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Abstract

As the amount of available silicon resources on one chip
increases, we have seen the advent of ever increasing par-
allel resources integrated on-chip. Many architectures use
these resources as individually controllable, parallel pro-
cessing elements. While such architectures excel at paral-
lel applications, they seldom support legacy single-threaded
applications. In this work, we propose using parallel re-
sources to facilitate execution of legacy codes with accept-
able performance on parallel architectures containing a
drastically different instruction set through the use of an all
software parallel dynamic binary translation engine. This
engine spatially implements different portions of a super-
scalar processor across distinct parallel elements thus ex-
ploiting the pipeline parallelism inherent in a superscalar.
This virtual microarchitecture facilitates changing the al-
location of silicon resources between different superscalar
units in software which is not possible when special purpose
physical resources are built. We propose building dynami-
cally reconfigurable architectures that inspect the current
virtual machine configuration along with the dynamic in-
struction stream and change the configuration to best suit
the program’s needs at runtime. An x86 to Raw paral-
lel translation engine was built in which tiles dedicated to
translation can be traded for tiles dedicated to the memory
system as an example of dynamic reconfiguration.

1 Introduction

As we look to the future, trends suggest that we will see a
proliferation of on-chip, distributed parallel processors such
as tiled processors [20, 16], multi-core processors [1], and
chip multi-processors [22]. Building such processors is an
effective manner to utilize the ever increasing silicon re-
sources afforded to the computer architect. While these par-
allel architectures provide for large performance improve-
ments over typical sequential processors, especially on par-
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allel applications, they typically do nothing to accelerate ex-
isting sequential binary applications. In many cases, due to
architectural mismatches such as differing instruction sets,
lack of a MMU, non-coherent memory, differing 1/0 inter-
faces, and lack of OS support, future on-chip parallel archi-
tectures may not be able to run our current set of application
binaries directly. One solution is to either recompile or re-
code all of the applications in the world to take advantage of
these new architectures. Unfortunately, this requires reveri-
fication of all of the applications that are currently used, and
platform porting may not even be possible to some of the
architectures due to differing memory models and lack of
OS support. Even if feasible, this porting and verification
effort would be a huge amount of duplicated effort. This
leaves designers of on-chip parallel architectures in a bind;
they want to focus on the exciting new parallel applications
that their architectures excel at, but they still would like to
maintain compatibility with the industry-standard suite of
applications.

Ultimately, we would not like to see the creativity of de-
signers of future architectures impeded by the requirement
of backward compatibility, yet it is also a suboptimal solu-
tion to require all software be redesigned for these future
architectures. In the future, legacy 1ISAs such as x86 will no
longer simply be an ISA, but rather x86 and the accompa-
nying ecosystem will become an application that all future
architectures will have to execute effectively. One solution
may be to use a sequential translation system to emulate
a legacy architecture to maintain compatibility. Unfortu-
nately, this solution may not provide sufficient performance
on legacy codes and does not utilize any of the parallel re-
sources provided by future parallel architectures which may
be the primary growth path in the future. In this work, we
investigate using parallel resources in a tiled processor en-
vironment as an enabling technology to accelerate emula-
tion. We introduce several new mechanisms of exploiting
parallelism in a tiled processor to accelerate the execution
of a single threaded legacy application.

In this work, we have designed and implemented a par-
allel dynamic binary translation engine for a tiled archi-
tecture. While much previous work has gone into dy-



namic translation for a parallel architecture, typically a
VLIW [9, 11, 12], in this research we take a different focus
and utilize other forms of parallelism than simply schedul-
ing translated code to a VLIW processor. The novel mech-
anisms presented in this paper that allow the utilization of
parallel resources to accelerate cross platform binary exe-
cution are:

1. Speculative Parallel Translation

2. Spatial Pipeline Parallelism

3. Static and Dynamic Virtual Architecture Reconfigura-

tion

These techniques focus on using the tiled processor as an
ASIC or FPGA-like fabric that has customized functional
units. To that end, this work can be thought of as im-
plementing a virtual superscalar microarchitecture across a
tiled processor fabric. We did not restrict ourselves to faith-
fully implementing a pre-existing processor design. Rather,
we took the techniques embodied in superscalar design,
which are effective in exploiting transistor parallelism, and
applied them when it made good engineering sense to do
s0. An example of this FPGA-like design is the fact that we
explicitly manage on-chip layout and communication dis-
tance.

One of the key portions of any dynamic translation sys-
tem is the translator itself. Unfortunately, one does not want
to incur the cost of translation on the critical path of your
computation. To solve this problem, we introduce specu-
lative parallel translation. Speculative parallel translation
traverses a program’s possible execution paths and trans-
lates them before the piece of code is needed. This removes
the cost of translation from the execution of any program
because the translation cost of future basic blocks is over-
lapped with the execution of the current block. We believe
that this technique can even be applied to superscalars in the
form of more aggressive decoding into a larger trace-cache
or code cache like structure.

Spatial pipeline parallelism is the notion of coarsely
pipelining needed computations across neighboring tiles.
We exploit this form of parallelism by pipelining our mem-
ory system and pipelining code cache accesses. Lastly we
introduce static and dynamic virtual architecture reconfig-
uration. Static reconfiguration is motivated by the fact that
different programs have different requirements in terms of
working set size, amount of ILP, and amount of instruction
bandwidth. On a non-virtual processor, the architect needs
to choose one configuration of all of these parameters at de-
sign time, while in a virtual environment, different machine
configurations can be chosen to fit a particular program’s
needs. This can even be extended for use inside of a pro-
gram, assuming that a program has phases, and is called dy-
namic virtual architecture reconfiguration. Dynamic recon-
figuration allows the emulator to inspect itself along with
the programs needs to rebalance silicon resources at run-
time.

