INVERSE, SHIFTED INVERSE, AND RAYLEIGH QUOTIENT ITERATION AS NEWTON’S METHOD

Richard A. Tapia
Department of Computational and Applied Mathematics
Rice University
rat@caam.rice.edu

The inverse, shifted inverse, and Rayleigh quotient iterations are well-known algorithms for computing an eigenvector of a symmetric matrix. In this talk we demonstrate that each one of these three algorithms can be viewed as a standard form of Newton’s method from the nonlinear programming literature, involving an \(\ell_2 \)-norm projection. This provides an explanation for their good behavior despite the need to solve systems with nearly singular coefficient matrices. Our equivalence result also leads us naturally to a new proof that the convergence of the Rayleigh quotient iteration is \(q \)-cubic with rate constant at worst 1.