

The Tile Processor[™] Architecture:

Embedded Multicore for Networking and Digital Multimedia

Tilera Corporation August 20th 2007

Hotchips 2007

Markets Demanding More Performance

Networking market

- Demand for high performance
 - Services being integrated in the infrastructure
 - Faster speeds 1Gbps » 2Gbps » 4Gpbs » 10 Gbps
- Demand for more services
 - In-line L4 L7 services, intelligence everywhere
 - Integration of video with networking

Digital Multimedia market

- Demand for high performance
 - H.264 encoding for High Definition
 - Pre & post processing
- Demand for more services
 - VoD, video conferencing, transcoding, transrating

... and with power efficiency and programming ease

Surveillance DVR

Industry Aggressively Embracing Multicore

Tiled Multicore Closes the Performance Gap

Introducing the TILE64[™]Processor

Multicore Performance (90nm)

Number of tiles (general purpose cores)	64
On chip distributed cache	5 MB
Operations @ 750MHz (32, 16, 8 bit)	144-192-384 BOPS
On chip interconnect bandwidth	32 Terabits per second
Bisection bandwidth	2 Terabits per second

Power Efficiency

Power per tile	170 – 300 mW
Clock speed	600-1000 MHz

I/O and Memory Bandwidth

I/O bandwidth	40 Gbps
Main Memory bandwidth	200 Gbps

Programming

5

ANSI standard C SMP Linux programming Stream programming

The TILE64 chip is shipping today

TILE64 Processor Block Diagram

A Complete System on a Chip

Performance in Networking and Video

- Performance in networking
 - 10Gbps of SNORT
 - Complete SNORT database
 - All SNORT pre-processors
 - Customer's real world data
 - Open source SNORT software base
- Performance in video
 - H.264 video encode
 - Encodes 40 CIF video streams @ 30fps
 - Encodes two 720p HD streams @ 30fps
 - PSNR of 35 or more
 - Open source X264 software base

Key Innovations

1- iMesh On-Chip Network Architecture

- Distributed resources
 - 2D Mesh Peer-to-peer tile networks
 - 5 independent networks
 - Each with 32-bit channels, full duplex
 - Tile-to-memory, tile-to-tile, and tile-to-IO data transfer
 - Packet switched, wormhole routed, point-to-point
 - Near-neighbor flow control
 - Dimension-ordered routing
- Performance
 - ASIC-like one cycle hop latency
 - 2 Tbps bisection bandwidth
 - 32 Tbps interconnect bandwidth
 - 5 independent networks
 - One static, four dynamic
 - IDN System and I/O
 - MDN Cache misses, DMA, other memory
 - TDN Tile to tile memory access
 - UDN, STN User-level streaming and scalar transfer

Meshes are Power Efficient

More than 80% power savings over buses

Direct User Access to Interconnect

- Enables stream programming model
- Compute and send in one instruction
- Automatic demultiplexing of streams into registers
- Number of streams is virtualized
- Streams do not necessarily go through memory for power efficiency

2- Full-Featured General Purpose Cores

Processor

- Homogeneous cores
- 3-way VLIW CPU, 64-bit instruction size
- SIMD instructions: 32, 16, and 8-bit ops
- Instructions for video (e.g., SAD) and networking (e.g., hashing)
- Protection and interrupts _
- Memory
 - L1 cache: 8KB I, 8KB D, 1 cycle latency
 - L2 cache: 64KB unified, 7 cycle latency
 - Off-chip main memory, ~70 cycle latency
 - 32-bit virtual address space per process
 - 64-bit physical address space
 - Instruction and data TLBs
 - Cache integrated 2D DMA engine
- Switch in each tile
- **Runs SMP Linux**
- 7 BOPS/watt

Kill If Less than Linear

Increase resource size within a core only if for every 1% increase in core area there is at least a 1% increase in core performance

Insight: For parallel applications, multicore performance can increase in proportion to the increase in area as more cores are added

Leads to power-efficient multicore design

E.g., Kill Rule for Cache Size in Video Codec

3- Distributed Coherent Caching

- Each tile has local L1 and L2 caches
- Combined L2 caches of all tiles act as distributed 4MB L3 cache
- Low Latency of local L1 and L2 caches
- Capacity of large distributed L3 cache
- Caches are coherent, enabling running SMP Linux

4- Multicore Hardwall Technology for Protection and Virtualization

The protection and virtualization challenge

- Multicore interactions make traditional architectures hard to debug and protect
- Memory based protection will not work with direct IO interfaces and messaging
- Multiple OS's and applications exacerbate this problem

Multicore Hardwall technology

- Protects applications and OS by prohibiting unwanted interactions
- Configurable to include one or many tiles in a protected area

Multicore Hardwall Implementation

5- Multicore Software Tools and Programming

- Arguably biggest multicore challenge
- Multicore software tools challenge
 - Current tools are primitive use single process based models
 - E.g., how do you single-step an app spread over many cores
 - Many multicore vendors do not even supply tools
- Multicore programming challenge
 - Key tension between getting up and running quickly using familiar models, while providing means to obtain full multicore performance
 - How do you program 100-1000 cores?
 - Intel Webinar likens threads to the "Assembly of parallel programming" but familiar and still useful in the short term for small numbers of cores
 - Need a way to transition smoothly from today's programming to tomorrow's

Tilera's Approach to Multicore Tools: Spatial Views and Collectives

Grid view

- Provides spatial view
- For selecting single process or region
- Eclipse based

Multicore Debugger

- GDB standard based -- familiar
- Aggregate control and state display
- Whole-application model for collective control
- Low skid breakpointing of all related processes

Multicore Profiler

19

- Collective stats
- Aggregate over selected tiles

Gentle Slope Programming[™] Model

Gentle slope programming philosophy

- Facilitates immediate results using off-the-shelf code
- Incremental steps to reach performance goals

Three incremental steps

- Compile and run standard C applications on a single tile
- Run the program in parallel using standard SMP Linux models – pthreads or processes
- Use stream programming using iLib a light-weight sockets-like API

High Performance in Small Form Factor Example System Design

Market moving to intelligent network systems

- Growing need for in-line L4-L7 services
- Real-time protection against threats

Tile Processor enables

- Integrated in-line performance -- multiple apps at 1 to 10 Gbps of performance
- Glueless interface with leading switch vendors

Tilera: World Class Company

- 64 people, proven veteran team
 - 150+ total tape-outs for revenue
 - 15 years average experience
- Proven leadership team
 - Over 150 years combined experience
 - 7 start-up companies founded
- 40+ patents pending
- Bessemer, Walden, Columbia, VTA (TSMC)
- Series B funding closed in February '07

Named finalist for Red Herring 100

Summary

- Current multicores face software and scalability challenges
- iMesh network based Tile Processor scales to many cores
- Gentle slope programming offers:
 - Convenience of SMP Linux/pthreads programming model
 - Performance scalability through streaming channels
- TILE64 silicon, software tools, and applications deployed in customers' systems

Additional Information

- PSNR: Peak signal to noise ratio
- MDN: Memory dynamic network
- UDN: User dynamic network
- TDN: Tile dynamic network
- IDN: I/O dynamic network
- STN: Static network

The following are trademarks of Tilera Corporation: Tilera, the Tilera Logo, Tile Processor, TILE64, Embedding Multicore, Multicore Development Environment, Gentle Slope Programming, iLib, iMesh and Multicore Hardwall. All other trademarks and/or registered trademarks are the property of their respective owners.

© Copyright 2007 Tilera Corporation