To explore these concepts, we have built a prototype
parallel dynamic translation system. The prototype system
uses x86 Linux as the guest ISA and operating environment
and executes on a Raw tiled processor host. We present
a fully functional system that executes arbitrary, unmodi-
fied, userland statically-linked Linux x86 binaries on the
Raw prototype chip. The Raw host architecture is signif-
icantly different than the guest x86 architecture. Namely
a vastly different ISA, lack of memory translation, lack of
protection, lack of condition codes, and lack of a hardware
instruction cache on Raw are some of the challenges that
this design faced and attacked in an all software dynamic
translation environment. To mitigate this mismatch in ar-
chitectures, this work exploits the parallel resources found
on the Raw processor to accelerate binary translation.

All of the results presented in this paper were collected
on actual Pentium 11l and Raw hardware. No modifications
were made to the x86 binaries, the Pentium 111 hardware, or
the Raw hardware. Additions to the Raw hardware would
have improved the performance of Raw running x86 bina-
ries, but in this study we have focused on pushing the limits
of an all software approach. This work leaves the inves-
tigation of enhancing the hardware in tiled processors for
the purpose of accelerating emulation to future work. We
evaluated our parallel dynamic translation system across the
Speclnt 2000 benchmark suite and found that our system
with software memory translation attains approximately a
7x-110x slowdown when x86 binaries are run on Raw com-
pared by cycle counts against a Pentium I11.

This paper is organized as follows. Section 2 examines
how the parallel resources of a tiled processor can be ex-
ploited to accelerate dynamic binary translation. In Sec-
tion 3 we describe the system implementation and tradeoffs.
We present and discuss the results of several differing vir-
tual machine configurations in Section 4. Sections 5 and 6,
respectively, present future and related work. And finally
we conclude.

2 Exploiting Parallelism
2.1 Speculative Parallel Translation

Dynamic binary translators need to translate code from
one architecture to another architecture at runtime. This
can be quite expensive, especially for applications that ei-
ther have a very short runtime or contain a large number of
instructions that are executed infrequently. For long run-
ning programs that execute the same set of instructions fre-
quently, techniques such as a code cache can amortize the
cost of translation over many executions of a translated
block. On sequential architectures, translation still uses
valuable cycles that could otherwise be spent running op-
erations from the program. We propose a better solution
for translation. Instead of stealing cycles away from the
main program’s execution thread to do translation, specula-
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tive parallel translation utilizes parallel execution resources
to translate the program in the background. With this ap-
proach, when the main execution thread reaches a portion
of the program it has not previously executed, instead of
stalling waiting for translation of that code, the specula-
tively translated code is simply recalled and executed.

Figure 1 illustrates the advantages of speculative parallel
translation. Shown on the left, is a hypothetical sequen-
tial translator. The processing element alternates between
translating and executing the program of interest. Along
the way, the translator decides that it is wise to optimize a
block, indicated by the cross-hashed region. On the right
side, a speculative parallel translator is shown running on
four processor cores. In the speculative parallel translation
example, three processors are used for translation and op-
timization, while one is dedicated to execute the translated
code. Because the translation and optimization cores run
ahead translating the program, the execution core is able
to execute the translated code without the translation delay
seen in the sequential case. By removing the translation
time from the critical path, the speculative parallel transla-
tion example is capable of completing earlier than the se-
guential example as denoted by AT.

One challenge that exists with speculative parallel trans-
lation is determining which code is most likely to be needed.
A naive implementation is simply to traverse the program
graph in control flow order. When a branch is reached,
the translator spawns a new translation thread for each path
that the program may go. We call this approach speculative
parallel translation because the translator is doing specula-
tive work, translating portions of the program that may or
may not ever be executed. While it is possible that a large
amount of the work that is done may not be needed with this
scheme, these parallel resources still contribute to acceler-
ating the main thread’s execution.

One way to mitigate translating unneeded code sections
is to use some form of prediction when a branch is reached
to prioritize what is to be translated. Also, proper prioriti-
zation may actually accelerate the main thread’s execution
by not scheduling portions of code to be translated that may
take away resources from sections of code that are critical
to the program execution. Unfortunately this form of prior-

itization and prediction is difficult. It is effectively the same
problem as constructing a branch predictor with no previous
branch information. Typically branch predictors use history
information to determine which direction a branch transi-
tions control to. In this case, the translator is translating
code before it is even executed, and hence can be thought
of as a first touch branch predictor. Some static heuristics
can be applied in this situation such as predicting backward
branches taken. Ball and Larus suggest other static heuris-
tics for branch prediction in [3].

In this work we used simplistic static branch prediction
along with a prioritized set of queues to determine what ad-
dress should be translated next. The different levels of prior-
ity are used to determine which address should be translated
when a tile becomes free. When enqueuing, the priority is
determined by the depth the current block is from a piece
of code that is known to be on the correct execution path of
the program. Thus as the work becomes more speculative,
or further from the last know piece of executed code, it is
given a lower priority. The results of speculative transla-
tions are stored in a large code cache until they are needed.

This procedure works for direct branches, but does
not handle register indirect branches well. For indirect
branches, the translator is not able to determine what ad-
dress is the next appropriate address that the program may
branch to until runtime. Typically, indirect branches come
in the form of either function returns or calls through a jump
table. For call returns, it is typically possible to determine
the return address at call time. We use a return predictor
which adds the address after a call instruction onto a low
priority translation queue. The return address is put on a
low priority queue because the code inside of the function
has a higher probability of being needed then the return lo-
cation. For jump tables, without symbol information, it is
effectively impossible to know what address may be called.
Currently our system does not speculatively translate be-
yond unresolvable register indirect jumps.

