AST 558

Seminar in Plasma Physics

Professor/Instructor

Allan H. Reiman, Samuel A. Cohen

Advances in experimental and theoretical studies or laboratory and naturally-occurring high-termperature plasmas, including stability and transport, nonlinear dynamics and turbulence, magnetic reconnection, selfheating of "burning" plasmas, and innovative concepts for advanced fusion systems. Advances in plasma applications, including laser-plasma interactions, nonneutral plasmas, high-intensity accelerators, plasma propulsion, plasma processing, and coherent electromagnetic wave generation.

AST 560

Computational Methods in Plasma Physics

Professor/Instructor

Gregory Wayne Hammett, Hong Qin

Analysis of methods for the numerical solution of the partial differential equations of plasma physics, including those of elliptic, parabolic, hyperbolic, and eigenvalue type. Topics include finite difference, finite element, spectral, particle-in-cell, Monte Carlo, moving grid, and multiple-time-scale techniques, applied to the problems of plasma equilibrium, transport, and stability.

AST 562

Laboratory in Plasma Physics

Professor/Instructor

Samuel A. Cohen

The course helps students develop the skills, knowledge, and understanding of basic and advanced laboratory techniques used to measure the properties of behavior of plasmas. Representative experimentss include: low-pressure arc and cold-cathode plasma formation; ambipolar diffusion in afterglow plasmas; Langmuir probe measurements of electron temperture and plasma density; Fabry-Perot spectroscopy for ion energy measurements; optical spectroscopy for species identification; microwave interferometry and cavity resonances for plasma density determination; and momentum generated by a plasma thruster.

AST 568

Introduction to Classical and Neoclassical Transport and Confinement

Professor/Instructor

William Ming-Wu Tang, Hong Qin

The first half of this course intends to provide students with a systematic development of the fundamentals of gyrokinetic (GK) theory, and the second half provides students with an introduction to transport and confinement in magnetically confined plasmas.