High-Pressure Kinetic Mechanisms for Hydrogen and Hydrogen Syngas

1st International Workshop on Flame Chemistry
Warsaw, Poland
July 28, 2012

Michael P. Burke
Chemical Sciences and Engineering Division, Argonne National Laboratory

Frederick L. Dryer
Department of Mechanical and Aerospace Engineering, Princeton University

Other collaborators: Yiguang Ju, Marcos Chaos, Jeffrey Santner, Francis M. Haas
Stephen Klippenstein, Lawrence Harding
Motivation

- Growing interest in computational engine design/testing
 - Fluid mechanics and kinetics sub-models

- H_2 and H_2/CO
 - Synthesis gas ($\text{H}_2/\text{CO}/\text{H}_2\text{O}/\text{CO}_2$) from coal/biomass gasification
 - Core sub-model for all fuels

- Advanced engine technologies → High P, low T_f
 - Modeling difficulties for flames

Difficulty in predicting high-pressure flames

- Large variations among models
- None of the models capture pressure dependence across all conditions

What controls high-P/low-T_f flames?

\[
\begin{align*}
H+O_2 &\rightarrow \text{OH}+\text{O} \quad \text{(R1)} \\
+M &\rightarrow \text{HO}_2 \quad \text{(R2)} \\
\end{align*}
\]

- More \(\text{HO}_2\) \\
 \(\rightarrow\) more \(\text{HO}_2\)+radical flux

- Flame zone shifts \\
 \(\rightarrow\) peak sensitivity at higher \(T\)'s \\
 \(\rightarrow\) collision efficiencies of products

- More R1/R2 competition \\
 \(\rightarrow\) amplified sensitivity

(Situation similar for \(\text{H}_2/\text{CO}\))

Complexity of the modeling problem

- Uncertainty in all reactions of 10% → burning rate uncertainty of 30%
- Realistic accuracy improvements for *elementary reactions* will not yield typical expected accuracies for *global behavior*
- Optimization against global targets necessary

![Sensitivity Coefficient](image)

- Functional temperature dependence of $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$ highly disputed/unknown
- Parameter optimization techniques don’t work if the *functional dependence* is not known

Complexity of the modeling problem

- A rigorous modeling solution will likely require **both**:
 - Empirical adjustments to rate constants
 - Improved fundamental understanding of select processes
- Neither alone appears sufficient to solve the problem.

Updated kinetic-transport models

- **H₂**: Hong et al. (2011) and Burke et al. (2012)*
 - HO₂ formation/consumption
 - H+O₂(+M) = HO₂(+M)
 - HO₂+radical reactions
 - H₂O₂ reactions
 - … among others

- **CO**: Haas et al. (2012)
 - CO + OH = CO₂ + H, CO + HO₂ = CO₂ + OH
 - HCO chemistry

Uncertainties remained: adjustments of rate parameters to improve predictions

Model performance

- Hong/Burke perform similarly well against most targets
- Largest differences in flames
 - Burke et al. – within 20%, Hong et al. – within 40%
- Parameter adjustments not unique → uncertainties remain!

Uncertainties remaining in 2012 (for flames)

- Parametric uncertainties
 - $\text{HO}_2 + X$ reactions
 - $\text{HO}_2 + \text{H} = \text{OH} + \text{OH}$
 - $\text{H}_2 + \text{O}_2$
 - $\text{HO}_2 + \text{OH} = \text{H}_2\text{O} + \text{O}_2$
 - $\text{HO}_2 + \text{HO}_2 = \text{H}_2\text{O}_2 + \text{O}_2$

- $\text{H} + \text{O}_2 (+\text{M}) = \text{HO}_2 (+\text{M})$
 - Pressure dependence
 - 3rd body efficiencies for H_2O and CO_2

- $\text{CO} + \text{O} + \text{M} = \text{CO}_2 + \text{M}$

- Model assumptions
 - Nonlinear mixture rules

Recall the complexity of the modeling problem and uncertainties in $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$

A rigorous modeling solution will likely require **both**:
- Empirical adjustments to rate constants
- Improved fundamental understanding of select processes

Neither alone appears sufficient to solve the problem.

Modeling strategies

- **Current kinetic models: sets of rate parameters**
 - Hierarchical, comprehensive modeling
 - Westbrook & Dryer (1984)
 - Optimization and Uncertainty Quantification
 - Turányi et al. (2012), Sheen et al. (2012): Uncertainty quantification of $A-n-E_a$
 - Require massive amounts of data to constrain full $T/P/M$-dependence of all k’s
 - Extrapolation outside the dataset very challenging

- **Direct incorporation of theory useful**
 - Replaces fitting formulas with physical theories
 - Common for extrapolation of data for a single reaction
 - Imposes constraints spanning all $T/P/M$

- **Multi-scale models: sets of molecular parameters**
 - Optimal use of information from *ab initio* calculations, k measurements, combustion measurements
 - Theory *fills in the gaps* across all $T/P/M$

\[\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2 \]