Speculative parallel translation can be applied to other
forms of translation. For instance, most modern proces-
sors that execute x86 code translate or decode instruction
streams into micro-operations that are later executed. They
use specialized hardware to perform this translation and
store a small number of decoded instructions into a trace
cache. Another approach is to translate more aggressively
as described in this section and cache the translations in a
much larger cache. This cache may possibly reside in main
memory or on some physically distant portion of the micro-
processor. Ultimately this may reduce energy usage because
it would prevent re-decoding previously decoded instruc-
tions. Also, instead of performing this decoding with spe-
cial purpose hardware, this could be performed by general
purpose processors that may be reallocated once the work-
ing set of instructions have been translated. This can be ap-
plied to architectures such as Transmeta’s. Instead of steal-
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ing cycles on the main computation unit, Transmeta could
use speculative parallel translation on an array of small pro-
cessors situated on a physically distant portion of the sil-
icon. This would reduce translation cost significantly, but
might be at the cost of energy and code cache memory.
Lastly, speculative parallel translation changes the con-
ventional wisdom in dynamic translators. Typically dy-
namic translators employ some form of hot spot optimiza-
tion. Hot spot optimization detects the most frequently used
or “hot” portions of a program and only optimizes those
portions. This prevents stealing precious execution cycles
from the main thread to optimize code that is seldomly run.
With speculative parallel translation, because the translation
is removed from the critical path of the program’s execu-
tion, expensive optimizations can be applied at translation
time and not steal cycles from the main thread. Rather, the
translated code that is run is now optimized, thus reducing
the time required for it to execute. We still believe that hot
spot analysis can improve performance by not wastefully
optimizing code, but the cost of optimizing code is lower in
a parallel environment. In this project we decided to leave
full optimizations turned on for all blocks because the cost
of optimization, which was off of the critical path, was out-
weighed by the benefit of executing optimized code.

2.2 Spatial Pipeline Parallelism

Tiled processors can be thought of as a substrate for cir-
cuits to be implemented on top of. One such circuit is that
of a processor. We propose exploiting a tiled architecture
as an ASIC or FPGA. Typically FPGA and ASIC designs
exploit multiple forms of parallelism. One form of paral-
lelism that can be easily exploited is pipeline parallelism.
This allows for logic to be used sequentially by passing
data between fixed function stages. In a dynamic trans-
lator there are many functions that need to be completed
that may not exhibit thread or data-level parallelism. Thus
turning to pipeline parallelism allows for the exploitation of
parallelism in a different manner. Pipelining can also in-
crease the throughput of a needed resource. For instance, in
this work’s prototype system, the memory system was built
out of multiple tiles in a pipelined manner. When an ac-
cess is made to the cache, it is first passed to the MMU unit
for translation and then onto the cache tile as shown in Fig-
ure 2. While the memory request is being serviced, the main
execution processor is free to execute other non-dependent
work and issue further memory requests. Like all modern
FPGA and ASIC designs, wire delay is a significant factor.
This is also the case when pipelining across tiles, thus spa-

tial pipelining takes into account wire delays to minimize
latencies.

This work is a proof of concept that pipelining a virtual
processor across a substrate of tiled processors is feasible.
This idea can be extended to an extreme by implementing
a out-of-order superscalar across many tens of tiles. Sets
of tiles could be ganged together to implement the front
end translation, after which the instructions pass to a set
of scheduling tiles. Then the instructions can be passed to
processors that perform renaming and then reservation sta-
tion tiles that issue instructions to multiple execution units.
Finally the instruction results could be passed along to a
set of tiles that implement a reorder buffer in software for
instruction retirement. This form of pipelining would effec-
tively allow a parallel processor to be used to speed up the
execution of sequential codes.

2.3 Static and Dynamic Virtual Architec-
ture Reconfiguration

One of the major design decisions that any computer ar-
chitect grapples with is how to provision the silicon area
that he or she has to work with. Even with a relatively small
number of knobs that can be tweaked, there exists a large,
exponential, number of different designs that can be created.
With all of these different possible designs, the architect ul-
timately chooses some configuration of the resources and
encodes this into circuits on silicon. Typically the archi-
tect takes a representative cross section of the applications
that the chip will execute and optimizes parameters such
as cache size, fetch bandwidth, bandwidth to main mem-
ory, number of functional units, number of physical regis-
ters, etc. The parameters chosen may be optimal across the
benchmark suite, but it is probable that they are not optimal
for any one benchmark but rather are a compromise. With
a virtual architecture like the one presented in this paper,
the architect does not need to determine the layout and al-
location of silicon resources at chip design time. Different
virtual architectures can be created and tailored to best suit
a particular application.

We propose and demonstrate static virtual architecture
reconfiguration. With static virtual architecture reconfigu-
ration, there are many differing virtual architectures that are
implemented on top of a substrate. In this work the sub-
strate is a tiled processor, but this may also be a multi-cored
processor. The configuration of the virtual architecture de-
termines the relative amount of silicon resources dedicated
to any one function. This reconfigurability frees the de-
signer from designing only one architecture determined at
fabrication time. Reconfiguration comes at the cost of re-
quiring all of the physical silicon resources being able to
perform, possibly through some form of software emula-
tion, all functions that a normal processor would perform.
This requirement is a good match for homogeneous tiled
processors which allow any piece of silicon to perform any



function modulo some emulation cost.

