$
	7	0.2	23	0.7	221.2	11	0.4	20	${ }_{1} .6$	${ }_{7} 7$.
$2.500 \mathrm{t} 4.999 .0 . . . . .$.	2	0.3	6	0.9	208.6	0	0.0	9	${ }_{4} \cdot 3$	70.3
Fewer ta n 2，50：．．．．．．	0	0.0	0	$0 \cdot 0$	$0 \cdot 0$	0	0.0	2	込	$0 .{ }_{0}^{\circ}$
Population＜10，000： ＜＝ 6 persons／sq．mile．．	3	0.2	14	1.1	363．${ }^{\text {臬 }}$	2	－． 2	18	1.4	794.7
6＋persons／sq．mile．．．．	6	0.2	15	0.6	145．日	9	－． 3	14	0.5	53.0
U．S．total．	20，002	8.5	33，261	13.7	61.0	20，307	9.1	29，901	12.3	35.7

[^8]SOURCE：U．S．Department of Health and Human Services，Health Resources and Services Administration，Bureau of Health Professions， Office of Data Analysis and Management，unpublished data from the Area Resource File System provided to OTA in 1989 and 1990.

Table 10-17-Professionally Active MDs, Primary Care MDs, and DOS per 100,000 Residents in Metropolitan and Nonmetropolitan Areas by Region and State, 1987/1988a

	Total active MDs per 100,000 residents, 1988		Total active DOs ${ }^{\text {c }}$ per 100,000 residents. 1987		Primary care MDs per 100,000 residents, 1988	
	Metro	Nonmetro	Metro	Nonmetro	Metro	Nonmetro
United States, . . . . . . . .	243.1	94.7	10.3	6.6	98.5	56.2
Northeast. .	284.1	137.0	12.2	7.8	112.9	67.3
New England	291.8	182.0	4.4	8.6	102.7	85.1
Connecticut ${ }^{\text {a }}$	291.3	0.0	1.8	0.0	102.4	0.0
Maine.	195.9	140.1	26.5	16.7	101.9	84.5
Massachusetts. . . . .	328.2	171.5	2.6	2.3	106.8	73.9
New Hampshire. . . . .	151.0	274.3	1.7	2.7	64.7	99.1
Rhode Island	242.7	NA	10.3	NA	104.4	NA
Vermont.	396.1	174.4	2,9	6.1	138.9	82.7
Middle Atlantic.	281.6	118.5	14.8	7.4	116.3	59.9
New Jersey'.	233.3	NA	18.0	NA	107.1	NA
New York. .	326.6	122.0	4.5	2.0	120.0	56.7
Pennsylvania. . . . .	246.4	115.2	28.6	12.5	117.4	63.0
Midwest. . . .	226.6	82.5	17.1	10.7	102.1	57.4
East North Central .	217.0	85.2	18.0	8.8	100.3	54.3
Illinois.	234.3	88.8	7.4	3.5	99.5	53.6
Indiana.	184.1	78.8	5.6	3.9	78.1	47.5
Michigan.	204.7	81.2	39.6	20.2	114.2	60.0
Ohio. . . . . . . . . . . . . . . .	220.6	80.4	20.7	12.2	103.0	52.5
Wisconsin.	222.8	98.9	6.9	2.9	89.7	58.6
West North Central. . . . . . .	258.2	79.1	14.3	13.1	108.1	61.1
Iowa. . . . . . . . . . . . . . .	233.6	77.0	34.4	11.6	115.6	56.4
Kansas. . . . . . . . . . .	237.0	93.3	13.9	10.0	97.1	65.1
Minnesota.	278.3	82.7	1.5	2.2	106.5	58.3
Missouri.	257.7	58.1	22.0	36.3	113.8	68.6
Nebraska.	258.6	84.1	2.1	0.8	97.6	54.5
North Dakota. . . . . . . . . .	274.9	95.9	3.1	2.4	105.9	59.7
South Dakota. . . . . . . . . .	249.3	92.2	2.5	5.9	102.3	61.1
south . . . . . . . . . . . . . . . . . . . .	230.2	88.7	7.4	3.9	89.9	50.8
South Atlantic.	251.3	105.2	6.7	3.2	95.6	54.0
Delaware. . . . . . . . . . . . .	226.2	122.3	16.9	5.5	101.2	51.6
District of Columbia. .	583.1	NA	5.1	NA	191.8	NA
Florida. . . . . . . . . . . .	211.4	104.5	12.8	5.9	87.6	50.9
Georgia.	205.9	91.7	5.0	2.6	78.5	48.8
Maryland.	391.5	147.3	2.6	1.6	134.1	65.1
North Carolina.	235.0	102.8	1.8	0.8	86.5	52.8
South Carolina.	197.0	86.5	1.3	1.5	78.8	50.0
Virginia.	233.5	108.5	2.8	1.3	89.5	56.1
West Virginia. . . . . . . .	210.3	138.2	9.6	11.8	88.8	68.7
East South Central . . . .	225.6	79.2	2.0	2.4	86.0	47.1
Alabama. . . . . . . . . . . . .	197.5	66.3	2.0	1.6	79.3	41.7
Kentucky.	244.2	88.3	2.3	2.1	89.5	50.8
Mississippi. . . . . .	205.4	88.3	2.3	2.4	79.7	49.5
Tennessee. . . . . . . . . . . .	243.3	69.3	1.8	3.6	91.1	44.5
West South Central. . . .	198.4	73.1	10.7	6.4	82.5	49.5
Arkansas. . . . . . . . . . . . .	- 229.2	86.5	1.6	2.3	84.3	53.5
Louisiana.	233.3	68.2	0.9	0.7	80.8	42.3
Oklahoma.	191.8	74.3	31.5	16.1	104.6	57.7
Texas. . . . . . . . . . . . . . . .	. 189.3	68.6	10.6	6.5	79.6	47.2

(continued on next page)

Table 10-17-Professionally Active MDs, Primary Care MDs, and DOS per 100,000 Residents in Metropolitan and Nonmetropolitan Areas by Region and State, 1987/1988a-Continued

	Total active MDs ${ }^{\text {b }}$ per 100,000 residents, 1988		Total active DOs ${ }^{\text {c }}$ per 100,000 residents, 1987		Primary care MDs per 100,000 residents, 1988	
	Metro	Nonmetro	Metro	Nonmetro	Metro	Nonmetro
West.	233.5	114.6	5.8	5.6	91.6	63.9
Mountain.	213.1	104.8	12.5	6.6	88.1	61.6
Arizona.	220.7	93.1	22.6	9.1	101.6	59.0
Colorado.	219.0	112.1	11.8	13.4	91.2	72.0
Idaho	172.7	106.4	4.1	4.0	66.9	56.3
Montana.	202.9	131.9	2.0	4.6	60.1	71.1
Nevada.	169.2	107.7	7.5	4.7	67.8	61.3
New Mexico.	250.8	94.6	12.3	7.6	96.1	59.2
Utah.	203.2	86.4	1.4	1.6	70.9	49.5
Wyoming	189.2	108.9	0.7	3.2	87.9	64.1
Pacific. . .	238.8	128.7	4.1	4.2	92.5	67.2
Alaska'.	131.0	NA	7.0	NA	69.5	NA
California.	244.2	129.5	3.1	2.8	93.0	64.8
Hawaii.	226.1	169.1	6.7	4.0	99.2	88.5
Oregon. . .	229.4	124.8	10.2	4.9	94,4	66.3
Washington.	223.1	119.9	7.4	5.5	90.0	65.2

NOTE: NA $=$ not applicable (see ffor note e).
ation estimates are
${ }^{\text {b }}$ Includes MDs of all specialties in patient care, research, administration, and teaching. American Medical Association data as of Jan. 1, 1988.
${ }^{\text {C Includes }}$ DOS of all specialties in patient care, research, administration, and teaching. American Osteopathic Association data as of 1987.
'Includes MD family practitioners, general practitioners, general pediatricians, general internists, and obstetrician/gynecologists
efor the purposes of this analysis, Rhode Island and New Jersey were considered to have no nonmetro counties, and Alaska was considered all one "county" (so the entire population is listed under the "metro" column).
SOURCE: T.C. Ricketts, Rural Health Research Center, University of North Carolina, Chapel Hill, NC. Analysis of unpublished data (provided by the Health Resources and Services Administration) conducted under contract with the Office of Technology Assessment, 1989.
variations (table 10-18) (.318). The number of physicians (MDs and DOs) per 100,000 residents in small rural counties ranged from 39 in the East South Central Region to 75 in the Pacific region, and from 31 in Georgia to 86 in California (318).

Rural hospitals have fewer than one-half the medical staff of urban hospitals with a comparable number of beds (see table 5-7) (625). ${ }^{24}$ Rural hospitals with fewer than 50 beds have roughly one-third the medical staff of their urban counterparts. Among rural hospitals, frontier hospitals have particularly small medical staffs (625). Table 10-19 presents rural-urban differences by hospital size category for each physician specialty. ${ }^{25}$

## Travel Times to Physicians in Rural Areas

Rural residents travel for longer periods of time to receive medical care than do their urban counter-
parts. In a 1985 survey, 22 percent of rural residents reported that they had to travel outside of their community to receive any kind of medical care (303). Rural residents have longer average travel times to every type of physician (table 10-20)(644). Differences are least for travel to primary care physicians, especially general practitioners, and greatest for secondary care physician specialists. On average, for example, a rural resident must travel twice as long as does an urban resident to visit a neurologist (644).

Among rural residents, those living on farms generally have relatively greater travel times to physicians (table 10-20) (644). With few exceptions, poor rural residents also have slightly longer travel times to physicians than do residents with higher incomes (table 10-21) (644). The exceptions maybe due to physical or financial constraints upon poor

[^9]Table 10-18—Physician-To-Population Ratios (1985), Percentage of DOS (1985), and Percent Change in Ratios (1975-85) in Small Nonmetropolitan Counties, by Region and State

Region and State ${ }^{\text {a }}$	Number of small nonmetro count i es ${ }^{\text {b }}$	$\begin{aligned} & \text { Physicians per } \\ & 100,000 \\ & \text { residents (1985) } \end{aligned}$	$\begin{aligned} & \text { Percent DOS } \\ & (1985)^{c} \end{aligned}$	```Percent change in physician-to- population ratio, 1975-85```
Northeast	0	0.0	0.0\%	0.0\%
Midwest	291	58.4	21.7	16.5
East North Central	33	47.2	7.2	14.0
Illinois	13	33.3	6.7	-11.4
Indiana,	5	31.5	16.7	10.5
Michigan.	10	70.5	5.6	36.9
Wisconsin.	5	49.2	6.7	20.0
West North Central .	258	60.2	23.5	17.9
Iowa..	15	53.3	45.5	-4.3
Kansas.	61	76.3	24.7	28.7
Minnesota.	12	56.6	18.2	7.0
Missouri.	26	58.1	73.7	-0.3
Nebraska.	61	51.5	1.3	15.8
North Dakota	36	52.8	6.5	39.3
South Dakota	47	61.0	7.3	39.3
south	244	43.1	11.2	16.0
East South Central	46	38.7	5.9	9.2
Kentucky. .	24	40.5	2.7	17.7
Mississippi.	8	35.6	11.1	1.4
Tennessee.	14	35.6	11.1	1.4
West South Central .	110	49.1	18.1	5.1
Arkansas.	8	34.6	4.3	18.9
Oklahoma.	15	56.3	36.4	-0.3
Texas.	87	49.7	14.8	-3.3
South Atlantic	88	40.0	6.3	26.6
Florida	8	41.9	12.0	41.1
Georgia. .	47	31.3	10.0	11.4
North Carolina.	8	45.8	0.0	24.5
Virginia.	16	53.6	1.7	52.3
West Virginia. .	9	49.3	4.9	3.8
west.	140	63.9	7.5	25.9
Mountain.	120	60.8	8.7	14.9
Colorado.	31	53.2	3.9	-9.8
Idaho	20	52.0	10.5	30.3
Montana.	34	68.7	12.0	33.9
New Mexico.	9	56.1	12.0	10.4
Nevada	7	56.6	18.2	7.0
Utah.	11	65.3	0.0	20.3
Wyoming	8	77.5	11.6	26.6
Pacific.	20	75.0	3.4	36.7
California.	4	86.2	5.3	85.0
Oregon.	8	68.0	3.3	17.4
Washington.	8	76.0	2.6	7.6
All nonmetro counties with   fewer than 10,000 residents. . . . . . . . . . . . . . 53.0			15.3	14.2
Entire United Stated		164.8	5.1	33.6

anly includes the 32 States with nonmetro counties having fewer than 10,000 residents.
${ }^{5}$ Number of nonmetro counties with fewer than 10,000 residents in each State. No States in the Northeast region had nonmetro counties with fewer than 10,000 residents.
c Doctors of 8 steopathy.
${ }^{\text {d Includes all metro and nonmetro counties. }}$
SOURCE: D.A. Kindig and H. Movassaghi, "The Adequacy of Physician Supply in Small Rural Counties," Health Affairs vol. 8, No. 2, 1989, pp. 63-76, exhibits 4 and 5.
Table 10-19 A e age Number of Hospital Medical Staffa in Selected Specialties by Hospital Bed S ze and Metropolitan/Nonmetropolitan
Sta us 1987

Table 10-19—Average Number of Hospital Medical Staffa in Selected Specialties by Hospital Bed Size and Metropolitan/Nonmetropolitan

Medical specialty					Heenital	or ciro				
	6-24		25-49		50-99		100-199		zu0-2yy	
	Percent with none ${ }^{b}$	Mean number per hospital	Percent with none ${ }^{b}$	Mean number per hospital	Percent with none ${ }^{b}$	Mean number per hospital	Percent with none ${ }^{b}$	Mean number per hospital	Percent with none ${ }^{b}$	Mean number per hospital
Anesthesiology										
Nonmetro...	92.0	2.13	89.8	1.39	67.7	1.56	30.6	2.35	8.9	3.63
Metro.	71.0	5.33*	54.5	3.05	26.5	3.12	3.8	4.74	1.5	6.92
Dermatology										
Nonmetro.	100.0	--	98.5	1.33	95.4	1.10	77.0	1.25	47.4	1.69
Metro.	93.5	1.50*	86.7	1.42	81.3	1.84	47.0	1.99	22.5	2.77
Emergency medicine										
Nonmetro..	97.5	2.60*	91.1	3.86	69.4	2.97	43.8	3.51	16.3	4.32
Metro.	93.5	4.50*	74.8	4.08	40.5	3.55	18.9	5.11	10.8	5.84
Nuclear medicine										
Nonmetro.	100.0	--	⒐ 3	1.67*	97.5	1. 02	91.7	1.73	78.5	1.66
Metro.	100.0	--	93.7	1.78*	89.7	2.87	76.2	2.17	61.5	2.82
Pathology ${ }^{\text {c }}$										
Nonmetro.	79.0	1.98	71.7	2.07	47.7	1. ¢ 6	19.7	1.74	3.7	2.37
Metro.	71.0	2.00*	49.0	1.97	20.6	2. ${ }^{\circ} 5$	4.0	2.46	1.0	3.44
Psychiatry										
Nonmetro.	99.0	1.00*	96.3	1.37	$8 \div 5$	1.38	57.9	1.88	24.4	0.00
Metro.	90.3	2.67*	84.6	3.55	6 ¢̂. 7	2.74	29.9	4.27	13.2	. 28
Radiology ${ }^{\text {c }}$										
Nonmetro.	75.0	2.06	59.7	1. $-^{4}$	28.2	1.75	12.0	2.58	3.0	4.10
	71.0	2.44*	35.7	2. ${ }^{\text {. } 6}$	11.0	2.66	2.8	4.51	0.8	$6.4{ }^{\text {c }}$
Other speciajties ${ }^{\text {4 }}$										
Nonmetro. . : . . .	70.5	3.49	71.0	5.49	67.1	5.81	67.7	5.65	57.0	6.03
Metro.	48.4	5.25	63.6	7.56	54.3	8.99	50.5	9.07	49.0	11.26

[^10]Table 10-20--Average Travel Time to Physicians for Metropolitan and Nonmetropolitan Residents, 1983

rural residents to visit the physician closest to their homes.

## Counties With No Physicians

In 1988, 111 rural counties (with an aggregate resident population of 325,100 ) had no physician at all (table 10-22) (511). These counties are concentrated in the West North Central, South Atlantic, West South Central, and Mountain census divisions.

More detailed data are available for MDs alone.In 1988, 176 counties (with a total resident population of 713,700 ) had no primary care MD (table 10-23) (686). All of these were rural counties with fewer
than 25,000 residents, and 166 were counties with fewer than 10,000 residents. Well over one-half were frontier counties. Among MDs, general/family practitioners are the most ubiquitous specialists; they were present in all but 205 rural counties and all but 2 urban counties (figure 10-2)(686).

## Changes in Rural and Urban Physician Supply

Federal policies regarding health personnel have been influenced not only by GMENAC's projections of increases in supply but also by three RAND Corp. studies conducted in the early 1980s which suggested that overall growth in physician supply would in time solve the problem of geographic maldistribution of physicians.

All three studies examined changes in the supply of physicians in towns with populations of 2,500 and more during the 1960s and 1970s. The first study (550) found that the number of board-certified specialists per capita increased more in smaller towns than in larger towns. The second (436) found that by 1979, nearly every town of more than 2,500 residents had ready access to a physician. The third (727) found that 96 percent of towns with a population of at least 2,500 were fewer than 10 miles away from a physician and that 98 percent of the U.S. population lived within 25 miles of a general or family practitioner. These three studies, however, had some limitations: they excluded towns with fewer than 2,500 residents, the results were dominated by findings in towns with more than 10,000 residents, and they excluded DOS and Federal physicians (318).

From these three studies policymakers concluded that market forces play a significant role in the distribution pattern of physicians, and that a greater supply of physicians in a particular specialty will lead to a greater diffusion of those specialists into rural areas. In the wake of RAND and GMENAC studies, Federal efforts to improve the geographic distribution of health personnel decreased significantly $(68,318,462)$. However, more recent State and national studies have found that increases in national supply have not consistently produced corresponding increases in rural supply, particularly in small or isolated rural areas, and that rural/urban disparities in overall physician supply have actually widened during the past two decades. Summaries of the studies follow.

Table 10-21-Average Travel Time to Physicians for Nonmetropolitan Residents by Incomes Above or Below the Federal Poverty Level, 1983


[^11]
## National Studies Examining Change in Rural

 Physician Supply-A Bureau of Health Professions (BHPr) study found that during the 1970s, the greatest improvement in the number of patient care and office-based primary care physicians per capita occurred in large (more than 25,000 residents) rural counties and small urban counties, with the smaller rural counties experiencing comparatively small increases (683). A study of physician distribution trends between 1950 and 1978 singled out those counties with the smallest populations and the poorest physician-to-population ratios as those with the least improvement in supply (205). A study of changes in physician supply in individual rural communities between 1971 and 1981 found that a large number of these communities did not experience increases in physician supply, and that some even experienced decreases (738).A study of young physicians settling in rural areas between 1975 and 1979 (332) found that 60 percent of all rural counties had either not attracted any new
young physicians or had lost some. The Northern and Western regions had the most success attracting young physicians, while the Central region had the least success. A later study found that in 1983,31 percent of the least populated as compared with 92 percent of the most populated rural counties had gained at least one young graduate (334). This study concluded that physicians tend to locate in larger, more attractive rural communities, and that less attractive communities have difficulty attracting physicians without special targeted efforts.

