Comparative Syntheses of Vancomycin

Ian Mangion
MacMillan Group Meeting
September 28, 2005

Dave Evans, Harvard
1996

K.C. Nicolaou, Scripps
1998, 1999

Dale Boger, Scripps
1999
Structural Features of Vancomycin Type Glycopeptide Antibiotics

- Generally characterized by an aryl-rich polypeptide backbone with varying crosslinking and glycosidation patterns

\[\text{X} = \text{Y} = \text{Cl}; \text{Vancomycin} \]
\[\text{X} = \text{H}, \text{Y} = \text{Cl}; \text{Eremomycin} \]
\[\text{X} = \text{Y} = \text{H}; \text{Orientin C} \]

Useful references

Proposed Biosynthesis of Vancomycin-Type Glycopeptides

- Remarkably, genes and proteins responsible for the biosynthesis of these molecules have been characterized.
- Biosynthesis can be reduced to peptide elongation and post-translational modification.
- The challenge to the synthetic chemist is immense: biosynthesis entails 35 total steps.
Biological Activity (Gram-Positive Bacteria)

- Vancomycin inhibits cell wall cross-linking through tight binding, eventually leading to cell lysis.

![Alanine dimer - normally linked to glycan outer wall of cell](image)

- Disruption of just one of the five hydrogen bonds leads to a 1000-fold loss in activity.
The Evans Design

- Chiral auxiliary technology will be used to create most amino acid stereocenters

- This strategy relies on atropdiastereoselective macrocyclizations
Oxazolidinone-Based Amino Acid Synthesis

- Chiral auxiliary approach creates labile arylglycine stereocenters in controlled fashion

![Chemical Reaction Diagram]

- This strategy is applied to all arylglycines in the Evans synthesis

Evans, *JACS*, 4011, 1990
The auxiliary approach proves unsuccessful for the central resorcinol-type arylglycine.
Oxazolidinone methodology is employed to stereoselectively access a protected amino alcohol.

\[
\text{Sn(OTf)}_2, \text{NMP} \quad \text{THF, } -78 \, ^\circ\text{C}
\]

72% yield

1. \text{Boc}_2\text{O}; \text{HCO}_2\text{H}, \text{H}_2\text{O}_2
2. \text{LiOOH}

46% from benzaldehyde
Synthesis of the Left Macrocycle

- Functional group adjustment and amino acid coupling

![Chemical structures](image_url)
Synthesis of the Left Macrocycle

Oxidative coupling provides undesired atropisomer

Vanadium serves as oxidant, BF₃ as trap for oxygen nucleophiles, silver as trap for chloride ion impurities, TFA as part of solvent mixture, NaBH(OAc)₃ as reductive quench

see: Evans, JACS, 6426 1993
Synthesis of the Left Macrocycle

- Oxidative coupling proceeds via radical cation

\[
\text{Oxidative coupling proceeds via radical cation.}
\]

![Chemical structure](image-url)
Synthesis of the Left Macrocycle

Careful coupling introduces the central aryl fragment.

![Chemical structures](image)
Synthesis of the Left Macrocycle

- Macrocyclization occurs with good selectivity

![Chemical Structures]

1) HF•pyridine
2) Na$_2$CO$_3$, DMSO; PhNTf$_2$
3) Zn0, AcOH
4) NaNO$_2$, H$_3$PO$_2$, cat. Cu$_2$O

62% yield
5:1 dr

(10:1 dr w/o Cl)
Synthesis of the Left Macrocycle

Thermal equilibration provides the desired atropisomer

1) Pd(dppf)Cl₂, HCHO, DMF, 75 °C
2) Piv Cl
3) TFA, DMS; TFAA
4) AlBr₃, EtSH
5) MeOH, 55 °C

44% yield
19:1 dr

see: Evans, JACS, 6426 1993
Synthesis of the Left Macrocycle

Thermal equilibration provides the desired atropisomer.

1) BnBr, Cs$_2$CO$_3$
2) LiSEt, THF, 0 °C
3) allyl-Br, Cs$_2$CO$_3$
4) LDA, -78 °C
5) LiOH, THF/MeOH

65% yield
Synthesis of the Right Macrocycle

- Fragment coupling completes the peptide chain

For synthesis of tripeptide, see Nicolaou *Classics II*, p. 290
Synthesis of the Right Macrocycle

Closure of the second macrocycle proceeds with the desired atropdiastereoselectivity.

1) CsF, DMSO
2) Zn⁰, AcOH
3) HBF₄, tBuONO, MeCN; CuCl/CuCl₂

60% yield
5:1 dr
Synthesis of the Right Macrocycle

- Closure of the second macrocycle proceeds with the desired atropdiastereoselectivity

Mechanism for Sandmeyer reaction not fully known, but may be as follows:

\[
\begin{align*}
\text{ArN}_2^+X^- + \text{CuX} & \rightarrow \text{Ar}^- + \text{N}_2 + \text{CuX}_2 \\
\text{Ar}^- + \text{CuX}_2 & \rightarrow \text{ArX} + \text{CuX}
\end{align*}
\]

60% yield
5:1 dr
Completion of Vancomycin

- An unusual mild deprotection reveals a carboxylic acid

- Nitrosation in the presence of seven amide functionalities

68% yield
Completion of Vancomycin

- Final deprotection proves uneventful

- Completion of vancomycin aglycon in 40 linear steps

Evans, Wood, Trotter, Richardson, Barrow, Katz *ACIEE*, 1998, 2700
The Nicolaou Design