We can take this idea of silicon reconfiguration one step
further and apply the same techniques dynamically. Within
any given application, it may be the case that at different
portions of the program a different allocation of the silicon
resources may be optimal. This idea is motivated by the
insight that programs typically transition through multiple
phases throughout their runtime. When a program begins,
the program has not been translated or decoded yet, thus
most of the silicon resources should be dedicated to trans-
lation. After a significant portion of the program has been
translated, the program may need more functional units be-
cause it has reached a highly parallel portion of its execu-
tion. Then the program needs to access memory often to
store the computed results. With dynamic reconfiguration,
the virtual architecture detects this situation and allocates
more resources for cache. Finally the program reaches an
indirect branch and the program requires more translation,
and resources are allocated to that need. With dynamic ar-
chitecture reconfiguration, there is some centralized man-
ager that must make decisions when to reconfigure. This
manager introspectively analyzes the current configuration
of the virtual machine, the dynamic instruction stream, and
the needs of the dynamic instruction stream. Because this
level of optimization is occurring at runtime, all informa-
tion is known which allows the reconfiguration manager to
take advantage of quantities that only can be determined ac-
curately at runtime. The dynamic reconfiguration manager
can use information such as cache (instruction and data)
miss rates, the dynamic determination of actual instruc-
tion level parallelism (typically not determinable at compile
time due to address aliasing), the number of basic blocks
waiting to be translated, the dynamic bandwidth needed to
differing levels of cache hierarchy, and any other dynami-
cally introspective meta-data about the program.

Dynamic reconfigurability does come with some cost.
When changing the virtual machine configuration, there is
a cost associated with reconfiguration and a cost to moni-
toring. To mitigate the cost of monitoring, sampling of the
reconfiguration metrics can be employed to make the moni-
toring cost inconsequential. An example of reconfiguration
cost is the cost associated with changing the size of the L2
data cache. When the L2 cache physically changes size,
the contents of the L2 cache need to be flushed and writ-
ten back to main memory. Events like flushing of a cache
can be quite expensive if they occur often, thus any type
of reconfiguration system should have hysteresis built into
the system to prevent too frequent reconfigurations. In this
work we prototyped dynamic reconfiguration by dynami-
cally trading off the number of L2 data cache tiles against
the number of translation tiles. To determine when to re-
configure, the length of the work queues of blocks to be
translated was used. This dynamic reconfiguration allowed
our translation system to beat the best statically determined

configuration on some benchmarks thus demonstrating the
power of introspective dynamic reconfiguration.

3 System Description
3.1 Background

Before this paper examines the implementation of an x86
dynamic translator on the Raw processor, the details of the
Raw processor and x86 instruction set need to be discussed.
The Raw processor is a general purpose tiled processor. It
consists of 16 identical MIPS-like processors arranged in a
4x4 grid integrated on one die. These 16 processor cores
are tied together by four first-class register mapped com-
munication networks. Two of the networks are routed dy-
namic networks and two are software routed static switch
networks. Each tile also contains 32KB of hardware man-
aged data-cache, 32KB of software managed instruction
memory, and 64KB of software managed switch instruction
memory.

A tile is the basic repeated structure that the Raw pro-
cessor is built out of. Inside of a Raw tile, there is an 8-
stage 32-bit processor pipeline. The ISA for each tile’s main
processor is derived from the MIPS ISA. The 16 Raw tiles
share global off-chip memory but there exists no support for
cache coherent shared memory. Also, Raw lacks an MMU
or any form of memory protection.

The guest architecture that we are emulating is the in-
dustry standard x86 or 1A-32 architecture. The original x86
ISA is relatively well organized for an accumulator based
machine, but has had many additions that now make it a
quite complicated instruction set with many subtle nuances
in how each instruction operates. x86 is primarily a CISC
instruction set which uses condition codes/flags to make
branching decisions. Typically, every ALU operation sets
some subset of the global flag state, and most operations
can touch memory. x86 is a two operand instruction set
with a variable length encoding which makes decoding the
full instruction set quite challenging. Finally, modern x86
code makes use of a virtual memory system along with a
protection schema.

3.2 Design Overview

Our emulator is similar to most best-of-breed dynamic
binary translation systems, and leverages much of the pre-
vious work on translators such as dynamic binary transla-
tion, making use of a code cache, and chaining branches in
the last level of code cache whenever possible. But, many
design trade-offs change when they are considered in a dis-
tributed environment. One example is that the cost to opti-
mize blocks of translated code is less than in a typical trans-
lation system. In a parallel environment, optimization is
done in the background on processing resources that might
otherwise be left idle, while in a sequential translator, any
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processor time that is used to do an optimization steals cy-
cles from the critical path of the program.

Figure 3 presents a block-level view of the translation
system. Each box represents a tile, processor core, exe-
cuting a portion of the emulation system. The runtime-
execution tile contains the runtime engine, the L1 code
cache, and the L1 data cache. This tile is responsible for
executing all of the translated code and executes the pri-
mary dispatch loop along with maintaining the lowest level
of the code cache.

To service instruction misses in the L1 code cache, the
banked L1.5 code cache is consulted. The L1.5 code cache
utilizes two tiles as a local cache of already translated code
for quick access. If requested code is not in the L1.5 code
cache, the code request reaches the manager L2 code cache
tile. The manager tile is responsible for maintaining the
code cache that lives in main memory and for coordinat-
ing the parallel speculative translation units. The L2 code
cache is 105MB and is stored in off-chip DRAM. There are
many translation slave tiles which run ahead and specula-
tively translate possibly needed code.