More recent BHPr data indicate that relatively slow increases in physician supply in small rural counties have continued through the 1980s. From 1979 to 1988, the number of office-based MDs per 100,000 residents rose 18 percent in rural counties of fewer than 10,000 residents compared with 23 percent in all rural counties and 25 percent in urban counties; the corresponding increases for all patient care MDs were 17, 24, and 24 percent (table 10-24) (686). In 1988, the incidence of patient-care MDs in

Table 10-22-Number and Resident Population of Nonmetropolitan ${ }^{\text {a }}$ Counties Without a Professionally Active Physician (MD or DO), 1988 ${ }^{\text {ab }}$
$\left.\begin{array}{crr}\hline & & \begin{array}{c}\text { Number } \\ \text { nonmetro }\end{array} \\ \text { counties }\end{array} \quad \begin{array}{c}\text { Resident } \\ \text { population } \\ \text { of counties }\end{array}\right]$
aTh $\mathrm{mexe}^{\text {were }} \mathrm{n}$. metro counties without an active MD v DO in 1988.
bIncludes physicians Of all specialties in patient care, research, administration, and teaching. This is a listing of counties that have no professionally active MD and no professionally active DO.
${ }^{\text {c Data }}$ from the American Medical Association as of Jan. 1, 1988. Data from the American Osteopathic Association as of 1987.
${ }^{d}$ Resident population is only for those counties included in the listing. Resident population estimates are for 1987.

SOURCE: T.C. Ricketts, Rural Health Research Center, University of North Carolina, Chapel Hill, NC. Analysis of unpublished data (provided by the Health Resources and Services Administration) conducted under contract with the Office of Technology Assessment, 1989.

Table 10-23-Number and Resident Population of Counties Without a Primary Care MD ${ }^{\text {ab }}$ by Type of County, $1988^{\text {c }}$

	Number of counties	Resident populatio
Metro.	0	0
Nonmetro.	176	713,700
	. . 0	0
	. . 0	0
	. . 10	119,500
	. . 47	327,800
	. . . 45	160,300
	. . . 74	106,100
Populat	$112$	267,900
	. 54	326,300
U.S. tot	. 176	713,700
```agexcludes Federal MDs and MDs in the Us. poss- essions. b}\mathrm{ Includes general/family practice, general internal medicine, general pediatrics, and obstetrics/ gynecology. `}American Medical Association data as of Jan. 1 1988.```		
SOURCE:	f Health ources an u of Heal nalysis a published System	Human Se Services Profession Managemen ta from ided to

urban counties was more than twice as high as in all rural counties and more than 4 times as high as in rural counties of fewer than 10,000 residents (table 10-24)(686).

A characteristic of these trend data (and most detailed trend data on rural health personnel in this chapter) is that the underlying counties in each category can change dramatically over time as counties gain or lose population. As a result, changes in practitioner-to-population ratios-particularly in categories with only a small number of countiescan be abrupt, making trends more difficult to interpret.

As the RAND studies predicted, specialties with the greatest growth rates (i.e., the nonprimary care specialties) appear to be diffusing to small rural counties at a faster rate than that for primary care physicians. For primary care physicians (MDs and DOs), increases in supply were actually greater in the larger rural counties than in urban counties (table 10-15) (686). Within rural counties, however, in-

Figure 10-2—Number of Counties Without Selected MD Specialties by Metropolitan/Nonmetropolitan Status, 1988^{8}

${ }^{\text {a Excludes Federal physicians and physicians in the U.S. possessions. }}$
SOURCE: Office of Technology Assessment, 1990. Data from U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Office of Data Analysis and Management, unpublished 1988 data from the Area Resource File data system.
creases in primary care physician supply were directly proportional to county size, with the smallest counties (fewer than 2,500 residents) experiencing less than half the increase of the largest counties (25,000 or more residents). For nonprimary care physicians, the pattern was essentially the reverse: large rural counties had slightly greater increases than did urban counties, but increases in nonprimary care physician supply within rural counties were inversely proportional to county size (table 10-15). Within counties of fewer than 10,000 residents, counties with 6 or fewer persons per square mile had substantially greater increases of primary care and nonprimary care physicians than counties with higher population densities (table 10-15) (686). Some of these data may be misleading; in 1975 and 1979 there were so few nonprimary care physicians in the smallest rural counties that their ratios were remarkably sensitive to the addition of a small number of physicians (table 10-16) (686).

Within the primary care specialties, the supply of general/family practitioners increased more slowly from 1975 to 1988 in rural counties (9.1 percent)
than in urban counties (12.9 percent), and actually decreased in rural counties with fewer than 2,500 residents (-14.7 percent) (table 10-16) (686). In contrast, the supply of general internists, general pediatricians, and obstetrician/gynecologists increased more in rural than in urban counties during this period (table 10-16) (686).

Kindig and Movassaghi undertook a detailed examination of physician availability in the 684 rural counties having fewer than 10,000 residents in both 1975 and 1985 (318). This study included all active Federal and non-Federal MDs and DOS, but excluded interns and residents.) They found that from 1975 to 1985, the mean level of physician availability increased by 34 percent in the United States as a whole but by only 14 percent in small rural counties (table 10-1 8). Percent change in physician-to-population ratios during the period ranged from 5 percent in the West South Central region to 37 percent in the Pacific region, and from 85 percent in California to - 11 percent in Illinois (table 10-18). Primary care ${ }^{26}$ physician availability increased more rapidly in all rural counties (42

[^12]Table 10-24-Total MDs, Patient Care MDs, and Office-Based MDs Per 100,000 Residents by Type of County, 1979 and 1988^{a}

County classification and county population	1979	1988	Percent change, 1975-88
Total MDs per 100.000 residents			
Netro.	219.3	262.6	19.7
Nommetro.	87.2	108.5	24.4
50,000 and over.	116.3	146.7	26.1
25,000-49,999.	86.8	106.2	22.4
10,000-24, 999.	62.0	74.7	20.5
0-9,999.	48.6	58.2	19.6
U.S. total .	188.4	227.7	20.9
Patient care MDs per 100,000 residents $^{\text {b }}$			
Metro	174.3	215.6	23.7
Nonmetro.	73.3	90.5	23.5
50,000 and over.	97.5	122.2	25.3
25,000-49,999.	73.3	89.9	22.6
10,000-24,999.	52.0	61.3	17.9
0-9,999.	40.5	47.5	17.4
U.S. total .	150.7	187.2	24.3
Office-based MDs per 100,000 residents ${ }^{\text {b }}$			
Vetro..	123.5	153.8	24.5
Nonmetro.	65.6	80.6	22.9
50,000 and over.	85.9	107.0	24.6
25,000-49,999.	66.4	81.3	22.3
10,000-24,999.	46.7	54.9	17.5
0-9,999. . . .	37.4	44.1	17.7
U.S. total	110.0	137.2	24.8

\mathbf{a}_{MD} data for 1988 are as of Jan. 1. Prior to 1988 , data are as of Dec. 31.
b 1987 population estimates were used to calculate 1988 MD ratios. Prior to 1988, population estimates used were for the same year as MD data.
SOURCE: U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Office of Data Analysis and Management, Rockville, MD, unpublished data from the Area Resource File system provided to OTA in 1989 and 1990.
percent) than in all urban counties (27 percent), but increased very little (9 percent) ${ }^{27}$ in small rural counties (table 10-25) (318).

State Studies Examining Changes in Rural Physician Supply-Several State studies lend support to the findings of the national studies mentioned above:

In Pennsylvania, overall physician-to-population ratios increased by 25 percent in rural and 32 percent in urban counties from 1970 to $1980 .{ }^{28}$ Ratios for general and family practitioners
actually dropped during this period for rural and urban counties alike (145). ${ }^{29}$
. In Minnesota, the primary care ${ }^{30}$ physician-topopulation ratio increased by 63 percent in urban counties from 1965 to 1985, but actually decreased by 2 percent in rural counties. The ratios of other specialists increased in smaller communities, however, and these physicians may actually be providing a substantial amount of primary care (164).

- In Georgia, physician-to-population ratios increased slightly more in rural areas (28 percent) than in urban areas (24 percent) between 1968

[^13]Table 10-25-Supply of Primary Care Physicians in Metropolitan, Nonmetropolitan, and Small Nonmetropolitan Counties, 1975 and 1985 ${ }^{\text {a }}$

and 1983, but wide variation in percent change existed within both urban and rural areas. In 1983, physician-to-population ratios in Georgia were still twice as high in urban as in rural areas (740).

Who Are Rural Physicians?

Rural areas rely much more heavily than urban areas on primary care physicians and DOS. Some rural areas also rely heavily on FMGs. Rural physicians are also older than their urban counterparts.

Primary Care Physicians--In 1988, primary care physicians accounted for 81 percent of all professionally active physicians in rural counties with fewer than 10,000 residents and 57 percent in all rural counties, compared with 38 percent in all urban counties and 40 percent in the United States as a whole (686). 31

Doctors of Osteopathy-In 1985, DOs made up 15.3 percent of all patient care physicians in small rural counties compared with 5.1 percent for the United States as a whole (table $10-18$) (318). The distribution of DOs by State is highly uneven. DOS constituted as much as 74 percent of all patient care physicians in Missouri's small rural counties, but were entirely absent in small rural counties in Utah and North Carolina (table 10-18)(318).

Foreign Medical Graduates--Although they are disproportionately located in urban areas, FMGs nonetheless play a significant role in health care in some rural areas. In Georgia in 1986, for example, FMGs were actually more common in rural areas: they accounted for 17 percent of physicians in rural counties but only 13 percent in urban counties (167). In 1985, FMGs accounted for 22 percent of patient care physicians in the United States as a whole, compared with 15 percent in rural counties with fewer than 10,000 residents (table 10-26) (316). The proportion of patient care physicians who were FMGs, however, increased much more quickly from 1975 to 1985 in small rural counties than in the country as a whole (table 10-26) (316), indicating that FMGs play an increasingly important role in health care in small rural counties.

The Age Distribution of Rural Physicians—The proportion of physicians who are young (under age 35) increased substantially in both urban and rural areas from 1975 to 1985, but rural physicians on the average are still older than their urban counterparts (table 10-27) (686). Physicians age 65 and over made up 13 percent of the rural physician population, compared with 9 percent in urban areas (table 10-27) (686). Elderly physicians make up an even

[^14]Table 10-28-Foreign Medical Graduate (FMG) Physician Supply in Small U.S. Nonmetropolitan Counties, 1975 and 1985

		1975		1985	Percent change in proportion of
	Number of FMGs	As a percent of all patient care physicians	Number of FMGs	As a percent of all patient care physicians	all patient care physicians who were FMGs ${ }^{3}$, 1975-85
All nonmetro counties with fewer than 10,000 residents. . 17410325					
$\begin{aligned} & 5,000-10,000 . \\ & 2,500-4,999 . \end{aligned}$ Fewer than 2,500.	$\begin{array}{r} 135 \\ 35 \\ 4 \end{array}$	$\begin{aligned} & 10 \\ & 12 \\ & 10 \end{aligned}$	$\begin{array}{r} 251 \\ 68 \\ 6 \end{array}$	$\begin{aligned} & 15 \\ & 20 \\ & 14 \end{aligned}$	$\begin{aligned} & 50 \\ & 67 \\ & 40 \end{aligned}$
```Population < 10,000: <= 6 persons/square mile. >6 persons/square mile. . . U.S. total . . . . . . . . . . . .```	$\begin{gathered} 71 \\ 103 \\ 46,165^{\circ} \end{gathered}$	$\begin{gathered} 12 \\ 9 \\ 18.6 \end{gathered}$	$\begin{array}{r} 119 \\ 206 \\ 82,525 \end{array}$	$\begin{aligned} & 17 \\ & 15 \\ & 22.1 \end{aligned}$	$\begin{aligned} & 42 \\ & 67 \\ & 19 \end{aligned}$

${ }^{\text {a }}$ Includes MDs and DOs.
${ }^{\mathrm{b}}$ Includes all metro and nonmetro counties.
${ }^{\text {c }} 1976$ figure.
SOURCE: D.A. Kindig and H. Movassaghi, "Trends in Physician Supply and Characteristics in Small Rural Counties of the United States 1975-1985," National Rural Health Association, Kansas City, MO, July 1987.

Table 10-27-Distribution of Primary Care MDs by Age in Metropolitan and Nonmetropolitan Counties, 1975 and 1985

Age	1975		1985	
	Metro	Nonmetro	Metro	Nonmetro
<35.	. . $27 \%$	11\%	33 x	21\%
35-44.	. . 22	23	27	30
45-54.	. . 23	29	16	18
55-64.	. . 16	22	14	19
$65+$.	. . 11	15	9	13
Tota	. 100	100	100	100

axcludes Federal physicians and physicians ${ }^{\text {n }}$ 'he Us. possessions. Includes physicians in general/family practice, general internal medicine, general pediatrics, and obstetrics/gynecology. $b_{\text {percentage }} s$ may not add to 100 due to rounding.

SOURCE: U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Office of Data Analysis and Management, Rockville, MD, unpublished data from the Area Resource File system provided to OTA in 1989 and 1990.
larger percentage ( 16 percent) of patient care physicians in small (fewer than 10,000 residents) rural counties (316).

## Future Supply of Rural Physicians

Stability of Rural Physician Practices-Many physicians practicing in small rural counties reportedly view their counties as lacking sufficient health personnel. In a 1988 survey of physicians in these areas, ${ }^{32} 32$ percent of the respondents indicated that there were too few physicians in their counties. Based on these responses, researchers estimated a need for a 50 percent increase relative to the current supply of physicians in these counties (405). Twentysix percent indicated that they would be leaving their respective communities within 5 years; of this group, about one-half were underage 45 (405). ${ }^{33} 0 f$ the 510 respondents, 55 percent were in solo practice. Although this particular study offered no comparable data for urban physicians, a recent survey of Minnesota physicians found differences between rural and urban practitioners. Only 64 percent of rural physicians surveyed reported that it was "very likely" they would continue to practice

[^15]Table 10-28-Practice Location Preferences of Allopathic Medical School Seniors, 1979 and 1989a
Setting where student would most like to
practice upon completion of medical training

NOTE: NA = not applicable.
${ }^{\text {a Reflects preferences indicated by allopathic medical school seniors on a graduation questiondeafe. }}$ 8,382 seniors (or 55 percent of all final year students) completed the questiomnailles. 9 , 11,175 students (or 72 percent of all final year students) completed the questionnaire.
$b_{\text {Does }}$ not reflect metro or nonmetro status of area.
${ }^{\text {c Percentages may not add to } 100 \text { due to rounding. }}$
SOURCES: Association of American Medical Colleges, 1979 Medical Student Graduation Questionnaire Survey: Summary Revert for All Schools (Washington, DC: Association of American Medical Colleges, 1979); Association of American Medical Colleges 1989 Graduate Questionnaire Results: All School Summary (Washington, DC: Association of American Medical Colleges, 1989).
medicine in their current geographic area during the next few years, compared with 74 percent of physicians Statewide and 79 percent of physicians in the Twin Cities metro area (173).

## Location Choices of New Medical Graduates-

 Allopathic medical school graduates are increasingly expressing a reluctance to choose rural practice. In 1979, 27 percent of allopathic medical school seniors preferred to practice in a small city or larger town, and 3 percent preferred small towns or rural areas (table 10-28) (58). By 1989, these proportions had dropped to 12 percent and 1.5 percent, respectively (table 10-28) (61). Osteopathic physicians seem to have a markedly greater inclination towards rural practice than do allopaths. In 1988,21 percent of senior osteopathic medical students reported that they intended to practice in communities of 10,000 to 50,000 people, and 9 percent intended to practice in communities of fewer than 10,000 people (21).
## MIDLEVEL PRACTITIONERS

Nurse practitioners (NPs), certified nursemidwives (CNMs), and physician assistants (PAs)
(see box 10-B) have played valuable roles in providing primary health care services traditionally provided by physicians. Often referred to collectively as "midlevel practitioners" (MLPs), these three professional groups have developed rapidly since the 1960s in response to concerns over geographic maldistribution of primary care providers. Although MLPs can substitute for physicians in many instances in the delivery of primary medical care, their scope of practice is more limited. State medical and nurse practice laws that regulate these professions require some degree of physician supervision or collaboration. Within their areas of competence, MLPs provide care whose quality is equivalent to that of care provided by physicians, and they often do so at a comparatively low cost (617). NPs and, to a lesser extent, PAs see fewer patients and spend more time with each patient than do physicians, presumably because NPs provide nonmedical services such as counseling and health education during a patient visit (617). Notwithstanding the quality and cost-effectiveness of MLP care, lack of direct third-party coverage for MLP services has

## Box 10-B—Provider Profiles: Midlevel Practitioners <br> Nurse Practitioners (NPs)

The NP profession developed during the 1960s in response to concerns over a shortage of physicians (617). NPs are registered nurses who have completed advanced training programs in primary health care delivery. These programs grant either certificates or master's degrees and involve from 9 months to 2 years of full-time study. Functions performed by NPs include health assessment, physical examinations, management of minor acute and chronic illnesses, development of plans of care, patient education and counseling, health promotion and disease prevention activities, and coordination of health care services. In some States they have the authority to prescribe medication. NPs can manage patients independently of physicians, but they do so within the context of a system that allows for professional consultation, collaborative management, and, when appropriate, referral (617).

## Physician Assistants (PAs)

The PA profession also developed during the 1960s in response to concerns over a shortage of physicians (617,671). PAs work with or under the supervision of physicians, providing diagnostic and therapeutic patient care. They take patient histories, perform physical examinations and basic diagnostic tests, develop treatment plans, counsel patients on preventive health behavior, and facilitate referrals to other health or social service facilities (671). In some States, they have the authority to prescribe certain medications (192). PA training programs provide an average of 50 weeks education in the basic medical sciences and another 52 weeks in various clinical disciplines, including approximately 34 weeks of supervised primary care clinical experience and approximately 19 weeks in the nonprimary care specialties. Most PA programs grant either bachelor's or associate degrees, depending on the program structure and the educational background of the student (192). A small but increasing number of PA programs are now granting master's degrees ((67.3). While NPs and CNMs perform both nursing and primary medical care tasks, PAs perform medical tasks exclusively (192).

## Certified Nurse-Midwives (CNMs)

Trained nurse-midwives were introduced into the United States with the establishment of the Frontier Nursing Service in rural Kentucky in 1925. The first formal training program opened in 1931 (24). A CNM is educated in the two disciplines of nursing and midwifery. CNMs provide gynecological care, family planning, and prenatal care. They also deliver babies, co-manage high-risk pregnancies with physicians, and care for mothers and infants after pregnancy (24,617). Programs preparing CNMs offer either certificates or master's degrees (24). Like NPs, CNMs can practice independently of physicians, but only within a context that provides for consultation, collaborative management, and referral (24).

