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Abstract

General purpose computing architectures are being called on
to work on a more diverse application mix every day. This has
been fueled by the need for reduced time to market and economies
of scale that are the hallmarks of software on general purpose mi-
croprocessors. As this application mix expands, application do-
mains such as bit-level computation, which has primarily been
the domain of ASICs and FPGAs, will need to be effectively han-
dled by general purpose hardware. Examples of bit-level appli-
cations include Ethernet framing, forward error correction encod-
ing/decoding, and efficient state machine implementation.

In this work [2] we compare how differing computational
structures such as ASICs, FPGAs, tiled architectures, and su-
perscalar microprocessors are able to compete on bit-level com-
munication applications. A quantitative comparison in terms
of absolute performance and performance per area will be pre-
sented. These results show that although modest gains (2-3x) in
absolute performance can be achieved when using FPGAs ver-
sus tuned microprocessor implementations, it is the significantly
larger gains (2-3 orders of magnitude) that can be achieved in per-
formance per area that will motivate work on supporting bit-level
computation in a general purpose fashion in the future.

1 Introduction

Recent trends in computer systems have been to move appli-
cations that were previously only implemented in hardware into
software on microprocessors. This has been motivated by several
factors. Firstly, microprocessor performance has been steadily in-
creasing over time. This has allowed more and more applications
that previously could only be done in ASICs and special purpose
hardware, due to their large computation requirements, to be done
in software on microprocessors. Also, added advantages such as
decreased development time, ease of programming, the ability to
change the computation in the field, and the economies of scale
due to the reuse of the same microprocessor for many applications
have influenced this change.

If we believe that this trend will continue, then in the future we

An extended version of this work can be found in MIT-LCS-TR-944
at ftp://ftp.cag.csail.mit.edu/pub/raw/documents/
Wentzlaff.2004.MIT TR.Bit level.pdf

will have one computational fabric that will need to do the work
that is currently done by all of the chips inside of a modern com-
puter. We have already seen this being done in current computer
systems with the advent of all-software modems and software ra-
dios. Consequences of implementing all parts of a computer sys-
tem in one computational fabric are that this fabric will have a
significantly different application set than what current micropro-
cessors are tuned for and will have higher computational require-
ments. In modern computer systems most of the helper chips are
there to communicate with different devices and mediums. Ex-
amples include sound cards, Ethernet cards, wireless communi-
cation cards, memory controllers and I/O protocols such as SCSI
and Firewire. For this reason, in this work we focus on Bit-level
communication computation.

We investigate how bit-level computation in communication
applications maps to differing architectures. Our methodology is
to make very carefully optimized implementations on many dif-
fering architectures and then study the applications in terms of ab-
solute performance and performance per area. The architectures
examined include an IBM ASIC flow (SA-27E), a Xilinx FPGA
(Virtex II), the Pentium 3, the Pentium 4, and the tiled Raw archi-
tecture.

Through this work we found some surprising results. To our
surprise FGPAs did not have as large of an absolute performance
gain versus microprocessors as we had expected, especially con-
sidering that the bit-level application mix heavily favored reconfig-
urable architectures. Rather, FPGAs only had a 2-3x performance
improvement versus a microprocessor implementation. This was
due largely to the high clock rates of microprocessors and that us-
ing lookup tables in a high speed microprocessor does a good job
of emulating combinational logic. What we did find is that the
real reason to implement bit-level communication processing in
FPGAs or ASICs is their large area wins. For our application mix
we found that ASICs provide 5-6 orders of magnitude and FPGAs
provide 2-3 orders of magnitude better performance per area than
software in a microprocessor.

2 Applications and Results

Two applications were examined in this study. Both are widely
used in communications processing and have no clear notion of a
word that gets computed on in contrast to standard integer applica-
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Figure 1. 802.11a Encoding Results.

tions. Verilog was used for the FPGA and ASIC implementations.
Optimized ’C’ was used for implementation on the Pentium pro-
cessors, and parallel assembly code with ’C’ was used for the Raw
implementations. The processor based implementations rely heav-
ily on lookup tables as an efficient emulation layer.

2.1 802.11a Convolutional Encoder

IEEE 802.11a [1] is the wireless Ethernet standard used in the
5GHz ISM band and provides for transmission of information up
to 54Mbps. In this study we examine the convolutional encoder
from 802.11a. A convolutional encoder is a method of forward
error correction which consists of a shift register that the input
data is passed sequentially though. The output encoded data is
computed by tapping off the shift register at various locations and
computing some combinational function of the tap locations. The
studied convolutional encoder generates two bits for each input bit
and is characteristic of convolutional encoders used in many digi-
tal wireless communication systems. Figure 1 presents the results
for 802.11a encoding.

2.2 8b/10b Block Encoder

8b/10b encoding is a byte oriented binary transmission code
which translates 8 bits at a time into 10-bit codewords. This par-
ticular block encoder was designed by Widmer and Franszek [3]
and has nice features such as being DC balanced, detection of sin-
gle bit errors, clock recovery, addition of control words, and ease
of implementation in hardware. This encoder is a line encoder
used for both fiber-optic and wired applications. Most notably it
is used to encode data right before it is transmitted in fiber-optic
Gigabit Ethernet. This application is not inherently parallelizable
because a running parity of transmitted bits is computed and then
used to alter subsequent transmitted bits. Thus a feedback loop is
introduced. Figure 2 presents the results for 8b/10b encoding.

3 Conclusion

From our experimental results we have found some interesting
trends that hold for these two applications:
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Figure 2. 8b/10b Encoding Results.

1. ASICs provide a 2-3x absolute performance improvement
over an FPGA implementation.

2. FPGAs provide a 2-3x absolute performance improvement
over a microprocessor implementation.

3. ASICs provide 5-6 orders of magnitude better performance
per area than software implementation on a microprocessor.

4. FPGAs provide 2-3 orders of magnitude better performance
per area than software implementation on a microprocessor.

5. Parallel implementations on Tiled architectures yield com-
petitive absolute performance to that of FPGAs but use at
least an order of magnitude more area to do so.

In this study we found that it is usually possible to use one grain
size to run an application with a smaller grain size without a signif-
icant loss in absolute performance through some emulation mech-
anism. One effective emulation mechanism is the ability to use a
microprocessor’s cache as a lookup table to substitute for custom
logic. But, unfortunately these forms of grain size mismatch cause
large, multiple orders of magnitude, inefficiencies when it comes
to area utilization and possibly power. This motivates the study of
integration of fine grain computational structures such as FPGAs
with architectures that have larger grain size such as word-based
microprocessors to be able to support both bit-level and general
purpose computation in an area efficient manner.
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