Translation and optimization occurs on the translation
slave tiles. The first stage of the translator leverages a
small portion of the Valgrind memory debugger [15]. Val-
grind was designed to be a memory debugger and uses just-
in-time code instrumentation technology to detect memory
leaks. The parsing is implemented as several large switch
blocks. With the exception of this parsing and some basic
high level code cleanup routines, all of the translator was
custom built for this project. The translation slaves do code
generation from a x86-like intermediate representation to a
low level MIPS-like IR. Many standard compiler optimiza-
tions are applied at this level and finally the translated code
is deposited in the L2 code cache.

When the runtime-execution tile needs to use more mem-
ory that is stored in the in-tile L1 data-cache, it requests
data from the emulators pipelined memory system. The first
step along this path is the MMU and TLB tile. This tile is

responsible for translating x86 virtual to x86 physical ad-
dresses. It is also responsible for translating x86 physical
to Raw physical addresses. The MMU tile then farms the
memory request out to one or more L2 cache tiles. The
L2 cache tiles are set up in a transactor style that service
memory requests for fractions of the physical address space.
Lastly the system contains a tile dedicated to servicing sys-
tem call requests.

4 Resultsand Analysis
4.1 Methodology

In this work, we focus on evaluating a prototype paral-
lel dynamic binary translation system built on top of the
Raw tiled processor as a proof of concept for several ideas
about constructing virtual architectures on parallel systems.
We strived for realism wherever possible and as such all of
the numbers presented are gathered on real hardware. No
simulations were used and hence no modification to any of
the hardware resources in either the Pentium 111 or the Raw
processor was done. Gathering test results on existing hard-
ware is a huge win with respect to the time taken to run
benchmarks, and allowed us both to gather result data for
larger input sets and to gather significantly more datapoints
than otherwise would have been feasible in a simulation en-
vironment. Running on real verified hardware also lends
credibility to the legitimacy of such results in a real world
environment, but it makes the engineering effort higher be-
cause the hardware implementations are not modifiable thus
this work has to accept them with all of their blessings as
well as their faults.

Throughout this section, we use performance on the
Speclint 2000 benchmark suite as the metric of comparison.
This benchmark suite was compiled using GCC 3.0.4 with
the “-0O3” optimization flag. All of the binaries were stati-
cally linked and use newlib 1.9.0 as the standard “C’ library.
The C++ benchmark 252.eon was omitted from these re-
sults because we were unable to build and statically link lib-
stdc++ with newlib, and currently our dynamic translation
system is only able to handle statically linked binaries. The
parallel translator in this paper currently does not support
Intel’s x87 floating point arithmetic. Specint applications
primarily use integer arithmetic, but surprisingly, as their
name does not imply, include a small amount of floating
point operations. Thus the applications were compiled with
the gcc flags “-msoft-float -mno-fp-ret-in-387” which use
a soft float library available inside of libgcc when floating
point math is required. The exact same set of binaries was
run unmodified on both the Pentium Il and the translator
running on Raw. The large datasets from MinneSPEC [13]
were used throughout this paper.

To compare across platforms, a clock-for-clock compari-
son methodology was used. Thus the period of one Pentium
111 clock cycle was considered to be equivalent to one clock
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Figure 4. Comparison of L1.5 Code Cache
Sizes

cycle on the Raw processor. We believe this to be a fair
comparison if both of these designs were to be implemented
in similar design styles with similar design efforts. A de-
tailed clock normalized and non-clock normalized compar-
ison of these two architectures can be found in [21]. Unless
otherwise stated, all of the numbers in this paper are pre-
sented as slowdown when compared to a Pentium Ill and

. CyclesOnTranslator
can be calculated as: GuclesOnPentiumITT-

4.2 Code Cache Sensitivity

In this work, we investigate full applications versus fo-
cusing on kernels. Large instruction working sets is one of
the drawbacks of utilizing sizable applications such as those
found in Specint. Applications particularly stress transla-
tion systems if their working set of instructions is larger
than the translator’s lowest level of code cache. We begin
our results with an investigation of our system’s sensitivity
to code size.

In our initial design, we did not have a L1.5 code cache,
but we noticed that some of the applications’ instruction
working set size was larger than the level 1 code cache avail-
able in the runtime-execution tile. This caused severe per-
formance degradations on certain benchmarks, and persists
even with the L1.5 code cache. The addition of a L1.5 code
cache is an example of how parallel resources that were
not otherwise being productively used can be reallocated to
act as caches and hence speedup program execution. Fig-
ure 4 contains results from three differing machine config-
urations. One configuration has no L1.5 code cache, one
contains a 64K code cache which required the dedication
of one tile, and the last utilizes two tiles as a 128KB code
cache.

As can be seen, vpr, gcc, crafty, perlomk, gap, vortex,
and twolf all contain code working sets larger than the L1
code cache of the translator. The L1.5 code cache has a
longer latency than accessing the L1 code cache, and it pre-
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Figure 5. Comparison with Differing Numbers
of Translation Tiles

vents chaining. We believe that it may be possible to use
a slightly better L1 code caching algorithm than the cur-
rently employed tight packing and flushing algorithm, but
ultimately these benchmarks are capacity limited in the L1
code cache. With a larger L1 code cache or the addition of
a true hardware Icache system in Raw, performance could
be significantly improved for the benchmarks that exceed
the L1 code cache capacity. A hardware Icache would help
by allowing a larger virtual L1 code cache to be used than
fits on-chip, and chaining could be done across this virtual
cache. In the current system, chaining can only occur once
code is copied into the instruction memory of the execution-
runtime tile because it is only at this point that the absolute
position of the relocatable code block is known.