## Certified Registered Nurse Anesthetists (CRNAs)

CRNAs are baccalaureate-prepared registered nurses who have completed an additional 24 to 36 months training in anesthesiology in an accredited program and have passed a national certification examination in the specialty (522). CRNAs substitute for anesthesiologists across States and across a wide range of procedures. Licensure and certification laws require that CRNAs work under physician supervision, but direct supervision by an anesthesiologist is generally not required (522).
resulted in these practitioners' not being used to their fullest potential (617).

This section examines the supply and geographic distribution of each type of MLP. Also included are supply and distributional data for certified registered nurse anesthetists (CRNAs), who often substitute for anesthesiologists in rural facilities (see box 10-B). Studies comparing anesthesia outcomes by provider type have found no significant differences between CRNA and MD anesthesiologist-administered services $(75,200,211)$.

## Nurse Practitioners

## National Supply

In 1988, there were in the United States an estimated 56,043 RNs who had completed formal training as NPs (511). Only 20,649 RNs, however, were employed with the position title of nurse practitioner, including 2,318 who had not completed formal training (511). NPs are employed primarily in ambulatory care settings (about 33 percent) and community and public health settings (about 30
percent) (673). Another 27 percent are in hospitals (673). ${ }^{34}$

The future supply of NPs is influenced by the availability of eligible applicants as well as by the availability of slots in training programs. Most programs preparing NPs today are master's level (86 percent of federally funded programs in 1986), in contrast to 1973 when most programs were at the certificate level (671). Many NP training programs require a baccalaureate degree in nursing. This may affect the ability of rural RNs, who are less likely to have a baccalaureate degree (317), to obtain advanced degrees. In 1984, there were 208 NP training programs in the United States, and almost one-half (91) received some degree of Federal support (671). Anecdotal reports suggest that there are roughly four jobs available for every new NP graduate (603). The geographic distribution of NPs is directly related to the geographic distribution of NP training programs (586).

## Rural Supply

The proportion of NPs in rural areas decreased slightly between 1984 and 1988. Of the 20,649 RNs employed as NPs in 1988, 15.8 percent were in rural areas (511). In 1984, approximately 18 percent were in rural areas (671). ${ }^{35}$ Preliminary data from the American Academy of Nurse Practitioners' (AANPs') 1988 National Nurse Practitioner Survey indicate that 30 percent of all NPs are practicing in communities of 1,000 to 50,000 residents, and 2 percent are practicing in communities of fewer than 1,000 residents (figure 10-3) (13). ${ }^{36}$

Some State data on the rural-urban distribution of NPs are available. For example:

- In Texas, in 1986, approximately 12 percent of the State's 1,046 board-approved NPs were practicing in rural counties (708).
- In Arizona, in 1987, the NP-to-100,000 population ratio was 12 in rural counties as compared with 15 in urban counties. ${ }^{37}$ Among Arizona's 13 rural counties, NP-to-100,000 population ratios ranged from O to 26 (220).

Figure 10-3--Distribution of Nurse Practitioners by Community Size, 1988a

${ }^{a}$ Community size does not reflect metro/nonmetro status. Data based on 5,987 responses to a national random sample survey of nurse practitioners. Excludes 210 respondents who did not indicate the size of their community.
SOURCE: Office of Technology Assessment, 1990. Data from American Academy of Nurses Practitioners, Lowell, MA, unpublished data from the 1988 National Nurse Practitioner Survey.

- In Georgia, in 1983, 32 percent of NPs were working in rural areas (535).
- In Utah, in 1986, slightly more than 10 percent of the State's 252 licensed NPs were practicing in rural counties (158).
In the 1960s, many NPs practiced independently in rural satellite clinics under supervision of physicians in neighboring communities, but this mode of NP practice has become less common as demand for NPs in a variety of other nonrural settings has grown (617). Table 10-29 examines selected characteristics of NPs practicing in communities of fewer than 1,000 residents, communities of 1,000 to 50,000 residents, and communities of 50,000 or more residents (13). ${ }^{38}$ Compared with NPs in the largest communities, NPs in smaller communities are more likely to specialize in family health and to have hospital and nursing home privileges. NPs in the smallest communities are most likely to be employed in freestanding primary care clinics; NPs in communities of 1,000 to 50,000 residents are found mostly in private practices or in public health clinics;

[^16]Table 10-29—Characteristics of Practicing Nurses Practitioners (NPs) by Community Population Size, 1988 ${ }^{\text {a }}$


${ }^{\text {a Community }}$ population size was self-reported and self-defined. It does not reflect metro or nonmetro location. SOURCE: American Academy of Nurse Practitioners, Lowell, MA, unpublished data from the 1988 Nurse Practitioner Survey.
and NPs in the largest communities are more likely to be found in private practices or hospital outpatient clinics. Approximately one-third of NPs in the smaller communities have a master's or doctoral degree, compared with over one-half of those in the largest communities (13).

## Physician Assistants

National Supply
In 1987, there were an estimated 19,446 PAs licensed to practice in the United States, an increase of 15 percent over only 2 years earlier (671).

Approximately 80 percent of these PAs were involved inpatient care (671). The distribution of PAs by State is closely linked to the presence of PA training programs (table 10-30)(62,671). Dramatic differences in estimated PA population exist among States, ranging from 2,508 PAs in California to only 35 in Delaware. The East South Central had the lowest regional PA population (648 PAs) in 1987, while the Middle Atlantic had the highest (3,793 PAs) $(62,671)$. PA distribution may also be influenced by State laws and regulations regarding PAs' scope of practice. In some States, PAs are required

Table 10-30-Number of Physician Assistants (PAs), 1987, and Number of PA Training Programs, 1989, by Region and State

to practice under the direct personal supervision of a physician (16) (see ch. 12).

The percentage of PAs in primary care practice is large but decreasing. In 1986, only 65 percent of all PAs were in family practice, compared with 74 percent in 1978 (table 10-31) (671). Conversely, the percentage of PAs in the medical and surgical subspecialties has increased significantly (671). This trend parallels that in the physician population, possibly because of the close relationship between PA and physician practice.

Pronounced changes in the distribution of PAs by practice setting have also been occurring. From 1981 to 1984, the proportion of patient care PAs in solo office-based practice decreased from 18 to 15 percent, while the proportion of PAs practicing in hospitals, HMOs, office-based group practice, and prisons increased (671). The increase in hospitalbased PAs is likely to be further influenced by the recent broadening in 1986 (Public Law 99-509) of Medicare reimbursement policies for PA services provided in hospitals, skilled nursing facilities, and intermediate care facilities. According to the American Academy of Physician Assistants (AAPA) and

Table 10-31-Distribution of Physician Assistants
by Specialty, 1978 and $1986^{\circ}$

others, there has recently been an increased demand for PAs to fill hospital surgical resident house staff positions, where they are believed to improve quality of care as well as to help minimize costs $(47(9,671)$. A threefold increase in the demand for PAs in Federal prisons is anticipated as the size and number of prisons expand (192). Increased demand for PAs in these settings, along with the trend away from primary care specialty practice, is likely to have a significant impact on the future supply of PAs in rural areas.

Approximately 1,200 new graduates are added annually to the PA pool, and approximately 90 percent of these enter active clinical practice (671). The BHPr projects that the total number of PAs could more than double by the year 2020 (671). Nonetheless, PA programs reported an average of more than seven available jobs per graduate for the 1988 class (18). ${ }^{39}$

## Rural Supply

Little is known about the rural supply of PAs. PAs are slightly more likely ( 39 percent-figure 10-4) to practice in communities with fewer than 50,000 residents than are NPs ( 32 percent-figure 10-3) $(13,17)$. Recent evidence suggests that the proportion of PAs practicing in very small communities has decreased and will continue to do so. In 1981,27 percent of all professionally active PAs were practicing in communities of fewer than 10,000 residents (671\} In 1989,only 20 percent were practicing in communities of this size; an additional 19 percent were in communities of 10,000 to 49,999 residents, and the remainder ( 61 percent) were in larger communities (figure 10-4) (17). ${ }^{40}$ The 36 PA train.ng programs that received Federal funds in 1986 reported that approximately one-third of their graduates were practicing in primary care HMSAs (671), with recent data indicating a trend toward PAs practicing in the urban as opposed to the rural shortage areas (721).

Data from selected States indicate a substantial proportion of PAs in rural practice.

- In Arizona, in 1987, approximately 30 percent of the State's licensed PAs were located in rural counties, making their PA-to-population ratio higher than that of urban counties ( 8 v .6 per 100,000 residents) (220).
- In Texas, in 1986, 66 percent of the State's 412 PAs were practicing in rural counties (708).
- In Utah, in 1986, 37 percent of the 75 PAs were practicing in rural counties (158).
- In Oklahoma, in 1987, the distribution of PAs showed a somewhat different pattern. Twentyeight percent of all PAs were located in rural counties, but the PA-to-100,000 population ratio was almost twice as high in urban counties (7.4) as in rural counties (4.0) (451).

Table 10-32 describes selected characteristics of PAs by size of community in 1989. The specialty distribution of PAs differed greatly by community size, with PAs in small communities (fewer than 10,000 residents) and small cities ( $10,000-250,000$ residents) employed mostly in family practice, and

[^17]Table 10-32--Characteristics of Practicing Physician Assistants by Community Population Size, 1989²


NOTE: * $=$ less than 0.5 percent of total.
${ }^{\text {a This }}$ information is derived from the American Academy of Physician Assistants' 1989 prescriptive practice
Survey and is statistically representative of member and nonmember physician assistants in communities of all sizes.
$b_{\text {Community }}$ population size was self-reported and self-defined. It does not reflect metro or nonmetro location ${ }^{c}$ Percentages may not add to 100 due to rounding.

```
SOURCE: American Academy of Physician Assistants, Alexandria, VA, unpublished data from the 1989 PA
 Prescriptive Practice Survey provided to OTA in 1989.
```

Figure 10-4-Distribution of Physician Assistants by Community Size, 1989a

aRepresents location of PAs' major practice setting. Based on 1,588 responses to a 1989 sample survey of PAs. Community size was self-defined and self-reported, and does not reflect metro/nonmetro location.
bThe actual percentage (24.62) was rounded to 24 percent for the purpose of this figure.
SOURCE: Office of Technology Assessment, 1990. Data from American Academy of Physician Assistants, Alexandria, VA, unpublished data from the 1989 PA Prescriptive Practice Survey.

PAs in large cities (more than 250,000 residents) employed mostly in other medical and surgical subspecialties (17). More small community and small city PAs than large city PAs were in solo practice settings, and fewer were in group practice, hospital, and HMO settings. PAs in small communities were considerably older, were more likely to be male, had lower salaries, and tended to have been in their current employment setting much longer than PAs in small and large cities. Small community PAs were also less likely than PAs in small and large cities to have at least a bachelor's degree (17).

## Certified Nurse-Midwives

## National Supply

As of January 1990, 4,260 nurse-midwives had been certified by the American College of NurseMidwives (ACNM) (27), a 67 percent increase over the number in $1982(2,550)(23 a) .41$ Seventy-one percent of all CNMs responding to a 1988 ACNM survey were practicing nurse-midwifery (342). The Division of Nursing estimates that there were some 2,886 practicing nurse-midwives in the United States in 1988, but it does not distinguish between those who were certified by the ACNM and those
who were not (681). Almost one-fourth of CNMs responding to the 1988 ACNM survey were employed by hospitals (342). Seventeen percent were employed by physicians, and 9 percent were employed by other CNMs or were in private practice (342). Twenty-five nurse-midwifery education programs were in operation in the United States at the end of 1987 (24).

Studies have shown that CNMs can manage normal pregnancies at least as well as physicians $(169,359,502,504,565)$. Numerous factors, including lack of physician acceptance, liability coverage costs and availability, and reimbursement coverage, have influenced the characteristics and location of CNM practice.

## Rural Supply

Although no information regarding the national rural/urban distribution of CNMs is available, survey data show that the proportion of CNMs in smaller communities has decreased in recent years. The proportion of active CNMs practicing in communities of fewer than 50,000 residents decreased by over 10 percentage points in both small (fewer than 10,000 residents) and mid-sized ( 10,000 to 49,999 residents) communities between 1982 and 1987 (table 10-33) (23a,26). ${ }^{42}$

State data indicate that the distribution and activity of CNMs vary considerably between rural and urban areas.

- In Arizona, in 1987, although only one-half of CNMs in urban counties were practicing midwifery, all of the 21 CNMs in rural counties were delivering babies. CNMs attended 4 percent of all deliveries in Arizona in 1985, and in some rural counties they delivered more than 50 percent of the total county births (220). ${ }^{43}$
- In Texas, in 1986,22 percent of the 79 CNMs practicing nurse-midwifery were practicing in rural counties (708).
- In Utah, in 1986, only 1 of the 42 known employed CNMs was practicing in a rural county. Only one rural hospital in Utah granted delivery privileges to nurse-midwives in 1987,

[^18]Table 10-34--Number of Nurse Anesthetist Training Programs and Graduates, 1976-90

Community	population	$\begin{gathered} 1982 \\ (\mathrm{~N}=1,065) \end{gathered}$	$\begin{gathered} 1987 \\ (N=1,526 \end{gathered}$
Fewer than 10,		$8.7 \%$	7.9
10,000 to 49,		14.5	13.7
50,000 to 199	,999.	17.4	20.0
200,000 to 4	99,999.	13.2	10.6
500,000 or mo		40.6	39.
Total ${ }^{\text {d }}$.		100.0	100.0
primary work site.   $b_{\text {Data }}$ are based on the 1982 and 1987 American Colleg of Nurse-Midwives (ACNM) Surveys and only reflect characteristics of nurse-midwives who are certifi according to the requirements of the ACNM. Data for 1982 are based on responses from 1,684 CNMs ( $66 \%$ of all CNMs in 1982). Data for 1987 are based on responses from 2,278 CNMs (57\% of all CNMs in 1987). CNMs who were residing outside of the United States, were not practicing nurse-midwifery, or did not indicate the size of their primary worksite are excluded.   ${ }^{\mathrm{c}}$ Does not reflect metro or nometro location.   'Percentages may not add to 100 due to rounding.   SOURCE: American College of Nurse-Midwives, NurseMidwifery in the United States: 1982 (Washington, DC: ACNM, 1984); American College of Nurse-Midwives, Washington, DC, unpublished data from the 1987 five-year survey provided to OTA in 1990.			

Table 10-33-Distribution of Practicing Certified NurseMidwives (CNMs) by Community Population Size, 1982 and $1987^{\text {ab }}$
and CNMs in the State do not participate in home deliveries (158).

## Certified Registered Nurse Anesthetists(CRNAs)

In 1986, there were 22,500 CRNAs and 19,000 anesthesiologists in the United States, but the number of anesthesiologists has increased much more quickly than that of CRNAs over the past two decades (116 v. 68 percent) (522). ${ }^{44}$ The number of graduates from nurse anesthetist training programs dropped by a precipitous 44 percent from 1980 to 1988, due to a 48 percent reduction in the number of nurse anesthetist training programs (table 10-34) (22). Reasons for program closure may include

$\left.$| Year | Total number <br> of |
| :--- | :--- |
| graduates |  | | Total number |
| :---: |
| of programs | \right\rvert\,

'Projected.
$\mathrm{b}_{\text {Number }}$ of programs as of Apr. 1, 1990.
SOURCE: American Association of Nurse Anesthetists, Chicago, IL, unpublished data provided to OTA in April 1990.
withdrawal of anesthesiologist support and concerns within hospitals over program costs (522). The number of graduates has increased since 1988, reaching a projected 693 in 1990, but it is still far below the peak level of 1982 (table 10-34)(22).

The distribution of CRNAs and anesthesiologists by State is shown in table 10-35, which ranks the States by their CRNA-to-population ratio. The seven States with average rates at or above the national median for both providers all have both large anesthesiology residency programs and nurse anesthetist training programs (522). The eight States with rates below the national median for both providers all have large rural areas and below-average hospital bed-to-population ratios (522).

Hospitals that lack the services of MD anesthesiologists may rely on CRNAs as the sole providers of anesthesia during surgical procedures. CRNAs administer nearly 70 percent of all anesthetics given in the United States (122). ${ }^{45}$ In 1982, 34 percent of

[^19]Table 10-35--Supply of Certified Registered Nurse Anesthetists (CRNAs) and MD Anesthesiologists by State, 1986, Ranked by CRNAs and MD Anesthesiologists Per 100,000 Residents

State	CRNAs		Anesthesiologists			Anesthesia providers   (CRNAs plus MD anesthesiologists ) per 100,000 residents
	Per 100,000 residents	Rank ${ }^{\text {c }}$	Number ${ }^{\text {d }}$	$\begin{aligned} & \text { Per } 100,000 \\ & \text { residents } \end{aligned}$	Rank ${ }^{\text {e }}$	
Alabama . . . . . . . . . . 562	14.0	7	175	4.4	46	18.4
Alaska . . . . . . . . . . . 34	6.5	41.5	21	4.0	48	10. 5
Arizona . . . . . . . . . . 140	4.4	47	263	8.3	7	12. 7
Arkansas . . . . . . . . . 243	10.3	16	105	4.5	44	14.8
California . . . . . 957	3.6	50	2,025	7.7	10	11. 3
Colorado . . . . . . . . . 181	5.6	44	233	7.2	12.5	12.8
Connecticut . . . . . . 287	9.0	24	280	8.8	5	17.8
Delaware . . . . . . . . . 78	12.5	11	37	5.9	30.5	18.4
District of Columbia. . . . . . . 61	9.7	21	48	7.7	10	17.4
Florida . . . . . . . . . 860	7.6	33	822	7.2	12.5	14.8
Georgia . . . . . . . . . . 546	9.1	23	367	6.1	27	15. 2
Hawaii . . . . . . . . . . 104	9.9	19	61	5.8	32.5	15. 7
Idaho . . . . . . . . . . . 99	9.9	19	31	3.1	50	13.0
Illinois . . . . . . . . . 810	7.0	39	709	6.1	27	13.1
Indiana . . . . . . . . . . 119	2.2	51	374	6.8	17	9. 0
Iowa. . . . . . . . . . . . . 208	7.2	36	160	5.5	34.5	12. 7
Kansas . . . . . . . . . . . 326	13.3	9	126	5.1	39	18.4
Kentucky . . . . . . . . . 301	8.1	29.5	199	5.3	36.5	13.4
Louisiana . . . . . . . . 723	16.1	4	216	4.8	42	20.9
Maine . . . . . . . . . . . 125	10.7	15	69	5.9	30.5	16.6
Maryland . . . . . . . . . 310	7.1	37.5	404	9.2	2.5	16. 3
Massachusetts . . . . 456	7.8	31	582	10.0	1	17.8
Michigan . . . . . . . . . 992	10.9	14	502	5.5	34.5	16.4
Minnesota . . . . . . . . 774	18.5	3	267	6.4	21	24.9
Mississippi . . . . . . 263	10.1	17	87	3.3	49	13.4
Missouri . . . . . . . . . 611	12.1	12	291	5.8	32.5	17.9
Montana . . . . . . . . . . 59	7.1	37.5	51	6.2	24	13. 3
Nebraska . . . . . . . . . 193	12.0	13	83	5.2	38	17.2
Nevada . . . . . . . . . . . 38	4.1	49	81	8.7	6	12.8
New Hampshire. . . . 84	8.4	27	53	5.3	36.5	13. 7
New Jersey . . . . . . . 347	4.6	45	511	6.8	17	11.4
New Mexico . . . . . . . 117	8.1	29.5	87	6.0	29	14. 1
New York. . . . . . . . . 800	4.5	46	1,461	8.2	8	12. 7
North Carolina. . . 863	13.8	8	283	4.5	44	18. 3
North Dakota . . . . . 129	18.8	2	31	4.5	44	23. 3
Ohio. . . . . . . . . . . . . 946	8.8	25	765	7.1	14	15. 9
Oklahoma . . . . . . . . . 244	7.4	34	164	5.0	40	12.4
Oregon . . . . . . . . . . . 168	6.3	43	208	7.7	10	14.0
Pennsylvania. .. ..1,772	14.9	5	824	7.0	15	21.9
Rhode Island . . . . . 81	8.4	27	60	6.2	24	14. 6
South Carolina. . . 333	9.9	19	140	4.2	47	14. 1
South Dakota . . . . . 141	19.9	1	19	2.7	51	22.6
Tennessee . . . . . . . . 625	13.1	10	309	6.5	19.5	19.6
Texas . . . . . . . . ....1,382	8.4	27	1,065	6.5	19.5	14.9
Utah. . . . . . . . . . . . . 71	4.3	48	152	9.2	2.5	13.5
Vermont . . . . . . . . . . 41	7.7	32	33	6.2	24	13.9
Virginia . . . . . . . . . 525	9.2	22	358	6.3	22	15. 5
Washington . . . . . . . 286	6.5	41.5	394	8.9	4	15.4
West Virginia. . . . 279	14.4	6	95	4.9	41	19. 3
Wisconsin . . . . . . . . 350	7.3	35	326	6.8	17	14. 1
Wyoming . . . . . . . . . . 34	6.7	40	31	6.1	27	12. 8
O.S. total . . . . . . . . . . . .	. . . 8.4			6.1		14.5

${ }^{\text {active members in }}$ ine American Association of Nurse Anesthetists, as of August 1986.
$b_{\text {Based }}$ on 1985 population.
Ranked by CRNAs per capita.
'Active members in the American Society of Anesthesiologists, as of Dec. 31, 1986.
${ }^{6}$ Ranked by MD anesthesiologists per capita.
SOURCE: Adapted from M.L. Rosenbach and J. Cromwell, "A Profile of Anesthesia Practice Patterns," Health Affairs, vol. 7, No. 4, Fall 1988, pp. 118-131, exhibit 3.