- Sharpless asymmetric catalysis will be used to create most amino acid stereocenters

- Atropdiastereoselectivity left unaddressed in the design
Dihydroxylation/Aminohydroxylation Based Approach

- Sharpless methodology used to create aryl amino acid stereocenters

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{MeO} & \quad \text{MeO} \\
& \quad 1) \text{Ph}_2\text{P=CH}_2 \\
& \quad 2) \text{AD-mix-\(\beta\)} \\
\end{align*}
\]

84% yield, 96% ee

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{MeO} & \quad \text{MeO} \\
& \quad 1) (\text{n-Bu})_2\text{SnO}, \\
& \quad \text{BnBr, TBAI, 70 °C} \\
& \quad 2) \text{n-BuLi; B(OMe)}_3 \\
\end{align*}
\]

49% yield

\[
\begin{align*}
\text{O} & \quad \text{Bn} \\
& \quad \text{O} \\
& \quad 1) \text{TBSOTf,} \\
& \quad \text{lutidene} \\
& \quad 2) \text{H}_2, \text{Pd/C} \\
& \quad 3) \text{SO}_2\text{Cl}_2 \\
\end{align*}
\]

78% yield

- Enantioenrichment attained through amino acid coupling
Dihydroxylation/Aminohydroxylation Based Approach

As in the Evans synthesis, creating the central fragment is challenging.

1) SOCl₂, MeOH
 2) Br₂, AcOH

1) LAH, THF, 0 °C
 2) NaN₃, 6 M HCl,
 AcOH/H₂O, 0 °C;
 KOH, pyrrolidine

71% yield

1) PCC, CH₂Cl₂
 2) Ph₃P=CH₂, THF
 3) AD-mix-α,
 tBuOH/H₂O
 4) TBSCl, imidazole

DPPA

1) Boc₂O, TEA
 2) TBAF, THF
 3) TEMPO, NaOCl,
 KBr, NaHCO₃

70% yield

1) PPh₃, DEAD,
 DPPA, 0 °C
 2) PPh₃, H₂O, 60 °C

68% yield

72% yield

95% ee
Nicolaou's Triazene-Driven Ether Synthesis

Triazene serves to activate aryl ring for S_NAr and acts as functional handle for phenol

Nicolaou, *JACS*, 119, **1997**, 3421
Approach to the Left Macrocycle

- A Suzuki coupling builds the biaryl bond

![Chemical structures and reactions](image-url)

1. **Suzuki coupling**
 - Reaction conditions: Toluene/H$_2$O, 90 °C
 - Products: 87% yield, 2:1 dr

2. **Second Suzuki coupling**
 - Conditions: 1) DPPA, DEAD, Ph$_3$P, THF, -20 °C
 - 2) LiOH, THF/H$_2$O
 - Yields: 80% for the first coupling, 94% for the second coupling
Approach to the Left Macrocycle

Peptide coupling sets up biaryl ether synthesis

90% yield
Closure of the Left Macrocycle

- Ether formation proceeds without atropdiastereoselectivity

1) CuBr, K$_2$CO$_3$
MeCN, 82 °C

2) TBAF, -15 °C
3) Et$_3$P, MeCN/H$_2$O
4) LiOH, THF/H$_2$O

46% yield
1:1 dr
Amide Formation and Deprotection

Completion of the left half achieved via lactamization

1) FDPP, DIPEA
DMF, 0 -> 25 °C

2) TBSOTf,
lutidene

3) TMSOTf,
lutidene

70% yield
Synthesis of the Right Macrocycle

Fragment coupling completes the peptide chain

For synthesis of tripeptide, see Nicolaou *Classics II*, p. 268
Synthesis of the Right Macrocycle

- Triazene-activated ether formation favors unnatural atropisomer; thermal equilibration is possible

- Heating unnatural isomer at 140 °C provides 2:3 mix in 80-85% yield

![Chemical structure](image)
Final Functionalizations

- Triazene proves difficult to functionalize as phenol
Final Functionalizations

Triazene proves difficult to functionalize as phenol

1) Raney Ni, MeOH
2) H₂, Pd(OH)₂
3) HBF₄, iPrONO
4) KI, 25 °C
Final Functionalizations

- Triazene proves difficult to functionalize as phenol

1) Raney Ni, MeOH
2) H₂, Pd(OH)₂
3) HBF₄, iPrONO
4) KI, 25 °C
5) MeMgBr (30 eq) iPrMgBr (30 eq); B(OMe)₃ (100 eq); H₂O₂

32% yield
Final Functionalizations

- Phenol protection and introduction of methyl ester
Completion of the Natural Product

Desilylation is followed by global deprotection

Nicolaou, Takayanagi, Jain, Natarajan, Koumbis, Bando, Ramanjulu, *ACIEE*, 1998, 2717
Conclusions

While synthesis is not an issue in the supply of Vancomycin, fascinating chemistry has been discovered in pursuit of an expedient synthesis.

Evans - 36 steps
0.2% overall yield
84% average

Nicolaou - 36 steps
0.13% overall yield
82% average

Control over the wide variety of stereocenters in the context of a complex synthesis is most notable.