4.3 Speculative Parallel Translation

To investigate the virtues of speculative parallel transla-
tion we ran the SpecInt benchmark suite with differing num-
bers of translation units. We ran this experiment with 1, 2,
4, 6, and 9 slave translators. For the one translator case, we
performed these tests with and without speculation. For the
non-speculative (conservative) case, the one translator did
not translate ahead in the program and was always ready
waiting for a L2 code cache miss to occur. In all of the
other cases, if a translation request arrives from the runtime-
execution engine and all of the slave tiles were being used,
the request would have to wait. The non-speculative, con-
servative case approximates the translation portion of a clas-
sic sequential translator.

Figure 5 shows the results for this experiment. As can
be seen, with the exception of vpr, gcc, and crafty, using
speculative parallel translation accelerates the program ex-
ecution over the conservative case. Also the trend shows
that as more translation resources are added, the applica-
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Figure 6. Number of L2 Code Cache Ac-

cesses per Cycle

tions execute faster. Lower bars indicate lower slowdown
and faster execution. The 9 translator datapoint trades off
three L2 data cache tiles for three extra translators over the
6 translator datapoint. Hence in some of the memory inten-
sive applications the 9 translator version was slightly slower
than the 6 translator case.

We were a little surprised to see that for vpr, gcc, and
crafty, the parallel translation configurations were actually
slower than the conservative single thread translation case.
We believe that this occurs for two reasons. First, in our im-
plementation of speculative parallel translation, we do not
use a preemption model. Thus if a request comes in from
the execution engine for a particular piece of code that is
not in the L2 code cache and all of the translation slave tiles
are currently occupied, this request stalls until a slave fin-
ishes its current piece of work. We believe that this can
be mitigated by reserving a slave tile for these requests to
reduce latency for critical translations or by adopting a pre-
emption mode. Second, the L2 code cache and manager tile
is a shared resource that all of the slave translators use to
store their results in. This causes significant traffic to and
from this central resource, and in turn delays sending and
receiving data to the runtime-execution engine. To investi-
gate this further, we plotted the rate at which a particular
program accesses the L2 code cache per cycle of execu-
tion time. Figure 6 shows these results. The rates at which
these applications access the L2 code cache vary over three
decades. Our hypothesis about congestion at the L2 code
cache was confirmed by this experiment because vpr, gcc,
and crafty all experience a high rate of accesses to the L2
code cache. In the future, banking or decentralizing the L2
code cache will mitigate these problems.

The rate at which these programs miss in the L2 code
cache, and hence have to be translated can be seen in Fig-
ure 7. This graph confirms that as more speculative threads
are added, the miss rate in the L2 code cache decreases.
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This is encouraging for speculative parallel translation be-
ing able to decrease the critical path for translation as even
more translation resources are added, and hence speedup
programs that otherwise have high translation occupancy
due to poor code locality.

In addition to parallel translation, we wanted to investi-
gate whether code optimization on every block was worth
the added occupancy of performing the optimizations. Fig-
ure 8 shows the runtime of the Specint benchmark suite with
and without optimization during translation. For all of the
benchmarks, the occupancy of performing optimization in
a speculative parallel environment was far outweighed by
the decrease in runtimes afforded by the optimizations. For
these runs, a dynamically reconfiguring (6 to 9 slave trans-
lation tiles) configuration was used.

4.4 Static and Dynamic Virtual Architec-
ture Reconfiguration

We investigate the tradoffs involved in virtual architec-
ture reconfiguration in this section. Figure 9 contains the
runtimes of benchmarks run with five different architecture
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configurations. In this experiment we trade-off the num-
ber of translation tiles against the size of the L2 data cache.
The first two designs are static configurations. The left-
most bar is the data for a configuration with 1 tile devoted
to being a L2 data cache of 32KB. The next dataset is for a
static configuration which utilizes 4 tiles as a L2 data cache,
but has 3 fewer translators. Finally we have three configu-
rations which dynamically change between the two previ-
ous static configurations. These implementations demon-
strate dynamic reconfiguration in a parallel translator envi-
ronment.

To better examine these results, Figure 10 contains the
results normalized to the 1 cache tile configuration as a per-
centage faster or slower. The first thing to note is that the 4
tile L2 data cache configuration performs better than the 1
tile L2 cache configuration on some benchmarks and worse
on others. This motivates static reconfiguration, or choosing
the best virtual architecture on a per application basis. The
larger cache configuration achieves superior performance
on applications that have more demanding memory require-
ments. Next we turn our attention to dynamically reconfig-
uring the virtual architectures at runtime. As Figure 10 il-
lustrates, on gzip, mcf, parser, and bzip2, when utilizing a
dynamic reconfiguration system that introspectively exam-
ines the program and configuration, it is possible to beat the
best static configuration. It is encouraging that even with re-
configuration occupancies, dynamic reconfiguration is able
to reconfigure the virtual machine to best suit an application
within a single execution.

Dynamic reconfiguration did not beat the static configu-
rations on all the benchmarks. In these cases a virtual ma-
chine architect has the choice of using a static configuration
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Figure 10. Relative Comparison of Perfor-
mance for Differing Configurations (higher is
better)

per application that best suits that particular application. We
investigated whether the reason that dynamic reconfigura-
tion did not beat the static configurations on all applications
was related to the reconfiguration heuristic. In this example,
the reconfiguration heuristic was based off of the lengths of
the “blocks to be translated” queues. We varied these met-
rics and found that as the threshold for reconfiguration was
lowered from a length of 15 to a length of O (if anything was
in a queue), that the number of reconfigurations increased.
The overall performance though was not related to this, but
largely decoupled from the reconfiguration heuristic.
Finally, while the gains due to dynamic reconfiguration
over static configurations is humble in this implementation,
we believe this is largely due to the parameters that are mod-
ified (L2 data cache size and translation resources) being
second order factors in overall performance. With this im-
plementation, dynamic reconfiguration is able to achieve a
3% performance increase over the best static configuration
on some applications. This is quite encouraging and val-
idates the idea that dynamic reconfiguration could lead to
larger gains when applied to larger portions of a virtual ar-
chitecture system such as the number of functional units.