## Box 10-C—Provider Profiles: Nurses

## Registered Nurses (RNs)

Although all RNs take the same licensure examination, basic nursing education is provided in a number of different settings (673). Programs vary in length and type of degree provided. Diploma programs, usually located in hospitals, are typically 3 years in length. Associate degree programs, typically located in community colleges, are generally 2 years long. Bachelor's degree programs are located in colleges and universities and require a total of 4 years of undergraduate education for degree completion. In recent years, there has been a trend away from the diploma and toward the bachelor's degree or associate degree as the route of entry into the RN work force. Associate degree programs are still producing the majority of RNs (673). Many advanced nursing degree programs, such as those preparing NPs, CNMs, and CRNAs, require a previous bachelor's degree (673), and some States have initiated plans to require a bachelor's degree for RN professional practice (671). The total employed RN population includes RNs with advanced training (e.g., NPs, CNMs, CRNAs, clinical nurse specialists) who are either in clinical practice or are employed in research, teaching, or administration (673).

## Licensed Practical/Vocational Nurses (LP/VNs)

LP/VNs must complete a training program in practical nursing (typically 12 months long) before taking a national licensure examination (671). In California and Texas, the licensing laws refer to vocational nurses rather than practical nurses (671). LP/VNs are not considered professional nurses because their skills and training are not equivalent to those of RNs (69). LP/VNs are responsible to RN supervisors under State nurse practice acts (69).
hospitals ${ }^{\text {\% }}$ relied solely on CRNAs for anesthesia service provision (123); ${ }^{47} 85$ percent of these hospitals were located in rural areas (123). In isolated areas, a single CRNA may provide services in as many as four hospitals (699).

The high proportion of rural anesthesia services provided by CRNAs suggests a concentration of these professionals in rural areas, but recent decreases in the number of programs and graduates may disproportionately affect rural areas. A survey of rural and urban hospitals in Texas found that the vacancy rate for CRNAs was 10 percent in rural hospitals, compared with 2 percent in urban hospitals (595).

## NURSES

The U.S. health care system employs over 3 million nursing personnel at a wide range of professional levels and in a wide range of settings (671). Reports from nurse employers suggest a recent serious national shortage of nurses (698). The nature and extent of this shortage have been the subject of numerous studies at the national, State, and local levels. These studies have focused primar-
ily on registered nurses (RNs) employed in hospitals. The impact of the national nursing shortage-in rural areas is difficult to determine due to the limitations of these studies and their data sources, but available data suggest that rural areas are suffering at least as much as urban areas. Smaller rural facilities are more sensitive to the loss of a single nurse, because such a loss can critically affect their ability to deliver health services.

This section describes the national and rural supply of registered nurses (RNs) and licensed practical/vocational nurses (LP/VNs) (see box 10C).

## National Supply ${ }^{48}$

## Current Supply

As of March 1988, there were just over 2 million RNs licensed to practice in the United States, representing an increase of approximately 45 percent over the 1977 RN population (figure 10-5) (673). From 1984 to 1988, however, total RN population increased by only 8 percent. The estimated total number of RNs employed in nursing in

[^20]Figure 10-5-Employment Status of Registered Nurses in the United States, Selected Years, 1977-1988


SOURCE: Office of Technology Assessment, 1990. Data from U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Seventh Report to the President and Congress on the Status of Health Personnel in the United States, DHHS Pub. No. HRS-P-OD-90-1 (Rockville, MD: HRSA, June 1990), table VIII-2.

1988 was approximately 1.6 million, or roughly 80 percent of all licensed RNs (673). Both the proportion of licensed RNs who are practicing and the proportion employed full-time have increased in recent years (figure 10-5) (673). There were 668 employed RNs per 100,000 residents in the United States as a whole in 1988-a 19 percent increase over the 1980 ratio (table 10-36) $(404,673)$. The number of RNs employed in hospital settings has increased dramatically in recent years (table 10-37) $(671,698)$.

In 1983, the most recent year for which data are available, there were in the United States an estimated $781,506 \mathrm{LP} / \mathrm{VNs}$, with 69 percent of these actually employed in practical nursing. Approximately 5 percent of all LP/VNs were also licensed to practice as RNs, and almost 12 percent of the LP/VNs who were not employed in practical nursing in 1983 were employed as RNs (678). The number of LP/VNs employed in hospitals decreased substantially between 1981 and 1988 (table 10-37) $(671,698)$.

Considerable State and regional variations in estimated RN supply exist (figure $10-6$, table $10-36$ ) $(404,673)$. In 1988, for example, New England had more than twice as many employed RNs per 100,000
residents as the West South Central region (table 10-36) (673). Ratios in the States ranged from a low of 442 in Louisiana to a high of 1,167 in Massachusetts. Employed-RN-to-population ratios increased in all States between 1980 and 1988, although the rate of increase varied considerably, and a few States experienced decreases during the latter part of that period. Regions with the lowest ratios experienced the highest rates of increase (table 10-36) $(404,673)$.

Regional variations are less pronounced for LP/ VNs (table 10-38). The national ratio of LP/VNs per 100,000 residents was 231 in 1983. The only regions with ratios well below this average were the Mountain (173) and Pacific (176) regions (671). Interestingly, the two regions with the lowest relative RN-to-population ratios in 1984 (East South Central and West South Central) (table 10-36) had high relative LP/VN-to-population ratios in 1983 (278 and 274, respectively) (404)671).

Over two-thirds of RNs employed in nursing (in 1988) and over one-half of employed LP/VNs (in 1983) worked in hospitals (table 10-39) $(671,681)$. Other major employment settings for RNs were nursing homes, ambulatory care settings, and public health settings. Other major employment settings for LP/VNs were nursing homes and physicians' or dentists' offices. RN employment in ambulatory care settings (e.g., group practice physician offices, HMOs, freestanding clinics) increased by 29 percent from 1984 to 1988, but it changed little in public health settings (673).

## Future Supply

The main cause for concern regarding future supply of nurses is the recent downward trend in enrollments in and graduations from nursing programs. Total enrollments in basic RN nursing education programs decreased in all but three years between academic years 1975-76 and 1987, then increased slightly in 1988 (671,673). In 1989-90, first-time student enrollments in 4 -year RN programs increased by 6 percent over the previous year-the first increase in 5 years (20). Enrollments in practical nursing programs peaked in 1982-83, and they have since declined significantly (671).

The number of graduates from RN programs, after nearly a decade of increase, dropped significant.ly in 1985-86 and has continued to decline (table 10-40)
Table 10-36-Estimated Supply of Registered Nurses (RNs) Employed in Nursing by Region and State, 1980, 1984, and 1988a

	Number	$\begin{gathered} \text { Rate per } \\ 100,000 \end{gathered}$	Number	$\begin{gathered} \text { Rate per } \\ 100,000 \end{gathered}$	Number	$\begin{gathered} \text { Rate per } \\ 100,000 \end{gathered}$		hange per sidents
	of RNs	residents	of RNs	residents	of RNs	residents	1980-84	1984-88
United States. . . . . . . . 1	1,272,851	560	1,485,725	629	1,627,035	668	12	6
Northeast								
New England.	109,116	882	1桨,914	953	130,915	1,020	8	7
Connecticut.........	26,083	838	6,407	837	29,367	916	>-0.5	9
Maine...............	7,583	673	8,453	731	9,639	809	9	11
Massachusetts.	7,052	993	63,540	1,096	68,255	1,167	10	6
New Hampshire	7,368	798	8,024	821	10.015	946	3	15
Rhode Island.:	7,025	740	8,851	920	9.149	933	24	1
Vermont...... ${ }^{\text {: }}$ : : $^{\text {: }}$.	4,005	782	4,639	875	4.490	821	12	-6
Middle Atlantic.	252,751	686	277,040	746	293.961	785	9	5
New Jersey...	46,768	634	52,493	699	53, 239	693	10	-1
New York.	12,184	695	133,310	752	142' 899	802	8	7
Pennsylvania........	83,769	705	91,238	767	97,823	819	9	7
Midwest								
East North Central.....	231,557	555	277,280	667	295,202	705	20	6
Illinois.	66,997	586	80,564	700	84,779	734	19	5
Indiana.	25,379	462	32,240	586	35,527	642	27	10
Michigan.	48,427	523	56,449	622	60,463	658	19	6
Ohio........... . . .	61,841	573	75,676	704	80,095	743	23	6
Wisconsin.........	28,913	612	32,351	679	34,338	714	11	5
West North Central....	111,206	646	125,639	717	135,464	768	11	7
Iowa......... . . . . .	19,600	673	23,704	815	22,770	805	21	-1
Kansas......... ${ }^{\text {. }}$.	14,574	616	15,943	664	16,863	683	8	3
Minnesota...... . . .	32,184	788	32,229	774	33,911	798	-2	3
Missouri.... . . . . .	25,635	521	31,866	636	38,277	751	22	18
Nebraska....... . . .	10,325	657	11,094	691	11,627	728	5	5
North Dakota... . . .	4,264	652	5,637	822	6,239	923	26	12
South Dakota, = . . .	4,623	670	5,164	731	5,777	818	9	12
outh								
South Atlantic... .....	186,480	502	227,724	577	259.671	623	15	8
Delaware............	- 3832	643	4,423	722	5661	885	12	23
District of Columbia	- $8^{\prime} 462$	1.328	9,465	1,519	10. 279	1,656	14	9
Florida.............	49,245	499	67,722	617	80:319	668	24	8
Georgia.............	- 24,756	452	29,365	503	33.860	545	11	8
Maryland...........	24'639	583	31,565	726	32.207	710	25	-2
North Carolina......	27'536	468	32,460	527	$37 \cdot 568$	586	13	11
South Carolina.	12,537	401	13,761	417	$15 \cdot 180$	444	4	6
Virginia............	26,138	487	28,477	505	33:500	567	4	12
West Virginia.......	9336	479	10,485	537	11.097	585	12	9

Table 10-36-Estimated Supply of Registered Nurses (RNs) Employed in Nursing by Region and State, 1980, 1984, and 1988

	1980		Number of RNs	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	Number of RNs	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$	Percent change in rate per 100,000 residents	
	Number of RNs	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$						
South (continued) :								
East South Central.	62,411	425	72,429	482	82,644	540	10	12
Alabama. .	16,026	411	19,750	495	22,113	541	20	9
Kentucky.	16,972	463	16,799	451	19,495	523	-	16
Mississippi.	9,052	359	10,577	407	12,147	461	13	13
Tennessee.	20,360	443	25,302	536	28,889	595	23	11
West South Central.	87,476	366	113,518	435	125,470	466	11	7
Arkansas..	8,405	366	10,258	437	11,292	473	19	8
Louisiana.	14,556	345	17,372	389	19,685	442	19	14
Oklahoma.	10,509	346	13,569	411	15,036	458	13	11
Texas..	54,0	377	72,320	452	79,457	474	29	5
West	${ }^{\circ} 6$						0	
Mountain..	61,214	536	72,448	577	81,838	623	8	8
Arizona.	16,685	611	19,015	623	23,191	685	2	10
Colorado..	17,820	614	21,212	667	23,459	713	9	7
Idaho..	4,062	429	5,039	503	4,963	501	17	<0.5
Montana. ${ }^{\text {a }}$	4,824	612	5,260	638	5,275	655	4	3
Nevada.	3,950	489	4,849	532	6,367	636	9	20
New Mexico.	5,478	420	7,255	509	7,489	500	21	-2
Utah......	6,045	411	7,151	433	8,397	500	5	15
Wyoming...	2,350	495	2,667	522	2,697	551	5	
Pacific....... $\%$.	170,672	535	199,734	584	221,869	607		4
Alaska........	1,948	483	3,256	651	3,351	648	3	<0.5
California.	122,176	514	141,834	554	159,808	575	9	4
Hawaii.	4,763	492	6,462	622	5,923	545	25	H12
Oregon......	1,208	652	18,081	676	20,466	753	8	11
Washington...	27,576	592	30,100	692	33,121	729	16	5

[^21]Table 10-37-Registered Nurse (RN) and Licensed Practical/Vocational Nurse (LP/VP) Supply in U.S. Community Hospitals, ${ }^{\text {a }}$ 1981-88

		1981	1982	1983	1984	1985	1986	1987
Riss:								
Total FTEs								

NOTE: NA $\bar{m}$ not available.
$a_{A}$-defined by the American Hospital Association
${ }^{\text {bull-time equivalent. }}$
CIncludes inpatients plus outpatient visits converted to inpatient equivalents.
 U.S. Department of Health and Human Serviqeagretary's Commission on Nursing, Secretary's Commission on Nursingeinal Report. Volume I (Washington, DC: December 1988), figure 1; U.S. Department of Health and Human Servicgealth Resources and Services Administration, Bureau of Health Professions, Sixth Report to the President and Congress on the Status of Health Personnel in the United States, DHHS Pub. No. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 10-12.

Figure 10-6-Employed Registered Nurses (RNs) Per 100,000 Residents in the United States by State, March 1988


RNs per 100,000 residents:


SOURCE: Office of Technology Assessment 1990. Based on data from U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Seventh Report to the President and Congress on the Status of Health Personnel in the United States, DHHS Pub. No. HRS-P-OD-90-1 (Rockville, MD: HRSA, June 1990), figure VIII-6.

Table 10-38-Estimated Supply of Licensed Practical/ Vocational Nurses (LP/VNs) by Region, 1983 ${ }^{\text {a }}$

Number	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \text { residents } \end{aligned}$
United States. . . . . . . . . . . 539,463	231
New England . . . . . . . . . . . . .33,004	264
Middle Atlantic . . . . . . . 82, 885	224
South Atlantic . . . . . . . . .86,872	224
East South Central . . . . A1,598	278
West South Central. . . . 70,671	274
East North Central . . . . 94,979	229
West North Central . . . . 48,729	280
Mountain. . . . . . . . . . . . . . 21,386	173
Pacific . . . . . . . . . . . . . . . 59,339	176

${ }^{\text {a }}$ Includes only nurses actually employed as LP/VNs.
SOURCE: U.S. Department of Health and Human vices, Health Resources and Services Administration, Bureau of Health Professions, Sixth Report to the President and Congress Estimated LP/VNs employed on the Status of Health Personnel in the as LP/VNs, 1983 United States, DHHS Pub. No. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 107.
(421) ${ }^{49}$ Similarly, the number of graduates from LP/VN programs increased until 1984-85 but has since dramatically declined, dropping by almost 20,000 between 1984-85 and 1987-88 (table 10-40()). While the number of programs preparing RNs has increased slightly in recent years, the number of LP/VN programs has decreased (table 10-40)(421)). BHPr projects a continuing decline in graduates from all basic nurSing education programs through the year 2020 (673). Between 1990 and 2020,the total supply of employed RNs is projected to decrease by 2.6 percent (from $1,687,100$ to $1,642,900$ ), while the supply of employed RNs relative to population is projected to decrease by 17 percent (from 674 to 558 per 100,000 residents) (673). The total number of LP/VNs per 100,000 residents is projected to peak in 2004 and to subsequently experience a slow but steady decline (671).

Table 10-39-Registered Nurses (RNs) Employed in Nursing, 1988, and Employed Licensed Practical/ Vocational Nurses (LP/VNs), 1983, by Primary Employment Setting

Employment setting	Number	Percent
Estimated RNs employed in nursing, 1988		
Hospital	1,104,978	67.9
Nursing home/extended care facility.	107,805	6.6
Nursing education.	30,005	1.8
Community/public health.	110,886	6.8
Student health service.	47,792	2.9
Occupational health	21,857	1.3
Ambulatory care.	125,813	7.7
Private duty nursing.	19,988	1.2
Self-employed.	13,203	0.8
Ser ${ }^{\text {Other. }}$	43,321	2.7
Unknown.	1,386	0.1
Total . . .	. 1,627,035	100.0
Estimated LP/VNs employed as LP/VNs, 1983		
Hospital	310,842	57.6
Nursing home.	121,398	22.5
Public/community health.	13,574	2.5
Student health	4,200	0.8
Occupational health	6,056	1.1
Physicians or dentists office.	48,969	9.1
Private duty.	19,959	3.7
Other	6,237	1.2
Not known.,	8,229	1.5
Total	539,465	100.0

apercentages may not add to 100 due to rounding.
SOURCES: U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Division of Nursing, Rockville, MD, unpublished data from the 1988 National Sample Survey of Registered Nurses provided to OTA in 1989; U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Sixth Report to the President and Congress on the Status of Health Personnel in the United States, DHHS Pub. No.HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 10-11.