\(\text{(R1)} \quad \text{H}_2\text{O}_2(+\text{M}) = \text{OH} + \text{OH}(+\text{M}) \)

\(\text{(R2)} \quad \text{H}_2\text{O}_2 + \text{OH} = \text{HO}_2 + \text{H}_2\text{O} \)

\(\text{(R3)} \quad \text{HO}_2 + \text{HO}_2 = \text{H}_2\text{O}_2 + \text{O}_2 \)

\(\text{(R4)} \quad \text{HO}_2 + \text{OH} = \text{H}_2\text{O} + \text{O}_2 \)

\(\text{(R5)} \quad \text{OH} + \text{OH} = \text{O} + \text{H}_2\text{O} \)
Multi-scale informatics

set of molecular parameters informed by data across all scales

I. Molecular data

\[E^†, \nu's, \nu_{imag}, \ldots \]

II. Rate constant measurements

\[k_n(T,P,M) \]

III. Combustion measurements

\[[OH] \text{ vs. } t, s_U, \ldots \]

Mathematical implementation

- Local “surrogate model”
- Least-squares error minimization
- Iterated until converged

\[
S_{ij} = \delta_{ij}
\]

\[
S_{ij} = \frac{\partial \ln k_{p,n}(T_i,P_i,M_i)}{\partial X_j}
\]

\[
S_{ij} = \sum_n \frac{\partial F_i}{\partial \ln k_{p,n}(T_i,P_i,M_i)} \frac{\partial \ln k_{p,n}(T_i,P_i,M_i)}{\partial X_j}
\]

\[
X_j = \text{Optimization parameters:}
\]

\[
\text{Molecular parameters} + \text{experimental conditions}
\]

\[
F_i(X_j) = Y_{i,i} \pm Z_i
\]

\[\sum_j S_{ij} (X_j - \tilde{X}_j) = Y_i \pm Z_i \rightarrow X_{j,\text{opt}} \text{ and } C_X \]
Implementation for \(H_2O_2 \) system

Optimization variables

\[
\begin{align*}
H_2O_2(+M) &= OH+OH(+M) \\
H_2O_2+OH &= HO_2+H_2O \\
HO_2+HO_2 &= H_2O_2+O_2 \\
HO_2+OH &= H_2O+O_2 \\
OH+OH &= O+H_2O
\end{align*}
\]

Optimization Targets

I. Molecular data:

ab initio calculations (Klippenstein/Harding)

II. Rate constant measurements:

see paper

III. Combustion measurements:

\textbf{OH(t), H}_2\textbf{O(t)} \quad \textit{Shock-heated H}_2\textit{O}_2/\textit{Ar} (Hong et al. 2009,2010)

\textbf{OH(t)} \quad \textit{Shock-heated H}_2\textit{O}/\textit{O}_2/\textit{Ar} (Hong et al. 2010)

\textbf{abs}\text{215nm}(t) \quad \textit{Shock-heated H}_2\textit{O}_2/\textit{Ar} (Kappel et al. 2002)

Different interpretations for OH+HO₂

Kappel et al. experiments
Kappel et al. predictions
A priori model
Constrained model

Much weaker T-dependence
(Secondary reactions)

Lower magnitude
(Arbitrary H atom doping)

Consistent description of $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$

- Single description consistent with:
 1. Ab initio calculations
 2. Low-T k measurements
 3. High-T raw global data
- Milder T-dependence
 - Minimum near 1200 K

Consistent description of $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$

- *Simultaneous weighting* of diverse data types
- Theory guides experimental interpretations
- Raw data and careful documentation extremely powerful

Consistent description of $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$

Z. Hong, K.-Y. Lam, R. Sur, S. Wang, D.F. Davidson, R.K. Hanson

“On the rate constants of $\text{OH} + \text{HO}_2$ and $\text{HO}_2 + \text{HO}_2$: A comprehensive study of H_2O_2 thermal decomposition using multi-species laser absorption.”

Combustion Symposium: 5D11

M.P. Burke, S.J. Klippenstein, L.B. Harding

“A quantitative explanation for the apparent anomalous temperature dependence of $\text{OH} + \text{HO}_2 = \text{H}_2\text{O} + \text{O}_2$ through multi-scale modeling.”

Combustion Symposium: 4D09

Conclusions

- High-pressure syngas flames
 - Emphasize HO$_2$ pathways + collision efficiencies of CO$_2$/H$_2$O
 - Inherently difficult to model

- Rigorous modeling solutions
 - Empirical adjustments based on global targets
 - Improved fundamental characterization

- Uncertainties remain in both 1) model parameters and 2) model assumptions

- Moving forward
 - Incorporation of theory to *fill in the gaps*
 - Raw data and careful documentation
 - Characterization of non-idealities/uncertainties in experiments and theory
Acknowledgements

- This work was supported by:
 - Director’s Postdoctoral Fellowship from Argonne National Laboratory (MPB)
 - U. S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357 (SJK, LBH)
 - U. S. Department of Energy, University Turbine Systems Research Program under Contract No. DE-NT0000752 (FLD,YJ)
Thank you.

Questions?
End