4.5 Analysis of Performance Loss

The approach taken in this paper has focused on build-
ing a parallel dynamic translation environment built com-
pletely in software without any modifications to the under-
lying Raw hardware. By choosing this approach, the results
presented in this section have been severely impacted by
the mis-match in architectures and by some primitive facili-
ties not being present in the Raw hardware such as memory
translation and lack of a hardware instruction cache. In this
section, we investigate where the performance is lost and
suggest solutions to accelerate binary translation.

One of the primary differences between the Pentium Il1
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Figure 11. Architecture Intrinsics

and our emulator is in the memory system. As Table 11
shows, the memory latency and occupancy for loads on the
two architectures are quite different. Due to the lack of a
hardware memory management unit on Raw, the emulator’s
load occupancy is 4 cycles for a L1 hit, while the occupancy
on the Pentium 111 is 1 and has a lower latency. We can
compute an estimate for how much performance is lost
due to the memory system by using the memory system
statistics for Speclnt gathered in [7]. We use basic CPI cal-
culations as prescribed by (memory_access_rate * (((1 —
L1_miss_rate) x L1_hit_occupancy) + (L1_-miss_rate x
(((L — L2.miss_rate) * L2_hit_occupancy) +
(L2_miss_rate x L2_miss_occupancy))))) + ((1 —
memory_access_rate) * non_memory-CPI) and hold
the memory_access_rate and non_memory_CPl constant.
Assuming a non_memory_CPI of 1, we compute a CPI of
3.9 based off of occupancy for the emulator and a CPI of
1 for the Pentium II1. This assumes that both architectures
can effectively find work to do to cover the latency of loads.
With these assumptions, the emulator loses a factor of 3.9x
when compared to the Pentium Il due solely to memory
system differences. The addition of a MMU to the Raw
architecture would largely mitigate these differences. A
MMU would primarily reduce the cost of an aligned L1
cache hit to one cycle of occupancy instead of 4.

The second significant factor where the emulator is in-
ferior in performance relative to the Pentium 11 is in real-
ized ILP. The Pentium Il is an out-of-order three way su-
perscalar. While the emulator presented in this paper does
schedule instructions to hide functional unit latencies, the
instructions still only execute on an in-order single-issue
tile. We approximate the ILP inherent in Specint by look-
ing to previous work done in [5]. The ILP for Specint 95
on a Pentium Pro was found to be 1.3. To a first order we
approximate the ILP for SpeclInt 2000 to be the same. Thus,
the Pentium 111 has a 1.3x speedup when compared to our
emulator. A portion of this ILP can be achieved in by our
emulator if the Raw tile was multi-issue or if we focused on
scheduling ILP across multiple tiles.

The x86 instruction set contains condition codes, while
the Raw architecture does not. In order to emulate this ar-
chitectural difference, our x86 emulator keeps the x86 flags
packed in a register and uses insert and extract operations to
access them. While our emulator does extensive dead flag
elimination to reduce flag calculation, conditional branches

require the use of a single flag that needs to be extracted
from the packed flag register. This in effect turns any condi-
tional branch from one instruction into two instructions. As-
suming branches occur once every ten instruction, we can
estimate the overhead cost of generating two instruction for
every branch to be a 1.1x slowdown. One way to mitigate
this cost is to add flags to the host architecture as Transmeta
did. Another solution is to use a more sophisticated branch
transformation optimization process that transforms com-
pare and branch instructions to native host branch types.

If we account for the previously discussed fixable archi-
tectural deficiencies, we find that a slowdown of 3.9 x 1.3 %
1.1 = 5.5 was minimally expected. This leaves only a fac-
tor of 1.3x of unaccounted slowdown for applications on
the low-end of the slowdown spectrum (gzip, mcf, parser,
bzip2). Of this 30% slowdown, we believe the follow-
ing factors to be major factors, code translation cost, code
caching overhead and non-optimal code generation.

While this analysis leaves only a factor of 30% of unac-
counted slowdown on the low end of the slowdown spec-
trum, a 20x slowdown is unaccounted for in applications at
the high end of the slowdown spectrum (gcc, crafty, vortex).
In order to account for this disconnect, we refer back to Fig-
ure 6. As can be seen, the three applications with the most
sever slowdown are also the applications with the greatest
number of L2 code cache accesses. These poorly perform-
ing applications are approximately one hundred times more
likely to access the L2 code cache per dynamic instruction
than applications than perform well. This suggests that the
instruction working set size for these applications is larger
than the code cache contained on a single tile. Exacerbat-
ing this problem is the fact that the Raw host architecture
does not have a hardware instruction cache, thus chaining
is not possible outside of the lowest level of code cache.
If the Raw host architecture were to add a hardware in-
struction cache, the lowest level code cache could be large
enough to hold the instruction working set. By increasing
the size of the lowest level of the code cache, chaining could
be performed throughout the instruction working set. Also,
an efficient hardware instruction cache would determine the
most pertinent code to have in a tile’s cache.

5 FutureWork

In the future we believe that building virtual architec-
tures that utilize dynamic translation technology will be an
effective way to utilize the ever growing number of parallel
resources on a single chip. To that end, we would like to
extend our work to utilize as many processors as is possi-
ble. While we acknowledge that at some point there will
be diminishing returns, if performance of single threaded
legacy applications continues to be important, utilizing oth-
erwise unused parallel resources to accelerate these legacy
application can still provide much needed performance im-



provement.