The pool of potential nursing students also seems to be shrinking. An ongoing study of career interests

The 1980s Nursing Shortage--Although in the of first-time freshmen college students conducted fyyture there is likely to be a shortage of nurses due the University of CalifOrnia (Los Angeles) shows to lack of nursing graduates, the shortage of RNs in marked decrease in the numbers indicating an the 1980s was primarily due to an increase in interest in nursing (63). demand (698). Demand factors included:

[^22]Table 10-40-Number of Programs Preparing Registered Nurses (RNs) and Licensed Practical/ Vocational Nurses (LP/VNs) and Number of Graduates: 1976-77 and 1981-82 through 1988-89

$\left.$| Year | Number of <br> programs |
| :--- | :--- | | Number of |
| :---: |
| graduates | \right\rvert\,

NOTE: NA= not available.
SOURCE: National League for Nursing, New York, NY, unpublished data provided by staff at the U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Rockville, MD, 1990.

- increasing demand for RNs in hospitals due to advances in medical technology, shorter hospital stays, and increased severity of illness of hospital patients, which results in intensification of required RN services, and reduction in hospitals' ancillary nursing staff, which increases the range of tasks that must be performed by RNs;
increasing demand for RNs in nonhospital settings (e.g., ambulatory care and home health care); and
increasing opportunities for RN employment outside of traditional medical settings (628).

Increase in demand for RNs in the hospital sector is evidenced by increases in both RN employment and vacancy rates. Although the average number of
full-time equivalent (FTE)RNs per 100 patients in community hospitals increased by 21 percent from 1983 to 1987 (from 80.0 to 97.8) (figure 10-7),RN vacancy rates in these hospitals increased from 4.4 percent to 11.3 percent during the same period (table 10-37) (698). ${ }^{50}$ As the number of RNs in hospitals has increased, both the number of LP/VNs and reportedly/VNvacancyrates have decreased (figure 10-7, table 10-37) $(671,698)$. Nursing homes, which employed almost 7 percent of RNs in 1988 (673), reported an RN vacancy rate of 8 percent in 1987 (462). The number of RNs employed in nursing homes may increase in the near future due to new requirements for greater RN staffing in Medicareand Medicaid-certified nursing homes (Public Law $100-203)(462,673)$.

## Rural Supply

The proportion of RNs who work in rural areas has decreased in recent years, but it is not clear whether this is the result of decreased demand in rural settings or decreased supply of nurses willing to locate there. In 1988, 17 percent of all RNs employed in nursing in the United States were employed in rura1 areas, compared with 20 percent in 1980 (table 10-41)(681). The rural/urban distribution of RNs varies considerably by region. The West North Central and East South Central regions had the highest proportions of their nurses in rural areas in 1988 ( 31 percent and 30 percent, respectively) (681). The distribution of RNs across rural and urban areas in 1988 cannot be fully explained by the distribution of U.S. registered hospital beds, 21 percent of which were located in rural areas in 1988 (178). ${ }^{51}$

Rural RNs are concentrated in the most populated counties. According to a recent analysis of 1988 data, only 8.7 percent of all RNs employed in nursing were located in counties of fewer than 50,000 residents (table 10-42) (317). Most of these were in counties of more than 25,000 residents (table 10-42) (317). ${ }^{52}$

Compared with RNs in larger counties, RNs in small counties ( 50,000 or fewer residents) axe older, more likely to work full-time, more likely to work in

[^23]Figure 10-7-Registered Nurses (RNs) and Licensed Practical/Vocational Nurses (LP/VNs) in U.S. Community Hospitals: ${ }^{\text {a }}$ Total FTEs ${ }^{\text {b }}$ and FTEs per 100 Patients,' 1981-88

aAs defined by the American Hospital Association.
${ }^{\text {b }}$ Full-time equivalent.
CIncludes inpatients plus outpatient visits converted to inpatient equivalents.
SOURCE: Office of Technology Assessment, 1990. Data from American Hospital Association, Hospital Statistics (Chicago, IL: AHA, 1982-1989 eds).
Table 10-41-Metropolitan/Nonmetropolitan Distribution of Registered Nurses (RNs) Employed in Nursing in the United States by Region, 1980 and 1988

nursing home or public health settings, less likely to work in hospitals, and less likely to have a baccalaureate degree (table 10-43) (317). RNs in small counties are also more likely to work in administrative or supervisory positions. Most of these characteristics are most pronounced in the smallest counties; for example, RNs in the smallest counties are more than three times as likely as RNs in the largest counties to work in a nursing home or extended care facility. Oddly enough, within the smaller counties, the percentage of RNs with a baccalaureate degree
as their highest degree in nursing is highest in the smallest counties (table 10-43) (317). This finding may be indicative of a more pressing need for well-trained RNs in the smallest, most remote facilities.

Rural RNs are less likely than urban RNs to be employed in nursing ( 77 v. 81 percent in 1988) (681). Analysis of 1984 national survey data revealed that 14 percent of RNs who resided in rural areas commuted to urban areas to work, while only

