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Why Emulators and JITs on Multi-Core?

Future architectures will be on-chip parallel machines

Moore’s Law provides more parallel silicon resources

Diminishing sequential returns

Growth applications are parallel

Future architectures will be optimized for parallel applications

Hardware compatibility will be broken

Future architectures will need to run legacy applications

Market forces will require future chips to run 1983 “Frogger” for DOS

Software re-verification on new architectures too costly
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Are Emulators and JITs for Multi-Core Different?

Yes

Bountiful parallel resources

Example: Code optimization cost is reduced

“hot spot” analysis may miss sequential performance

Parallelize client application

Parameters for Multi-Core are different

Core-to-Core latencies reduced
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Road Map

Exploit on-chip parallel resources to accelerate emulation

Focused on performance

Acceleration Mechanisms

1. Pipelining Virtual Architectures

2. Speculative Parallel Translation

3. Static & Dynamic Architecture Reconfiguration

Proof of concept system

All software parallel translator: x86 on Raw 
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Background: “Old” Parallel Translation
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1. Pipelining Virtual Architectures

Utilize a Tiled Processor as fabric to construct virtual processor

Coarse grain pipelining to exploit parallelism

Translator
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3. Reconfiguration

Different programs have different characteristics

Processor Architect uses benchmarks to choose “compromise” 

processor

Static Reconfiguration

Choose different virtual machine configuration based off application

Dynamic Reconfiguration

Detect phases/programs dynamic needs and reconfigure at runtime

Cost to reconfiguration
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Prototype System and Evaluation
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Background: Architectures

x86 (Pentium III)
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3-way parallelism
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System Design
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Methodology

Cycle comparison of Raw vs. Pentium III

All results collected on real hardware

No hardware added

Same binaries (unmodified)

Metric: Slowdown

Raw executing x86 code compared by cycle against Pentium III
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Baseline Performance
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2. Speculative Parallel Translation
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L2 Code Cache Miss Rate
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3. Static Reconfiguration
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3. Dynamic Reconfiguration
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3. Dynamic Reconfiguration
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3. Reconfiguration Zoom
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Baseline Performance Analysis

Intrinsic Raw Emulator Pentium III

latency occupancy latency occupancy

L1 Cache Hit 6 4 3 1

L2 Cache Hit 87 87 7 1

L2 Cache Miss 151 87 79 1

CPI = (memory_access_rate * (((1 – L1_miss_rate) * L1_hit_occupancy) + 

(L1_miss_rate * (((1 – L2_miss_rate * L2_miss_occupancy))))) + ((1 –

memory_access_rate) * non_memory_CPI)

Memory CPI 3.9 1
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Baseline Performance Analysis

Memory System 3.9x slowdown

Lack of ILP 1.3x slowdown

Condition Codes (Flags) x 1.1x slowdown

5.5x slowdown

Code Cache Misses 1 – 20x slowdown
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Baseline Performance Analysis
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Future Work

Hardware additions to facilitate parallel emulation

x86 Server farm on a chip

Inter-Virtual Processor dynamic load balancing

Differing forms of Dynamic Reconfiguration

Vary number of functional units
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Questions ?
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Extras
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