To utilize larger arrays of on-chip processors, we are in-
terested in extending this work to build more sophisticated
virtual processors. There is potential to construct an out-of-
order superscalar as a virtual architecture across an array of
tiled processors. Sets of tiles can be dedicated to each of the
functions that are typically employed in out-of-order super-
scalars such as register renaming, multiple functional units,
instruction scheduling, and a reorder buffer.

Another way to improve the performance of our transla-
tor is to add hardware support. We are interested in general-
ized hardware that can aid in emulation of all architectures
and not only x86. An example of hardware that we have
considered adding to tiled processors is that of hardware to
handle TLB lookups quickly. In translation systems, there
exist two address spaces, the address space that the trans-
lator needs and an address space that the guest architec-
ture utilizes. We think the addition of specialized loads and
stores that have hardware TLB support for the guest archi-
tecture would be a large performance win. Also, the ability
to cache miss to a differing tile instead of DRAM would be
beneficial to employing virtual on-chip data caches built out
of multiple tiles.

Very few of the findings of this work are specific to x86.
Rather we chose x86 on Raw as a case study and because
we felt that x86 was the most challenging guest architecture.
An extension to this work is the support of multiple archi-
tectures such as PowerPC, SPARC, or Alpha all on the same
tiled substrate and make a completely universal processor.

We would like to extend the dynamic reconfiguration
ideas presented in this paper. We think that a fertile ground
to investigate is how morphing can be applied to multipro-
cessor systems. We envision a large tiled fabric running
many virtual x86’s all at the same time. This would either
be an x86 server farm or an x86 SMP all built virtually on
a chip. If dynamic reconfiguration is then applied between
virtual x86 processors, the virtual processors would com-
pete for resources and this leads to a higher utilization of the
underlying tiled fabric of processors. An example of this is
if two virtual x86’s share 16 tiles. If one of the x86 proces-
sors is stalled waiting on 1/0O while the other is crunching
numbers, the stalled processor could be shrunk down to one
tile while the computationally bound x86 could use the re-
maining 15 tiles to speed up its execution.

Lastly, we would like to improve on this work in both
performance and robustness. We believe that there is sig-
nificant work that can go into improving the code quality
post translation and hence performance wins. Also, finding
and mapping ILP onto multiple functional units would im-
prove performance. On the robustness front, we would like
to turn our current system into a full system emulator. Cur-
rently we support only userland codes with a proxy system
call interface. To support booting a complete operating sys-
tem such as Windows or Linux, system level instructions

need to be added to the core translator. Also, we would
like to be able to support self modifying code and 16-bit
addressed code. The current emulator was designed with
self modifying code in mind and is currently capable of de-
tecting writes to memory pages which contain code that has
been translated. Ultimately we are striving to run arbitrary
x86 operating systems and applications such as Windows
and Microsoft Office.

6 Redated Work

The work presented in this paper builds on the work pre-
viously done in the dynamic translation, optimization, and
recompilation communities. Much of the early work in this
field, such as how to manage code caches and the introduc-
tion of chaining, was done in Shade [8] and Embra [24]. In
our system we apply optimizations during translation of the
code. There exist several dynamic code optimizers such as
Dynamo [2], DynamoRio [6], rePLay [18], and numerous
other projects that optimize code for JVMs. This work ex-
tends previous dynamic translation work by recasting many
of these ideas in a parallel, spatially aware, environment.

DAISY [11], DELI [10], and Transmeta [9] all investi-
gate dynamic translation to a VLIW architecture. The work
presented in this paper differs from these previous parallel
mappings, by applying parallelism in a much more coarse
grained manner. Our work investigates building complete
virtual architectures by using a tiled processor as a compu-
tational fabric that is mapped onto much in the same way a
FPGA is used. These previous projects focused more heav-
ily on mapping translated code across a VLIW to find ILP.
We believe this work is complementary to our work, and we
hope to utilize some of their parallel mapping methods in
the future. Another difference between our work and these
previous attempts is that mapping ILP across a tiled archi-
tecture can be more complicated but provides more peak
parallelism than is available in most typical VLIWs.

This work is motivated by new emerging parallel archi-
tectures on a chip. Previously built chip multiprocessors
include Piranha [4], the POWER 4 [22], and MAJC [23].
Current tiled and replicated processor projects include
Trips [16], Wavescalar [19], Smart Memories [14], and
Raw [20]. Recently we have seen the adoption of multi-
core design ideas from major industry processor companies.
We hope that the work in this paper motivates further de-
sign of these parallel architectures, and could possibly even
motivate the addition of hardware to better support parallel
emulation.

One approach to supporting legacy ISAs is to integrate
customized hardware to execute them. Early Itanium pro-
cessors take this approach by integrating hardware x86 sup-
port [17]. Unfortunately integrating specialized hardware
precludes using this “legacy” silicon area for execution of
recompiled parallel applications. Also, adding specialized



x86 hardware does not accelerate the execution of other
legacy ISAs such as PowerPC or multiple x86’s.

7 Conclusion

In this work, we investigated using a parallel dynamic
binary translation engine to exploit the parallel resources
available in on-chip multiprocessors such as CMPs, tiled
processors, and multi-core processors to accelerate the exe-
cution of legacy programs on these novel architectures. We
introduced three mechanisms that can be applied to acceler-
ate emulation in a parallel environment and demonstrated
their effectiveness in a real-world working proof of con-
cept prototype system that runs x86 binaries on the Raw
tiled processor. We hope that this work is able to guide fu-
ture on-chip parallel processor designs and provide them a
mechanism for efficiently executing legacy applications.
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