Table 10-42-Estimated Number and Distribution of Registered Nurses Employed in Nursing by County Population Size, 1988

```county population sizea```	Estimated number of RNs	Percent distribution
All U.S. counties. .	. $1,627,035$	100.0
More than 50,000	. . 1, 485, 999	91.3
50,000 or fewer	. . . 140,057	8.7
25,001 to 50,000:	. . 79,117	4.8
10,001 to 25,000 .	. . 46,955	2.9
10,000 or fewer.. .	. . 13,986	0.9

${ }^{a_{C o u n t y}}$ population size does not necessarily refl metro or nonmetro status.
bercentages may not add to 100 due to rounding.
SOURCE: D.A. Kindig, University of Wisconsin, Madison, WI, and H. Movassaghi, Ithaca College, IthacaNY, unpublished analysis of data from the 1988 National Sample Survey of Registered Nurses (provided by the Division of Nursing, Bureau of Health Professions) conducted under contract with the University of North Dakota Rural Health Research Center, Grand Forks, ND, 1989.

2 percent of RNs residing in urban areas commuted to rural practice sites (699).

Data from selected States indicate substantial rural/urban differences in RN and LP/VN distribution. For example:

- In Texas, in 1986, the number of employed RNs per 100,000 residents was 228 in rural counties, compared with 460 in urban counties (708).
- In Arizona, in 1987, the total number of RNs per 100,000 residents was also much lower in rural than in urban counties (477 v. 850). LP/VN availability was also lower in rural than in urban counties (186 v . 238 per 100,000) (220).
- In Oklahoma, in 1987, the total number of RNs per 100,000 residents was again much lower in rural than in urban counties (397v. 686), but the ratio of LP/VNs to 100,000 residents was actually higher in rural than in urban counties (387 v. 286) (451).

These differences may be explained to some extent by rural/urban distribution of hospitals, where most RNs and LP/VNs are employed. In Texas, in 1986, for example, only 19 percent of the State's hospital beds were located in rural counties, and 42 of the 43 Texas counties without a hospital were rural (708). A recent study found that vacancy rates for RNs,

LP/VNs, and critical care RNs in this State were only slightly higher in rural than in urban hospitals (595).

Nurse Supply In Rural and Urban Hospitals

Rural hospitals have markedly fewer RNs and distinctly lower RN-to-LP/VN ratios than their urban counterparts (table 10-44) (625). Among rural hospitals, hospitals in frontier areas have especially few FTE RNs--as little as one-fifth as many FTE RNs as nonfrontier rural hospitals of comparable size. Medicare-certified sole community hospitals eftend to have slightly larger FTE RN staffs than those of other rural hospitals (625).

In contrast, rural hospitals of any given size generally have slightly more FTE LP/VNs than their urban counterparts (table 10-44). Again, however, frontier hospitals have the fewest FTE LP/VNs (625).

Urban hospitals have up to two times as many FTE RNs per FTE LP/VN as do rural hospitals of comparable size (table 10-44) (625), reflecting a greater reliance on nurses with less training and lower salaries in rural hospitals. It is unclear whether the greater representation of LP/VNs in rural hospitals is due to the hospitals' inability to pay the higher RN salaries, their inability to recruit qualified RNs from the larger national pool, or a lower demand for RNs in these hospitals.

Eighteen percent of large urban hospitals and 9.5 percent of rural hospitals reported closing beds in 1987 due to shortage of nursing staff (699). Although a larger proportion of rural than urban hospitals report no vacant RN positions, high RN vacancy rates (over 15 percent) are more common in rural than in urban hospitals (699). Because most rural hospitals are small and employ relatively few RNs, they may be subject to extreme shifts in vacancy rates, and they may be more sensitive to the loss of a single nursing employee.

Data are scarce regarding the extent of the nursing shortage in ambulatory and other nonhospital, nonnursing home health care settings, which employ approximately 25 percent of all RNs and 22 percent of all LP/VNs (table 10-39) (671,681). Lack of such data hinders accurate assessment of the extent of the nursing shortage. This limitation is particularly troubling given the recent increase in RN employment in ambulatory care settings (673) and given the relatively large proportion of RNs in small rural

Table 10-43-Characteristics of Registered Nurses (RNs) Employed in Nursing by County Population Size, 1988

counties who work in these settings (table 10-43) (317).

OTHER HEALTH PROFESSIONALS

Dentists

National Supply

In 1986, there were 143,000 practicing dentists in the United States--a 40 percent increase in absolute numbers since 1970, and a 20 percent increase in the
active dentist-to-population ratio (table 10-45)(671). Of these dentists, 85 percent were in general practice, but this proportion is declining (671). From 1981 to 1987, the general and pediatric dentist-topopulation ratio increased by only 1.4 percent, while the dental specialist-to-population ratio increased by 35 percent (table 10-46) (686). The trend towards specialty practice in dentistry is slight compared with that seen in medicine, but it maybe cause for concern in the future if overall supply decreases (table 10-47) (673).

Table 10-43--Characteristics of Registered Nurses (RNs) Employed in Nursing by County Population Size, 1988-Continued

	Countypopulation size				
All U.S. counties	$\begin{aligned} & \text { more than } \\ & 50,000 \\ & \text { residents } \end{aligned}$	$\begin{aligned} & 50,000 \\ & \text { or fewer } \\ & \text { residents } \end{aligned}$	$\begin{aligned} & 25,001 \text { to } \\ & 50,000 \\ & \text { residents } \end{aligned}$	$\begin{aligned} & 10,001 \text { to } \\ & 25,000 \\ & \text { residents } \end{aligned}$	$\begin{aligned} & 10,000 \\ & \text { or fewer } \\ & \text { residents } \end{aligned}$
Percent of RNs:					
Title of position:					
Administrator/Assistant administrator. \qquad	5.6	10.5	8.4	11.4	19.6
Supervisor . 5.6	5.2	9.9	10.1	10.0	8.3
Instructor . 3.8	3.8	4.0	4.7	3.3	2.6
Staff/general duty nurse 66.9	67.3	62.5	62.6	63.2	59.6
Practitioner/midwife 1.4	1.4	1.4	1.7	1.1	1.2
Clinical specialist 1.8	1.9	0.7	0.7	0.7	0.4
Certified nurse anesthetist. . . . 1.0	1.0	1.4	1.3	1.5	1.5
Other . 13.0	13.2	9.3	10.2	8.7	6.9
Unknown . 0.4	0.4	0.2	0.3	0.1	*
Motal . 100.0	100.0	100.0	100.0	100.0	100.0

NOTE: * $=$ less than 0.05 percent of total.
$a_{\text {nants }}$ population size does not necessarily reflect metro or nonmetro ${ }^{\text {tatus }}$.
$\mathrm{b}_{\text {Percentages may not add to } 100 \text { due to rounding. }}$
C"Other" includes the following: student health, occupational health, private duty, self-employment, and other.
d"Other" includes the following: consultant, head nurse/assistant head nurse, nurse clinician, research, private duty, and other.
SOURCE: D.A. Kindig, University of Wisconsin, Madison, WI, and H. Movassaghi, Ithaca College, Ithaca, NY, unpublished analysis of data from the 1988 National Sample Survey of Registered Nurses (provided by the Division of Nursing, Bureau of Health Professions) conducted under contract with the University of North Dakota Rural Health Research Center, Grand Forks, ND, 1989.

Box 10-D—Provider Profile: Dentists

Dentists undergo 4 years of post-baccalaureate undergraduate training in general and some specialty dentistry (671). Graduates of these programs may enter dental residency programs to receive training in orthodontics, oral and maxillofacial surgery, periodontics, pedodontics, endodontics, prosthodontics, public health dentistry, or oral pathology (671).

Variations inactive dentist supply amonggeographic regions and States areas great as for other health professions. In 1986, the ratio of dentists to 100,000 residents in the United States was 57.3. Ratios in the States ranged from a high of 76.2 in Connecticut to a low of 35.2 in Mississippi (671). Regionally, ratios in the Northeast were well above the national average, while the South fell well below (671). These patterns show little difference from those existing in 1970 (671), suggesting that in-
creased national supply has had little effect on State and regional distribution.

In 1988, there were 793 designated dental HMSAs in the United States, with a resident population of almost 16 million. An estimated 1,729 dentists would be needed to remove these designations. Over 70 percent of all dental HMSAs are in rural areas. ${ }^{53}$

Trends in the number of dental students suggest a leveling off in future supply. For example:

- the number of applicants to dental schools decreased by nearly two-thirds between 1975 and 1986, from 15,734 to 5,724;
- the number of first-year enrollments decreased by 27 percent from 1978-79 to 1986-87; and
- the number of graduates decreased by 14 percent from 1982-83 to 1985-86(671).

Rural Supply

The distribution of dentists across urban and rural areas is very similar to that of physicians. For all

[^24]Table 10-44-Estimated Supply of Registered Nurses (RNs) and Licensed Practical Vocational Nurses (LP/VNs) in U.S. Registered Community Hospitals by Metropolitan/Nonmetropolitan, Frontier, and Sole Community Hospital Status, 1987

	Mean number of estimated $\mathrm{FTE}^{\mathrm{a}}$ RNs, by hospital bed size: 6-24 25-49 $\quad \begin{gathered}\text { 50-99 } \\ \quad \text { 100-199 200-299 }\end{gathered}$				
All U.S. community hospitals ${ }^{\text {b }}$.	. . . 7.6	15.4	37.3	90.5	186.8
Metro	. 9.5	22.6	48.8	105.2	197.6
Nommetro.	. 7.3	14.2	31.8	69.9	138.9
Within nonmetro:					
Frontier	. . 6.7	9.8	16.3	32.5*	26.0*
Not frontier	7.5	15.0	33.4	70.8	139.8
Sole community hospital ${ }^{\text {d }}$. .	. 8.1	15.4	36.2	81.7	132.9*
Not sole community hospital	. 7.1	14.0	31.3	68.7	139.6
	Mean number of estimated $\mathrm{FTE}^{\mathrm{a}}$ LP/VNs, by hospital bed size 6-24 $\quad 25-49 \quad$ 50-99 \quad 100-199 200-299				
All U.S. community hospitals ${ }^{\text {b }}$	3.5	7.4	15.2	27.8	45.3
Metro	. 2.6	7.5	15.7	27.0	43.0
Nommetro.	3.6	7.4	14.9	28.9	55.5
Within nonmetro:					
Frontier	3.0	4.3	6.9	6.9*	18.0*
Not frontier	3.9	8.0	15.7	29.5	55.8
Sole community hospital ${ }^{\text {d }}$.	2.7	6.4	13.3	29.5	45.5*
Not sole community hospital		7,6	15.1	28.9	56.5

NOTE: "*" indicates that the figure is based on fewer than 30 cases.
${ }^{\text {a }}$ Full-time equivalent.
$\mathbf{b}_{\text {rhe }}$ definition ${ }^{\text {f }}$ "community hospital" used by OTA in this analysis differs slightly from that used by the American Hospital Association (see app. C)
${ }^{c}$ Ratios were calculated using nonrounded figures
d_{130} hospitals without any LP/VNs, were dropped from the analysis.
SOURCE: U.S. Congress, Office of Technology Assessment, analysis of data from American Hospital Association 1987 Survey of Hospitals, performed for Rural Health Care report (see app. C).
dentists, office-based dentists, and general practice and pediatric dentists, ratios per 100,000 residents were much lower in rural than in urban counties in 1987 (table 10-48) (686). Within rural counties, ratios were directly related to county size, with the smallest counties (fewer than 2,500 residents) having fewer than one-half as many dentists per capita as the largest counties. Interestingly, the greatest increases in both general and specialist dentist supply between 1981 and 1987 occurred in the smaller rural counties (table 10-46)(686). However, in 1987, 183 counties in the United States still had no general practice or pediatric dentist (table 10-48)
(686). All but two of these counties were rural counties of fewer than 25,000 residents, and most of these were counties of low population density.

Data on the age distribution of dentists show no notable rural/urban differences, but the proportion of dentists who are young decreased substantially in all areas between 1981 and 1987 (686). This trend reflects the decreasing number of new graduates in recent years. As older dentists retire, rural areas will have to compete with urban areas for an increasingly limited supply of new dentists.

Table 10-45-Supply and Distribution of Active Dentists by General and Specialty Practice, 1970,1980, and 1986

Specialty	1970			1980			1986		
	Number	```Dentists per 100,000 t people b```		Number	Percent ${ }^{\text {c }}$	```Dentists per 100,000 peopleb```	Number	Dentistsper100,000Percent ${ }^{\text {c }}$ people	
All active. 102,200	O0 100.0	49.5	126,200	100.0	55.2	143,000	100.0	58.9
General practice 92,880	90.9	45.0	109,050	86.4	47.7	121,700	85.1	50.2
All specialties	. 9,	3209.1	4.5	17,150	13.6	7.5	21,300	14.9	8.8
Orthodontics. ... Oral \& maxillo-	. .3,900		1.9	6,560	5.2	2.9	7,150	5.0	2.9
facial surgery.	. . 2,190	2.1	1.1	3,960	3.1	1.7	4,730	3.3	1.9
Periodontics	. . 930	0.9	0.5	2,240	1.8	1.0	3,030	2.1	1.2
Pedodontics. 1,070	1.0	0.5	2,060	1.6	0.9	2,600	1.8	1.1
Endodontics. 460	0.5	0.2	1,170	0.9	0.5	1,900	1.3	0.8
Prosthodontics. . .	. 590	0.6	0.3	950	0.8	0.4	1,560	1.1	0.6
Public health dentistry	90	0.1	*	110	0.1	0.1	170	0.1	0.1
Oral pathology 90	0.1	*	100	0.1	*	160	0.1	0.1

NOTE: "*" $=$ fewer than 0.05 dentists per 100,000 people.
${ }^{\text {a }}$ Includes dentists in Federal service.
$b_{\text {All }}$ ratios are based on total population.
${ }^{c}$ Percentages may not add to 100 due to rounding.
SOURCE: U.S. Department of Health \& Human Services, Health Resources and Services Administration, Bureau of Health Professions, Sixth Report to The President \& Congress on The Status of Health Personnel in The United States, DHHS Pub. No. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 5-4.

Table 1046-Number of General Practice and Pediatric Dentists and Other Specialty Dentists Per 100,000 Residents by Type of County, 1981 and 1987

${ }^{2}$ Includes both full-time and part-time dentists. Part-time dentists are counted as full-time dentists.
SOURCE: U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Office of Data Analysis and Management, Rockville, MD, unpublished data from the Area Resource File system provided to OTA in 1989 and 1990.

Table 10-47-Supply of Active Dentists in the United States: Estimated 1988 and Projected 1990-2020

Number of active dentists
Year
:---:
per 100,000
people

${ }^{\text {a Ratios }}$ are based on total population, including Armed Forces overseas as of July 1 for 1990 and succeeding years.
SOURCE : U.S. Department of Health and Human Services, Health Resources and Services Adminis trat i on, Bureau of Health Professions, Seventh Report to the President and Congress on the Status of Health Personnel in the United States, DHHS Pub. No. HRS-P-OD-90-I (Rockville, MD: HRSA, June 1990), table VII-A-5.

Box 10-E—Provider Profile: Pharmacists

In order to obtain a license, pharmacists must complete either a 5 -year baccalaureate education program or a 6 -year doctoral program (671). The amount of preprofessional college study required by these programs varies from O to 2 years. The number of entry-level doctoral pharmacy programs and degrees awarded has increased in recent years, and this increase is projected to continue. The major dimensions of pharmacy practice include: general management and administration of the pharmacy; activities related to processing the prescription; drug-related decisionmaking and patient care functions; drug preparation, distribution, and control; and education of health care professionals and patients (671).

Table 10-48--Number of Dentists Per 100,000 Residents and Number of CountiesWithout General Practice or Pediatric Dentists by Typeof County, 1987

	Number of dentists ${ }^{\text {a }}$ per 100,000 residents			Counties without general practice or pediatric dentists, 1987	
	Total	Office-based	General practice and pediatric	Number of counties	Resident population
Netro.	57.7	55.5	46.2	2	15,400
Nonmetro.	35.3	34.6	31.6	181	731,500
50,000 or more. .	40.4	39.5	34.0	0	0
25,000 to 49,999. . . .	35.5	34.8	32.2	0	0
10,000 to 24,999 .	30.4	29.8	29.1	11	141,200
5,000 to 9,999.	28.1	27.5	27.1	41	291,700
2,500 to 4,999.	26.6	26.3	25.5	48	178,300
fewer than 2,500. . . .	15.0	14.4	14.4	81	120,300
$\begin{aligned} & \text { Population }<10,000: \\ & \quad<=6 \text { persons/square mile. } \end{aligned}$	29.7	29.2	28.7	115	272,600
>6 persons/square mile..	26.0	25.4	25.0	57	333,100
O.S. total	52.7	50.8	42.9	183	746,900

${ }^{\text {a }}$ Includes both full-time and part-time dentists.
SOURCE: U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Office of Data Analysis and Management, Rockville, MD, unpublished data from the Area Resource File system provided to OTA in 1989 and 1990.

Pharmacists

NationalSupply

There were an estimated 157,800 practicing pharmacists in the United States in 1988 (673). Paralleling the pattern in dentist supply, the absolute number of pharmacists increased by 40 percent and the pharmacist-to-population ratio increased by 17
percent from 1970 to 1988 (table 10-49) (673). Significant trends in the pharmacy profession inelude:

- an increase in the proportion of pharmacists who are female (from 4 percent of the active workforce in 1950 to 26 percent in 1988)(673);
- an increase in the percentage of minority pharmacists (from 8.9 percent in 1980 to 10.5

Table 10-49-Supply of Professionally Active Pharmacists, Selected Years: Estimated 1970-1988, and Projected 1990-202@

Year	Number of active pharmacists	Active pharmacists per 100,000 people ${ }^{\text {b }}$
1970. 112,600	54.5
1980. 142,400	62.2
1988. 157,800	63.8
1990. 161,600	64.5
2000. 181,400	67.6
2010. 200,500	71.0
2020..-	--- $-\therefore$ 213,800	72.6
$\begin{aligned} & \text { Percent } \\ & \text { 1970-1988. } \end{aligned}$	nge, 40.1	17.1
$\begin{aligned} & \text { Percent } \\ & \text { 1988-2020. } \end{aligned}$	35.5	13.8

${ }^{\text {a }}$ Includespharmacists in Federal service.
$\mathrm{b}_{\text {Ratios based on }}$ total population, including Armed Forces overseas, as of July 1.

SOURCE: U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, Seventh Report to The President \& Congress on The Status of Health Personnel in The United States, DHHS Pub. No. HRS-P-OD-90-1 (Rockville, MD: HRSA, June 1990), table XII-1.
percent in 1988)(67.?); and

- a change in professional focus from merely distributing drugs to providing a wider range of services, including quality assurance, patient education, patient care activities, and monitoring in order to reduce adverse drug effects (671).

After decreasing for a number of years, enrollments in U.S. schools of pharmacy have recently increased slightly, although they are still well below the peak level reached in 1974-75 (figure 10-8) (671). As of 1988, there were 74 colleges of pharmacy in the United States (466).

The National Association of Boards of Pharmacy reported that 68 percent of all active pharmacists in 1986 were in community pharmacies, with the great majority in chain store pharmacies (671). Only 8 percent were in independent establishments. Just over 20 percent were working in hospital settings, and the remaining 12 percent were employed in manufacturing, wholesale practice, teaching, gov-

Figure10-8--First Year Enrollment in U.S. Schools of Pharmacy, Academic Years 1969-70 Through 1985-86"

alncludes students in the first of 3 years of professional pharmacy education. Excludes students in pre-pharmacy education.
SOURCE: Office of Technology Assessment, 1990. Data from U.S. Department ofHealthandHuman Services, Health Resources and Services Administration, Bureau of Health Professions, Sixth Report to ThePresident and Congress on The Status of Health Personnel in The United States, DHHS Pub. No. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 8-3.
ernment agencies, and other areas (671). The Federal Government at one time designated pharmacy HMSAs but no longer does so (see ch. 11).

BHPr projects continuing increases in both the number of active pharmacists and the pharmacist-topopulation ratio over the next three decades (table 10-49) (673). The increasing number of female pharmacists in the work force may lower the overall number of FTE pharmacists, since female pharmacists tend to work fewer hours than their male counterparts (673). Despite recent increases in supply, however, demand is outpacing supply, and many employers have reported difficulty in recruiting for vacant pharmacist positions (673). Taking into account recent trends in the output of the pharmaceutical industry, as well as the expanded clinical role played by pharmacists, future requirements may continue to exceed supply.

Rural Supply

Current information on the national rural/urban distribution of pharmacists is scarce. No national census of pharmacists has been conducted since the 1970 s , and no information on the rural/urban distribution of pharmacists is available from that census
(466). ${ }^{54}$ State studies that examined the rural/urban distribution of pharmacists during the 1980s suggest there are a few areas with shortages but little overall reason for concern.

- In Georgia, in 1983, only one county lacked a licensed pharmacist, and the pharmacist-to100,000 population ratio was only slightly lower in rural than in urban counties (81 v .88) (740).
- In Texas, in 1988, 14 rural counties had no pharmacist (575).
- In Arizona, in 1987, the average pharrnacist-to100,000 population ratio in the 13 rural counties was 47 (range 18-58) as compared with 78 in the 2 urban counties (220).
- In Oklahoma, in 1987, the pharmacist-to100,000 population ratio in rural counties was 67 compared with 72 in urban counties (451).
- In Nebraska, in 1981, 52 percent of all active pharmacists were located in the State's 4 urban counties (429). This distribution closely parallels that of Nebraska's resident population, 53 percent of whom resided in urban counties in 1986 (631).

Optometrists

National Supply

The active optometrist-to-100,000 population ratio increased from 8.9 in 1970 to 10.6 in 1988. BHPr projects that the ratio will increase to 14.2 active optometrists per 100,000 residents by 2020 (table 10-50) (673).

The number of applicants to schools and colleges of optometry peaked in 1975-1976 and has declined continuously since then (671). Enrollments increased until 1985-86 but have since leveled off (671,673); the number of graduates increased until 1983-84, declined slightly in 1984-85, and has remained relatively stable since that time $(671,673)$.

The American Optometric Association (AOA) estimates that nearly three-fourths of the 25,400 practicing optometrists in the United States in 1989 were in independent practice, with the remainder employed by HMOs, ophthalmologists, optical chains, the Armed Forces, and other employers (56). The average age of optometrists is decreasing: from

Box 10-F—Provider Profile: Optometrists

Optometrists examine, diagnose, and treat problems of the eyes and vision system (673). Optometry students must complete from 2 to 3 years of preoptometry higher education before entering a 4 -year program in optometry. On completion of undergraduate training, some optometrists enter specialized residency programs in fields such as family practice, primary care, geriatric, pediatric, and rehabilitative optometry (671).

Table 10-50-Supply of Professionally Active Optometrists, Selected Years: Estimated 1970-1988, and Projected 1990-2020 ${ }^{\circ}$

| Yumber of active |
| :--- | :---: |
| optometrists | | Active optometrists |
| :---: |
| per |
| 100,000 |
| people |

${ }^{a}$ Inc ludes optometrists in Federal service.
bRatios based on total population, including Armed Forces overseas, as of July 1.
SOURCE : U.S. Department of Health \& Human Services, Health Resources and Services Administration, Bureau of Health Professions, Seventh Report to The President \& Congress on The Status of Health Personnel in The United States, DHHS Pub. No. HRS-P-OD-90-1 (Rockville, MD: HRSA, June 1990), table XI-A-1.

1980 to 1988, the median age fell from 49 to 41 years (673). The proportion of all optometrists who are women is expected to increase from 11.5 percent in 1988 to 28.4 percent in the year 2000 (673). As for pharmacists, the Federal Government has ceased to designate HMSAs for vision care providers (see ch. 11).

Rural Supply

Optometrists are important providers of primary eye and vision care in areas that lack ophthalmologists. An analysis of 1983 registries of optometrists and ophthalmologists conducted by the AOA found

[^25]that optometrists were practicing in 6,612 communities ${ }^{55}$ in the United States and in 4,153 were the only providers of primary eye/vision care (table 10-51) (56). It is not known whether optometrists are more or less likely than ophthalmologists to practice in rural areas, because available data are neither comparable nor consistent. Over one-third of optometrists practice in communities of fewer than 25,000 residents (table 10-52) (42). ${ }^{56}$ Twenty-one percent of ophthalmologists ${ }^{57}$ surveyed in 1988 were practicing in large (more than 10,000 residents) "rural' ${ }^{58}$ areas, and 2 percent in small (fewer than 10,000 residents) "rural" areas (49). However, data from the AMA show only 4.7 percent of all ophthalmologists practicing in rural counties in 1988 (686).

Data from two States suggest that the urban/rural distribution of optometrists is more even than that of many other health professionals.

- In Arizona, in 1987, the optometrist-to-10O,00O population ratio was 8 in rural counties compared with 10 in urban counties (220).
- In Oklahoma, in 1987, the optometrist-to100,000 population ratio was higher in rural than in urban counties (13.6 v. 9.8) (451).

Allied Health Professionals

The term "allied health" has no set definition. The vagueness of the term is due in part to the continuing and rapid evolution of the numerous health fields it includes, and the lack of a set definition may be one reason why the allied health professions have historically received relatively little attention from researchers and policymakers. Allied health professionals (AHPs) are a diverse group of practitioners who makeup the majority of the health care work force, have education varying from on-the-job training to advanced college degrees, and are employed in all types of health care
settings. Table 10-53 lists some of the many professions in this category.

National Supply

Between 1970 and 1986, the total estimated number of AHPs employed in the United States almost doubled, reaching 1.3 million 59 in 1986 (table 10-53) (671). This rapid growth is largely attributable to increasing need to delegate tasks formerly performed by other health professionals, and the rapid evolution of medical technologies that require skilled personnel (288). Occupations with the greatest rates of growth between 1975 and 1986 were dietetic technicians, medical technologists, and medical laboratory technicians (table 10-53) (671).

Despite this growth, concerns have mounted in recent years over a shortage of certain AHPs. The paucity of information regarding the demand for and supply of AHPs prevents an accurate determination of the degree of shortage. ${ }^{60}$ However, available data and anecdotal evidence suggest that shortages may reach critical proportions during the next two decades if current downward trends in enrollment in AHP training programs continue.

Characteristics of the AHP Labor Market-In a 1989 report on allied health services, the Institute of Medicine (IOM) found that the AHP labor market is characterized by:

- a predominantly female work force;
- technically competent workers;
- highly regulated professions and work environments;
- educational programs that have difficulty capturing limited resources and recruiting enough students; and
- a rapidly changing work environment where employers must make decisions as to the hiring and compensation of a wide range of health

[^26]Table 10-51—Number of Cities With Optometrists and Ophthalmologists by State, 1983

State	Cities with optometrists	Cities with ophthalmologists	Difference ${ }^{\text {a }}$
Alabma.	101	27	74
Alaska.	14	5	9
arizona.	55	23	32
arkansas.	92	24	68
California.	505	254	251
Colorado.	73	27	46
Connecticut.	104	55	49
Delaware.	11	7	4
District of Columbia	1	1	0
Florida.	207	116	91
Georgia.	146	50	96
Havaii.	24	8	16
Idaho	49	13	36
Illinois.	326	117	209
Indiana.	176	51	125
Iona.	145	30	115
Kansas.	119	27	92
Kentucky.	116	32	84
Louisiana.	88	34	54
Maine. .	67	23	44
Maryland.	103	52	51
Massachusetts.	218	97	121
Michigan.	253	94	159
Mimesota.	166	49	117
Mississippi.	81	26	55
Missouri.	152	35	117
Montana. .	49	11	38
Nebraska.	74	13	61
Nevada. .	16	6	10
New Hampshire	38	22	16
New Jersey	292	148	144
New Mexico	39	16	23
New York...	400	212	188
North Carolina.	176	59	117
North Dakota. .	42	7	35
Ohio., .	313	91	222
Oklahoma.	105	24	81
Oregon.	95	29	66
Pemssylvania.	407	162	245
Rhode Island.	30	12	18
South Carolina	91	27	64
South Dakota .	48	8	40
Tenessee.	124	36	88
Mexas	273	95	178
Otah.	37	11	26
Vemmont.	28	16	12
Virginia. .	119	52	67
Mashington.	117	43	74
West Virginia. .	80	22	58
Wisconsin. . . .	202	52	150
Myporing	25	8	17
Total cities in U.S	6,612	2,459	4,153

NOTE: Only communities with either an optometrist or an ophthalmologist are included in the count.
$a_{\text {Minimum }}$ number of cities where one or more optometrists were practicing in 1983 , but where no ophthalmologists were practicing in 1983.
SOURCE: F. Aron, Manager of Information and Data, American Optometric Association, St. Louis, MO, personal communication, 1989. Data were collected by hand counts of optometrists from American Optometric Association, The Blue Book of Optometrists. 1984, 37th ed. (Chicago, IL: Professional Press, Inc., 1983) and of Ophthalmologists from American Academy of Ophthalmology, The Red Book of Ophthalmology, 1983, 35th ed. (Chicago, IL: Professional Press, Inc., 1983).

Table 10-52-Distribution of Optometrists by Community Population Size, 1989a

```Community population sizeb```	Percent of optometrists
"Urban" (total). .	40.7
500,000 or more.	. 13.2
100,000-500,000.	. . 12.9
25,000-100,000.	. 14.6
"Suburban" (total). .	. . 24.8
500,000 or more.	. 2.9
100,000-500,000.	. . 6.0
25,000-100,000. . . .	. 15.9
Under 25,000.	. 34.4
Motal ${ }^{\text {c }}$.	. 100.0

${ }^{\text {a Data based on }}$ approximately 1,100 replies to the 1989 American Optometric Association (AOA) Economic Survey, which was sent to a random sample of AOA members. The AOA membership represents approximately 75 percent of all practicing optometrists in the United States.
$\mathbf{b}_{\text {comnity }}$ population size was self-reported. It does not necessarily reflect metro or nonmetro location. ${ }^{c}$ Percentages may not add to 100 due to rounding.
SOURCE: American Optometric Association, St. Louis, MO, unpublished data from the 1989 AOA Economic Survey provided to OTA in 1989.
professionals in the absence of adequate infermation (288).

Selected information on the educational preparation, employment, role, and regulatory environment of practitioners unselected AHP fields is summarized in box $10-\mathrm{G}$.

Trends in the Supply of AHPs--An adequate future supply of AHPs will depend on changes in health care financing policies, technology, educational programs, and the regulatory environments that affect each type of AHP. Of the 10 professions studiedly IOM, physical therapists were most often reported as being in short supply (288). The IOM concluded that, "barring major economic or health care financing contractions, the growth of the number of jobs for allied health workers will substantially exceed the nation's average rate of growth for all jobs". The growth rate is expected to be highest for physical therapists and medical records specialists. In the fields of physical therapy, radiologic technology, occupational therapy, and medical record services, IOM indicated a potential for serious future imbalances in supply and demand.

In most other allied health fields--clinical laboratory technology, dental hygiene, speech-language pathology and audiology, respiratory therapy, and dietetic technology-supply and demand were expected to remain fairly well balanced through the year 2000, provided that downward trends in the number of graduates in certain professions are halted and that improvements are made in salary and working conditions (288).

