Let χ be a Dirichlet character with conductor Q. Though the general case presents no additional difficulties, for ease of exposition, I will assume that $\chi(-1) = 1$. Let $L(s, \chi)$ be the Dirichlet L-function associated to χ. What can we say about the \mathbb{Q}-dimension $\delta_\chi(a)$ of the space generated by the set
\{\chi(1), \ldots, \chi(Q-1), L(3, \chi), \ldots, L(a, \chi)\} where a runs through odd values? This question is the focus of my current research. In fact, I prove the following:

Theorem. For each $\epsilon > 0$ there is an $A(\epsilon)$ such that for $a > A(\epsilon)$

$$\delta_\chi(a) \geq \frac{1 - \epsilon}{Q + \log(2)} \log \left(\frac{a}{Q} \right).$$

In my talk I will show how one can arrive at such results using a criterion for linear independence and a suitably chosen auxiliary function.