Recent and projected trends in allied health fields include:

- A 35 percent decrease in the number of graduates from clinical laboratory technologist programs from 1982 to 1988 , and a 25 percent decrease in the number of graduates from clinical laboratory technician programs from 1982 to 1987 (673). A recent national survey indicated a 54 percent undersupply of technologists and a 38 percent undersupply of technicians. ${ }^{61}$ Other reports also indicate a marked undersupply of these professionals in most employment settings (288).
- Increased demand for occupational therapists (OTs) during the past several decades $(288,673)$, and a projected 52 percent increase in the number of OT jobs from 1986 to 2000 (288). Short supply is linked to the limited number of training programs and the inability of those programs to recruit faculty (288). IOM predicts a future shortage of OTs unless these conditions change (288). The number of OT graduates did increase by 18 percent from 1982 to 1988 (673).
- A projected 87 percent increase in the number of jobs for physical therapists (PTs) from 1986 to 2000 (288). Although the number of new PT graduates has increased substantially during the 1980s (673), supply may still not be able to keep pace with demand.
- A 24 percent decline in the number of dental hygiene graduates from 1980 to 1985 (the number increased slightly in 1986) (288). Strengthening entry requirements and increasing the length of training required may place further limits on the pool of interested students. Some areas have reported acute shortages of dental hygienists (288).
- A projected 45 percent increase in the number of jobs for radiologic personnel from 1986 to

[^27]Table 10-53-Estimated Supply of Selected Allied Health Personnel Employed in the United States: 1970, 1975, 1980, and 1986, and Percent Change, 1975-86 ${ }^{\text {ab }}$

Occupation 1970	1975	1980	1986	Percent change, 1975-86
Total allied health personnel. . . . . . . .673,000	899,000	1,100,000	1,330,000	47
Dental hygienist. . . . . . . . . . . . . . . . . . . . . 15,000	27,000	38,000	48,000	77
Dental assistant. . . . . . . . . . . . . . . . . . . . . 112,000	134,000	156,000	175,000	31
Dental laboratory technician. . . . . . . . .31,000	42,000	53,000	63,000	50
Dietitian. . . . . . . . . . . . . . . . . . . . . . . . . . 17,000	23,000	32,000	41,000	78
Dietetic technician. . . . . . . . . . . . . . . . . . 2,000	3,000	4,000	7,000	133
Medical record administrator. . . . . . . . . 10,000	12,000	13,000	16,000	33
Medical record technician. . . . . . . . . . . . 42,000	53,000	64,000	76,000	43
Medical laboratory personnel: . . . . . . . .135,000	191, 000	249,000	293,000	53
Medical technologist. . . . . . . . . . . . . . . 57,000	93,000	138,000	174,000	87
Cytotechnologists. . . . . . . . . . . . . . . . . . . 3,000	6,000	7,000	9,000	50
Medical laboratory technician. . . . . . 1,000	8,000	13,000	16,000	100
Other laboratory personnel . . . . . . . . . 74,000	84,000	91,000	94,000	11
Occupational therapist. . . . . . . . . . . . . . . 6,000	21,000	25,000	32,000	52
Physical therapist . . . . . . . . . . . . . . . . . . . 30,000	38,000	50,000	63,000	65
Radiologic service worker. . . . . . . . . . . . 87,000	97, 000	116,000	143,000	47
Respiratory therapist. . . . . . . . . . . . . . . . 30,000	43, 000	56,000	65,000	51
Speech pathologist/audiologist. . . . . . . 19,000	32,000	42,000	57,000	78
Other allied health personnel.. . . . . . 135,000	183, 000	212,000	251,000	37

${ }^{a_{A 11}}$ numbers are rounded to the nearest thousand. Some numbers may differ from those that appear elsewhere due to revisions and independent estimations.
b Includes only those personnel who have received certification/formal training in their particular allied health field. Does not include on-the-job trained, noncertified personnel who may be employed in nonregulated health care settings.
${ }^{c}$ Includes, but is not limited $t_{\text {o }}$ dietetic assistants, general assistants, operating room technicians, ophthalmic medical assistants, optometric assistants and technicians, orthopedic and prosthetic technologists, pharmacy assistants, podiatric assistants, vocational rehabilitation counselors, other rehabilitation services personnel, and other social and mental health services personnel.
SOURCE: U.S. Department of Health and Human Services, Health Resources and Services Administration. Bureau of Health Professions, Sixth Report to the President and Congress on the Status of Health Personnel in the United States, DHHS Pub. No.HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 12-1.

1990 (288). Severe shortages are likely to occur if the current downward trend in graduates is not reversed. The number of graduates from radiography programs decreased by 24 percent from 1981 to 1988, and the number of graduates in nuclear medicine technology decreased by 44 percent from 1984 to 1988 (673).

- An increased demand for emergency medical technician (EMT) paramedics in hospital emergency departments due to the recent nursing shortage (288). Estimating current supply and predicting future supply of EMTs of all levels of training are difficult, since most EMTs are volunteers and no national data on the number of graduates of training programs are available. ${ }^{62}$

A projected 75 percent increase in demand for certified medical record technicians from 1986 to 2000, due to the increasing complexity of the tasks these personnel must perform (288). After changes in Medicare hospital payment methods in 1983, hospitals reported substantially higher growth rates unemployment of medical record technicians and administrators than had been seen in previous years. Demand for medical records personnel in nonhospital settings is expected to increase as well (288).

A national survey of hospitals conducted by the American Hospital Association found that personnel vacancy rates were highest for PTs ( 16 percent) and OTs (15 percent) (673). A 1986 survey of 167 Veterans' Administration facilities found high vacancy rates for PTs ( 23 percent), respiratory thera-

## Box 10-G—Provider Profiles: Allied Health Professionals (AHPs)

## Clinical Laboratory Technologists/Technicians (CLTs)

CLT fields include generalist medical technology, blood bank technology, cytotechnology, hematology, histology, microbiology, and clinical chemistry (288). CLTs perform a wide array of tests used to help prevent, detect, diagnose, and treat diseases (673). Technologists are baccalaureate-prepared; technicians are associatedegree or certificate-prepared (288). Six States require technologists to be licensed (67.3); remaining States require only registration (288). Many CLT tasks are performed by nonlicensed, nonregistered individuals in unregulated environments (e.g., private physician offices) (288). The Bureau of Labor Statistics estimates that, in 1988, 71 percent of CLTs were employed in hospitals (673).

## Physical Therapists (PTs)

PTs must graduate from an accredited program before taking their licensure examination (288). Three types of programs exist: baccalaureate programs, certificate programs for those with baccalaureate degrees in another field, and 2-year master's degree programs (288). PTs plan and administer treatment to relieve pain, improve functional mobility, maintain cardiopulmonary functioning, and limit the disability of people suffering from disabling injuries or diseases (67.3). All States require licensure for PT practice (673). In 1986,38 States allowed PTs to evaluate patients without physician referral, and 14 States allowed PTs to treat patients without physician referral (288). In 1986,40 percent of PTs worked in hospitals and 15 percent in independent or group practice (288).

## Occupational Therapists (OTs)

OTs are trained through baccalaureate programs, post-baccalaureate certificate programs, or masters' programs (673). OTs work with disabled individuals to help them learn the skills necessary to perform daily tasks, diminish or correct problems, and promote and maintain health. In 1989, 35 States and the District of Columbia required licensure, 3 States required registration and had competency standards, and 4 States required certification for OT practice (673). In 1986, 35 percent of OTs worked in hospitals, 17 percent in schools, 10 percent in rehabilitative facilities, and the remainder in long-term care and home health settings (288).

## Respiratory Therapists (RTs)

Accredited RT programs, which have grown in number in recent years, provide 2 years of training and grant either associate or baccalaureate degrees, depending on the student's previous educational background (673). RTs provide services ranging from emergency care for stroke, drowning, heart failure, and shock to temporary relief for respiratory disorders. They also treat patients after surgery to prevent respiratory illness (288,673). Certification is voluntary (673). In 1987, 18 States licensed respiratory care personnel, and licensure bills had been introduced in 10 others (288). In 1986, almost 90 percent of RTs worked in hospital settings, and the remainder were employed in nursing and home health facilities. Forty percent of RTs are men-a larger proportion than in many other allied health fields (288).

## Dental Hygienists

Accredited hygienist programs include associate degree programs requiring 2 or more years of training and baccalaureate degree programs requiring 4 years of training (288). Dental hygienists remove stains and deposits from patients' teeth, take and develop x-ray films, apply fluoride, and make impressions of teeth. In some States, they may apply sealants to teeth, administer local anesthesia, and perform periodontal therapy. Licensure is required in all States. In most States, hygienists are required to work under the supervision of a dentist. The profession has been striving for greater autonomy, and legislation recently passed in Colorado allows dental hygienists to practice independently (288). In 1986, 99 percent of dental hygienists were women and over 90 percent were under age 44 (673). Ninety-five percent were employed in private dentists' offices (673).

## Dietitians

Dietitians are baccalaureate-prepared professionals who have completed special courses in nutrition and have completed the practical training required by the American Dietetic Association for registration (288). Dietitians assess the nutritional needs of hospital patients and implement special diets. They also provide dietary counseling to groups and individuals. All certified dietitians must pass a national registration exam and participate in continuing education programs in order to maintain certification (288). Eight States require licensure, 5 require certification,

## Box 10-G—Provider Profiles: Allied Health Professionals (AHPs)--Continued

and 3 require registration for the practice of dietetics (673). Most dietitians are employed in hospitals and nursing and personal care facilities (288).

## Radiologic Technicians

The field of radiologic technology includes three distinct types of personnel. Radiographers receive 2 to 3 years of training in operation of x-ray equipment. They are licensed in 18 States (288). Radiation therapists receive 2 to 4 years of training and work primarily in oncology, preparing patients and administering ionizing radiation therapy. Fifteen States licensed these personnel in 1987, and another 10 States had enabling legislation but no licensure requirement. Nuclear medicine technologists receive 1 year of technical training in the use of radiopharmaceuticals in diagnosis and treatment. Seven States licensed these professionals in 1987, and another 10 had enabling legislation but no licensure requirement. In 1986, 60 percent of all radiologic personnel worked in hospitals, but employment in freestanding diagnostic centers is expected to increase in the coming years (288).

## Emergency Medical Technicians (EMTs)

There are three levels of EMTs, distinguished from one another by the extent of training involved (288). All programs are certificate-granting, and they are offered by police, fire, and health departments as well as by medical schools, colleges, and universities. All 50 States have some type of certification procedure for EMTs, and 24 require national registration for one or more of the 3 levels of EMT practice (288). There were an estimated 65,200 paid EMTs in 1986, working in private ambulance services, hospitals, and police and fire departments (288). However, roughly two-thirds of EMTs are volunteers who work for rescue squads and local fire departments (288). In rural areas, an even larger proportion of EMTs are volunteers (623).

## Medical Records Personnel

Medical records administrator programs are bachelor degree-granting and are based in colleges and universities (288). Medical records technicians typically hold associate degrees from community college-based programs. Many lower-level medical records personnel are trained on the job. No mandatory registration exists, although medical records administrators may choose to take a national registry exam. Three-fourths of all medical records personnel are employed by hospitals; others work in HMOs, nursing homes, and medical group practices (288).

## Speech-Language Pathology and Audiology Personnel

To be certified, speech-language pathologists and audiologists must have completed a master's degrees in their field, although many States permit non-certified, baccalaureate-prepared practitioners to work in public school settings (288). Speech-language pathologists diagnose and treat speech or language disorders, and audiologists diagnose and correct hearing disorders. Increasing numbers of practitioners are entering independent private practice (288). Thirty-seven States require licensure for private practice in clinics or other nonschool settings (673). Over one-half of employed speech-language pathologists and audiologists in 1986 worked in schools, colleges, and universities, with the remainder in health care settings (288).
pists ( 16 percent) and radiation therapy technologists and technicians ( 15 percent) (673):

Surveys of AHP supply in a wider range of settings were conducted in North Carolina in 1986 (445). The highest vacancy rate reported was for OTs (21.5 percent). The vacancy rate for PTs increased from 8.7 percent in 1981 to 19 percent in 1986, and trends away from hospital employment and towards self-employment were noted. The vacancy rate for respiratory care personnel, 98 percent of whom were employed by hospitals in 1986, doubled from 1981 to 1986, from 9 to 18 percent. The vacancy rate for medical technology staff (medical technologists, medical technicians,
phlebotomists, and laboratory assistants) was 16.5 perrcent, an increase over 4.6 percent in 1981. Ninety-four percent of all medical technology staff vacancies reported were in hospitals. The vacancy rate for medical records personnel was 11.9 percent, and the lowest reported vacancy rate ( 8 percent) was for radiologic personnel (445).

Multiskilled AHPs--AHPs became increasingly specialized during the 1960s and 1970s due to rapid technological advancements in the health care field. During the 1970s, however, concern about the supply of health professionals in rural areas led to an increased emphasis on the need for AHPs with skills in more than one field. Surveys have found that

Table 10-54-Provider-to-Population Ratios for Selected Allied Health Professions by Metropolitan/Nonmetropolitan Area, 1980

	Number per 100,000 residents	Nonmetro ratio as
Occupation Metro	Nonmetro	metro ratio
Dietitian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.9	26.0	84\%
Speech therapist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.5	14.4	74
Health aide (excludes nursing aides) . . . . . . . . . . . 138.5	99.9	72
Inhalation therapist. . . . . . . . . . . . . . . . . . . . . . . . . . . 23.1	16.6	72
Dental assistant. .. ............................... 75.2	53.2	71
Health record technician . . . . . . . . . . . . . . . . . . . . . . . 7.2	5.0	69
Radiologic technician. . . . . . . . . . . . . . . . . . . . . . . . . . 46.3	31.0	67
Physical therapist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1	12.7	60
Clinical laboratory technician . . . . . . . . . . . . . . . . . 120.5	68.9	57
Dental hygienist. ................................ 23.1	12.3	53
Occupational therapist . . . . . . . . . . . . . . . . . . . . . . . . . 9.3	3.5	38

SOURCE: Adapted from Institute of Medicine, Allied Health Services: Amiosesg (Washington, DC: National Academy Press, 1989), table 6-4.
many hospitals use multiskilled AHPs (130,358a,424), and that many more would do so if they were available (424). Training for multiskilled AHPs ranges from formal training programs that offer dual certification eligibility to informal on-the-job training. The range of skill combinations reported by hospitals that use multiskilled workers is great, but the three most common combinations are:

1. Respiratory therapist or technician and electroencephalography or electrocardiography technician;
2. Radiologic technologist and ultrasound technician; and
3. Laboratory technologist or technician and radiographer (424).

No national data on the supply of multiskilled AHPs are available. Survey data indicate that most multiskilled AHPs are employed in small not-for-profit and small non-Federal government hospitals (424). A recent study identified only 75 programs in the United States offering formal cross-training, but informal training for multiskilled AHPs has most likely been occuring for some time (424).

## Rural Supply

Information regarding the national rural/urban distribution of AHPs is similarly scarce, and the available national data are noncurrent. Table 10-54 shows the rural/urban distribution of selected AHPs in 1980. Personnel-to-population ratios were lower in rural areas in every AHP category and were especially low for PTs, OTs, clinical laboratory
technicians, and dental hygienists (288). The greater concentration of health care facilities in urban areas may explain some of the differences, but some disparities--e.g., those among OTs--are too great to be explained so simply. The reportedly wide use of noncertified personnel to perform AHP tasks in nonregulated environments (e.g., private physicians' offices) further confuses assessment of true AHP availability and distribution. Anecdotal evidence suggests that the most severe shortages of AHPs in rural health care facilities nationally are for PTs and OTs $(162,462,473)$, although individual rural facilities report shortages for a wide array of AHPs.

A 1989 survey of small rural hospitals in Florida (572) found high vacancy rates for general radiographers ( 20 percent), laboratory supervisors ( 16 percent), laboratory technologists ( 13 percent), and respiratory therapists ( 8.6 percent). A large proportion of hospitals reported difficulties recruiting these personnel; PTs and physical therapy technicians were also often difficult to recruit. Rural hospitals had sharply higher vacancy rates than did their urban counterparts for laboratory and radiology personnel, but they had slightly lower rates for respiratory therapists (572).

Rural facilities often cannot support highly specialized AHPs on a full-time basis due to small population bases and low patient volume (see chs. 7 and 12). Precarious financial conditions make it difficult for some rural health facilities to compete for AHPs in the national labor market by raising
salaries and offering other incentives. Strategies that have been suggested to overcome some of these barriers and ensure the adequate supply of AHPs in rural areas include:

- encouraging the development of multiskilled AHPs through training and increased flexibility of licensure laws for rural facilities,
- increased recruitment of students from rural areas who may be more likely to return to those areas to practice,
- increased opportunities for training at rural sites, and
- employer-initiated cooperative hiring of AHP staff by several health care facilities (288).


## SUMMARY OF FINDINGS

## Physicians

Overall physician supply has increased substantially over the past two decades. The number of MDs relative to the U.S. population more than doubled between 1963 and 1988-from 146 to 237 per 100,000 residents. The primary care specialties (particularly general and family practice) have seen the lowest increases. From 1979 to 1988, the number of primary care physicians per capita increased by 17.2 percent, compared with 30.2 percent for nonprimary care physicians.

Primary care physicians are twice as likely as nonprimary care physicians to practice in rural areas, but this may change due to recent increases in demand for primary care physicians in urban settings. Rural areas rely heavily on primary care physicians. In rural counties with fewer than 10,000 residents, for example, primary care physicians constitute 81 percent of all professionally active physicians. Future national shortages of primary care specialists are therefore likely to have a disproportionately negative effect on rural areas.

The increasing supply of physicians has resulted in greater physician availability in counties of all sizes. However, overall increases in physician-topopulation ratios have been lowest in the least populated counties. In 1988, rural counties still had fewer than one-half as many patient care MDs per capita as had urban counties. Rural counties with fewer than 10,000 residents had fewer than onefourth as many patient care MDs per capita as urban counties. Rural residents travel for longer periods of
time than do their urban counterparts to obtain medical care from physicians.

In 1988, all of the 111 counties (with a total resident population of 325,100 ) with no MD or DO were rural. In 1988, 29 percent of all rural residents were living in federally designated primary care HMSAs, compared with only 9.2 percent of urban residents (see ch. 11). Over 4,000 primary care physicians would be needed to eliminate shortages in these urban and rural HMSAs.

Despite increases in the proportion of physicians who are young (under age 35) in both rural and urban areas, rural physicians are still older than their urban counterparts. Most physicians in small rural counties are in solo practice.

Some rural areas rely heavily on DOS. Although they made up only 9.4 percent of the total U.S. physician population in 1986, DOS makeup as much as 74 percent of total physician supply in some States' small rural counties.

Evidence suggests that the current supply of physicians in small rural counties is unstable. New medical graduates are increasingly indicating a preference for practice in large cities and suburbs, with fewer indicating a preference for small town and rural practice sites.

## Midlevel Practitioners

Midlevel practitioners can provide primary medical care services in areas where no physician is available. NPs are about as likely as primary care physicians to practice in rural areas. The proportion of NPs who are in rural areas seems to be decreasing.

The belief that PAs are more likely than physicians to locate in rural areas cannot be confirmed because data on the rural/urban distribution of PAs are not available. The limited data available, however, suggest that the proportion of PAs practicing in small communities (under 10,000 residents) is decreasing. This is also true for CNMs. This shift may be due to an increased demand for these providers in urban settings.

On the national level, evidence suggests that current demand for NPs and PAs exceeds current supply.

CRNAs, who provide nearly 70 percent of anesthesia services in rural areas, are crucial members of the rural health care team in many hospital settings,
but their supply is in danger. Precipitous decreases in the number of programs preparing CRNAs and the number of new CRNA graduates will adversely affect the future supply of CRNAs both nationally and in rural areas.

## Nurses

$\boldsymbol{R} \boldsymbol{N}$ - and LP/VN-to-population ratios are projected to decrease in coming years. The number of graduates from nursing programs has already begun to decrease, and this trend is expected to continue. RN-to-population ratios are the lowest in the South, Mountain, and Pacific regions. Furthermore, the proportion of employed RNs working in rural areas has decreased in recent years, and rural health care facilities may have increasing difficulty competing with urban facilities in RN recruitment.

While the number of RNs employed in hospitals has been increasing, the number of LP/VNs has been decreasing. Rural hospitals have markedly fewer RNs and higher RN-to-LP/VN ratios than do their urban counterparts. Analysis of regional nurse-topopulation ratios shows that the regions with lowest RN availability are those with highest LP/VN availability, indicating that LP/VNs may be substituting for nurse positions that would otherwise be filled by RN.

Data on RN shortages (e.g., vacancy rates) are limited to the hospital and nursing home sector. RNs in smaller counties are more likely than RNs in large counties to be employed in nonhospital settings, yet little is known about the adequacy of RN supply in such settings.

## Other Health Professionals

Numbers of practitioners in all other health professions examined in this report have increased over the past two decades. Recent data on rural/ urban distribution are unavailable for most of these professions. For some professions, even national supply estimates are difficult or impossible to obtain due to lack of data collection.

## Dentists

The distribution of dentists parallels that of physicians. Rural counties have substantially fewer dentists per capita than urban counties ( 35 v .58 per 100,000 residents in 1987). Within rural counties, ratios decreased with county size, with the smallest
rural counties (fewer than 2,500 residents) having only 15 office-based dentists per 100,000 residents.

The relative supply of general and pediatric dentists increased more in rural than in urban areas during the 1980s. However, future constraints on national supply due to recent and continuing decreases in the number of dental graduates may change this trend. There is a slight trend away from generalist and towards specialist practice among dentists; however, most dentists are still generalists. In 1987, 85 percent of dentists were in general practice, compared with 91 percent in 1970.

In 1988,183 counties had no general or pediatric dentist. Of these, 181 were rural counties of fewer than 25,000 residents. An estimated 1,729 dentists are needed to eliminate shortages in almost 800 designated dental HMSAs, 72 percent of which are in rural areas. Over 8 million people resided in rural dental HMSAs in 1988.
Pharmacists
There are no data on U.S. rural pharmacist supply. State studies suggest that although some rural areas have few pharmacists, rural/urban differences in pharmacist distribution may not be as dramatic as those for other health professionals. An increase in the number of pharmacists relative to population is expected over the next three decades, but growth in demand for pharmacists may exceed growth in the national supply.

## Optometrists

In many communities, optometrists are the only providers of primary vision/eye care. Their rural/ urban distribution is not known, but a substantial proportion ( 34 percent) practice in communities of 25,000 or fewer residents. Although the number of applicants to schools of optometry has declined in recent years, enrollments have remained stable. The supply of optometrists relative to population is projected to increase over the next two decades.
Allied Health Professionals
Physical therapists are in short supply nationally, and the potential for serious future shortages exists in the fields of physical therapy, radiologic technology, occupational therapy, and medical record services. In most other allied health fields studied, downward trends in the number of training programs and graduates will need to be reversed to avoid future shortages.

Although no recent national data are available on the rural/urban distribution of AHPs, selected State data and anecdotal evidence suggest that rural settings currently have a disproportionately small share of AHPs, and they are likely to suffer more than urban settings in the face of future shortages. Evidence from these sources further suggests that some rural facilities are facing critical shortages of physical and occupational therapists. Radiologic
and laboratory personnel are also in very short supply in some rural areas.

Multiskilled AHPs may be especially appropriate for small rural facilities. Although a small number of formal training programs exist, no national data on the supply of multiskilled AHPs are available.


[^0]:    ${ }^{1}$ Unless otherwise indicated, "rural areas" in this chapter refers to nonmetropolitan counties, and ' urban areas" refers to metropolitan counti
    ${ }^{2}$ Allopathic physicians (MDs) and osteopathic physicians (DOs).
    ${ }^{3}$ Nurse practitioners, physician assistants, certified nurse-midwives, and certified registered nurse anesthetists.
    ${ }^{4}$ This study did not examine the supply of podiatrists or chiropractors in rural areas.
    ${ }^{\text {s }}$ Some of the data presented in this report do not include osteopathic (DO) physicians due to the limited integration of data on MDs and DOs. $T$ i may lead to an underestimation of physician-to-population ratios, particularly in some rural areas where DOs are a large proportion of the total phy population.
    ${ }^{6}$ In 1988, the American Medical Association changed its annual reporting date for physician data from Dec. 31 to Jan. 1 of the reporting year.
    this reason, tables in this report showing AMA trend data through 1988 reflect changes over a period that is one year shorter-e.g., $1980-88$ a 7- rather than an 8-year period. Where 1988 MD-to-population ratios are shown, 1987 rather than 1988 population estimates are used.

[^1]:    ${ }^{7}$ MDs only.
    ${ }^{8}$ Projections in table 10-2 include MDs and DOS.
    ${ }^{9}$ All tables in thischapter that present Bureau of Health Professions supply projections reflect the median or 'basic series' projections, which assume that recent trends in enrollments and graduations will continue. For a more detailed description of BHPr's forecasting methodology, see the Sixth Report to the President and Congress on the Status of Health Personnel in the United States (671).
    ${ }^{10}$ See ch. 11 for a detailed discussion of Federal HMSA designations.
    11'"Non-Federal physicians' excludes all physicians salaried directly by the Federal Government (i.e., physiciansin the military or in the Public Health
    Service). It includes National Health Service Corps physicians who are not salaried by the Federal Government. Although the supply of Federal physicians is important, it makes sense to exclude them from the overall count when looking at availability of physicians to the civilian population. Although at one time most National Health Service Corps physicians were Federal employees, most today are not.

[^2]:    ${ }^{12}$ See app. $\mathbf{F}$ for a list of States included in each census region and division.
    ${ }^{13}$ The increase in the number of osteopathic medical schools in recent years, and the consequent increase in numbers of graduates, has not been matched by an increase in the number of osteopathic residency training programs. As a result, approximately one-half of osteopathic graduates seeking residency training are now entering allopathic residency training programs (148).

[^3]:    ${ }^{14}$ Includes diagnostic radiology, therapeutic radiology, radiation oncology, and nuclear medicine.
    ${ }^{15}$ There is some debate over which specialties should be included as "primary care specialties." While all internists and pediatricians were once considered primary care specialists, increasing subspecialization in both fields has led researchers and policymakers to exclude subspecialists from the definition of "primary care." Some definitions of primary care physicians include obstetrics/gynecology and general surgery, since these specialists often provide substantial amounts of primary care, especially when there is a lack of other primary care providers. The Bureau of Health Professions and the Bureau of Health Care Delivery and Assistance currently include family/general practice, general internal medicine, general pediatrics, and obstetrics/gynecology in their definition of primary care physicians for purposes of shortage area designation (see ch. 11). The definition of primary care specialties used in this report varies depending on the source of information.
    ${ }^{16}$ Primary care here includes MDs in general/family practice, general internal medicine, general pediatrics, and obstetrics/gynecology, and all DOs in patient care.

[^4]:    ${ }^{\text {a Supply }}$ growth estimates based on the projected number of active physicians. Utilization growth estimates based on the number of of physician contacts (excluding telephone contacts) as reported in the National Health Interview Survey and the National Medical Care Utilization and Expenditure Survey.
     (column 1).
    ${ }^{c}$ The AMA predicts a 61.1) percent increase in the supply of osteopathic physicians (DOs) between 1986 and 2000. In 1986, DOS represented 4.2 percent of all physicians--the proportion is expected to increase to 5.5 percent by the year 2000 (table 10-2).
    SOURCE: W.D. Marder, P.R. Kletke, A.B. Silberger, et al., physician Supply and Utilization by Specialty: Trends and Projections (Chicago, IL: American Medical Association, 1988), table 8-2.

[^5]:    ${ }^{18}$ Only 27 percent of all DOs are board-certified specialists (711).
    ${ }^{19}$ The American Osteopathic Association does not recognize the term "family practice." In the osteopathic physician community, "general practice" describes physicians who have completed a residency in general practice or whose practice is of a general rather than a specialized nature (711).
    ${ }^{20}$ For purposes of data analysis, the Federal Bureau of Health Professions regards all DOs wo provide patient care as primary care physicians, regardless of board certification and specialty (570).
    ${ }^{21}$ In table 10-15 and other subsequent tables, physician distribution and supply are shown by county size and classification. In 1987, the total U.S. population (as estimated for the purposesof the Area Resource File database) was $243,398,300$. Distribution of that population was as follows: metro- $188,261,600(77 \%)$; nonmetro-55,136,700 ( $23 \%$ ); nonmetro counties with50,0000rmoreresidents- $18,937,200$ ( $7.7 \%$ ); nonmetro counties with $25,000-49,999$ residents-17,930,700 ( $7.3 \%$ ); nonmetro counties with $10,000-24,999$ residents- $14,294,900$ ( $5.8 \%$ ); nonmetro counties with 5,000-9,999residents-3,132,500 (1.3\%\} nonmetro counties with 2,500-4,999residents-681,400 ( $0.3 \%$ ] nonmetro counties with fewer than 2,500 residents $-160,000(<0.5 \%)$. Within nonmetro counties of fewer than 10,000 residents, the total population in counties with 6 or fewer persons per square mile was $1,308,000$ ( 0.5910 of the total U.S. population), and the total population call other counties was $2,695,600(1.1 \%$ of the total U.S. population) (686).

[^6]:    ${ }^{23}$ Unless otherwise indicated, county size in this chapter refers to population rather than geographic size of county.

[^7]:    NOTE: $*=$ less than 0.5 percent of the total number of 00 s .)
    ${ }^{\text {Incta }}$ Includes residents and interns ( 12.0 percent
    retired and inactive DOs ( 5.7 percent); DOs in research, education, administration, and other nonpatient care fields (2.0percent); and Dos whose professional activity was unknown (20.3 percent). Excludes DOs in U.S. possessions and in military service.
    $b_{\text {percentage }}$ s may not add to totals due to rounding.
    estates with colleges of osteopathic ledicine.
    SOURCE: U.S. Department of Health and Human Services, Health Resources end Services Administration, Bureau of Health Professions, Sixth Annual Report to The President \& Congress on The Status of Health Personnel in The United States, DHHS Pub. No. HRS-P-OD-88-1 (Rockville, MD: HRSA, June 1988), table 3-16.

[^8]:    $\mathrm{b}_{1} 987$ population estimates were used to calculate 1988 MD ratios Prior to $1 \nexists 88$ ，population estimates used were for the same year as MD

[^9]:    ${ }^{24}$ Includes both board-certified and nonboard-certified medical staff(MDsandDOs).
    ${ }^{25}$ Physician specialty as reported by each hospital.

[^10]:    Includes all active an associate medical staff, board-certified and nonboard-certified. Excludes courtesy, consulting, honorary, provisional, or other medical staff. Percentage of hospitals within each be .
     psychiatry; "Other surgical specialti | neurological surgery, otolaryngology, colon and rectal surgery, urology, oral and $\begin{aligned} & \text { maxillofacial surgery; "Pathology" inc } \\ & \text { therapeutic radiology; "Other special }\end{aligned} \| \quad$ gy and forensic pathology; "Radiology" includes radiology, diagnostic radiology, and

    OURCE: U.S. Congress, Office of Technology Assessment, analysis of dat from American Hospita ssociation 1987 Survey o\& Hospitals performed for Rural Health Care report (see app. C). health

[^11]:    NOTE: Sample sizes in some cases may be very small. Statistical significance of differences in times cannot be calculated. Asterisks ( $I^{\prime} \star^{\prime \prime}$ ) indicate that no one in the sample met the specifications for that entry.
    SOURCE: U.S. Department of Health and Human Services, Centers for Disease Control, National Center for Health Statistics, Hyattsville, MD, unpublished travel time data from the 1983 National Health Interview Survey provided by E. Parsons, May 1989.

[^12]:    25"Primary care" physicians here include MDs in general/family practice, general internal medicine, general pediatrics, and obstetrics/gynecology.

[^13]:    ${ }^{27}$ Increase was 8.7 percent with MDs only, and 9.4 percent when DOs were included.
    ${ }^{28}$ This analysis included MDs and DOs.
    ${ }^{29}$ This analysis did not include DOs.
    ${ }^{30}$ In this study, "primary care" included general/family practice, pediatrics (including subspecialties), and internal medicine (including subspecialties).

[^14]:    ${ }^{31}$ Includes MDs and DOs. Primary care here includes MDs in general/family practice, general internal medicine, general pediatrics, obstetrics/gynecology, and all DOs in patient care.

[^15]:    ${ }^{32}$ Data based on a 50 percent random sample mail survey of all MDs and DOs practicing in small rural counties in 1988. The survey response rate was 50 percent.
    ${ }^{33}$ Physicians were not asked whether they planned to relocate to an urban or to another rural community.

[^16]:    ${ }^{34}$ Data on employment setting include approximately 2,900 RNs employed with the position title of nurse-midwife (673).
    ${ }^{35}$ Because 1984 distributional data included RNs employed with the position title of nurse-midwife, 1984 and 1988 data are not entirely comparable. However, nurse-midwives were only a small proportion ( 12 percent) ofRNs employed as nurse-midwives orNPs in 1984.
    ${ }^{36}$ Community size does not reflect urban or rural status. Smaller communities maybe in urban areas, anlarger communities maybe in rural areas.
    ${ }^{37}$ These ratios are based on the total 488 board-certified NPs residing in Arizona in 1987 and may be overestimates of actual supply since the activity status of these NPs was not examined.
    ${ }^{38}$ See footnote 36.

[^17]:    ${ }^{39}$ Based on a survey of PA program directors conducted in February 1988. Directors were asked: 1 ) of how many PA job positions they had been made aware over the past 12 months and 2) how many new PA graduates they had in 1988. From thesdata, AAPA calculated for each program the ratio of available positions to PA graduates. The unweighed average of all ratios was 7.5:1All programs reported a ratio equal to or greater than 2: 1. When asked the subjective question, "Do you feel there is a shortage of PAs?," all programs responded "yes" (18,192).
    ${ }^{40}$ See footnote 36 . Communities with fewer than 50,000 residents may be in either rural or urban areas.

[^18]:    ${ }^{41}$ Data on the geographic distribution and characteristics of CNMs were available for 1982, 1987, and 1988, based on surveys conducted by the ACNM. The ACNM is the only national certifying body for nurse-midwives.
    ${ }^{42}$ See footnote 36.
    ${ }^{43}$ Most CNMs delivering babies in rural Arizona counties work on Indian reservation and are employed by the Indian Health Service (221).

[^19]:    ${ }^{44}$ These figures represent the number of members in the American Association of Nurse Anesthetists and in the American Society of Anesthesiologists, but they exclude nurse anesthesia students andanesthesiologyresidents (522).
    ${ }^{45}$ According to an anesthesia practice survey conducted by the Center for Health Economics Research (122), 19 percent of anesthesia services mtionwide are provided byCRNAsalone, 48 percent by anesthesiologists and CRNAs together, and 33 percent by anesthesiologists alone. when anesthesiologists and CRNAs work together, it is usually the CRNA who actually administers the anesthesia (601).
    ${ }^{46}$ Excluded from this analysis were hospitals in the U.S. territories, long-term care and Federal hospitals, specialty hospitals not meeting the Health Care FinancingAdministration's defiitionofcommunityhospital, and hospitals not providing surgical services.

[^20]:    ${ }^{47}$ Seventeen percent used anesthesiologists only, and 45 percent used both anesthesiologists and CRNAs. The remainder used other providers (e.g., RNs, other physician specialists).
    ${ }^{48}$ A substantial number of nurses ( 46 percent of RNs in 1988) are employed part-time (673). BHPr adjusted for the percentage of RNs employed part-time in 1988 to produce estimates of full-time equivalent (FTE) RN and LP/VN supply. In 1988, when the total employed RN supply was 1.63 million, the estimated FTE supply was only 83 percent of that, or 1.36 million (673). In 1983,FTE LP/VN supply was 87 percent of the estimated total number of LP/VNs (671). The percentage of both RNs and LP/VNs who are employed full-time varies somewhat by region and State (671,673).

[^21]:    ${ }^{\text {b Population data based on provisional estimates of resident population as of July 1, } 1984 \text { in the publication of U.S. Department of }}$ Commerce, Bureau of the Census, State Population Estimates by Age and_Comnonents of Change: 1980 to 1984, Series P-25, No. 970 , issued
    ${ }^{\text {C Population data based on provisional estimates of resident population as of July 1, } 1984 \text { in the publication of U.S. Department or }}$
    Commerce, Bureau of the Census, State Population and Household Estimates, with Age. Sex and Components of Change: $1981-1987$, Series PH 25, No. 1024, Issued May 1988.

    SOURCES: E. B. Moses, The Registered Nurse Population: Findings from the National Sample Survey of Registered Nurses, November 1984,
     Personnel in the United States, DHHS Pub. No. HRS-P-OD-90-1 (Rockville, MD: HRSA, June 1990), table VIII-A-3.

[^22]:    ${ }^{49}$ These figures include graduates of all RN programs. Recent data from the American Association of Colleges of Nursing (AACN) indicate that number of first-time student graduates from 4-year programs (excluding students who were already RNs but were upgrading to a baccalaureate degree) continues to decrease-by 16 percent between 1987 and 1988, and by 11 percent between 1988 and 1989 (19). Enrollments in baccalaureate RN progr also continue to decrease, although more slowly during the past 2 years when compared with previous years (20).

[^23]:    ${ }^{50}$ Evidence of the nursing shortage is typically expressed in terms of budgeted staff vacancy rates at institutions which employ nurses. Budgeted vacancy rates may not be a true reflection of unfilled positions, however, due to use of temporsy nursing staff, and due to the tendency of admanistrators to use budgeted vacancies as a tool to retain discretionary funds for staff development (462).
    ${ }^{51}$ Declining occupancy rates in rural hospitals in recent years (see ch. 5) may help to explain the shift of RNs from rural to urban areas.
    ${ }^{52}$ In this analysis, some of the larger counties (more than 50,000 residents) are nonmetro counties.

[^24]:    ${ }^{53}$ See ch. 11, table 11-5.

[^25]:    ${ }^{54}$ The American Association of Colleges of Pharmacy, in cooperation with the National Association of Boards of Pharmacy, is currently preparing to conduct another census. Rural/urban distributional information will be available from this census, but not for another 2 years (46@.

[^26]:    55 "Communities" include cities and towns in the United States, which are listed by State in directories published by the American Optometric Association (4I) and the American Academy of Ophthalmology (14).
    ${ }^{56}$ Data do not distinguish between rural and urban location.
    ${ }^{57}$ Includes only ophthalmologists belonging to the American Academy of Ophthalmology.
    ${ }^{58}$ Does notreflect metro/nonmetro location. Some smaller communities may be in metro areas. Size of community was determined by survey analysts, who looked up the name of each community and placed it in one of four size categories, the two smallest of which were termed "rural" ( 50 ).
    ${ }^{59}$ This somewhat restrictive estimate, which recognizes only specific groups of AHPs who have received professional training at the post-secondary level, is less than one-half of a recent estimate made by the American Society of Allied Health Professionals (ASAHP). Using a broader definition, ASAHP estimates a supply of over 3 million AHPS (462).
    ${ }^{60}$ The Bureau of Labor Statistics (BLS) collects information oncertaincategories of licensed, employed AHPs, but thesedata are limited because many AHPS lack formal training or licensure. For example, the BLS estimated that there were 57,000 employed speech-language pathologists and audiologists in 1986 (table 10-53). The American Speech-Language-Hearing Association (ASHA), however, estimated that approximately 86,700 speech-language pathologists and audiologists (both licensed and nonlicensed) were active in the work force in 1987 (288).

[^27]:    ${ }^{61}$ Based on an informal survey of constituent societies conducted by the American Society for Medical Technology (288).

