Bioengineering Colloquium - Highlight Seminar - Sensing Human Motion with Smart Garments

Apparel with embedded self-powered sensors can revolutionize human motion monitoring by leveraging everyday clothing as the sensing substrate. The key is to inconspicuously integrate sensing elements and portable power sources into garments while maintaining the weight, feel, comfort, function and ruggedness of familiar clothes and fabrics. We use reactive vapor coating to transform commonly-available, mass-produced fabrics, threads or premade garments into comfortably-wearable electronic devices by directly coating them with uniform and conformal films of electronically-active conjugated polymers. By carefully choosing the repeat unit structure of the polymer coating, we access a number of fiber- or fabric-based circuit components, including resistors, pressure sensors, diodes, thermistors, and pseudocapacitors. Further, vapor-deposited electronic polymer films are notably wash- and wear-stable and withstand mechanically-demanding textile manufacturing routines, enabling us to use sewing, weaving, knitting or embroidery procedures to create self-powered garment sensors. We will describe our efforts in monitoring heartrate, breathing, joint motion/flexibility, gait and sleep posture using loose-fitting garments and discuss current challenges in longitudinal health monitoring with smart garments.


March 13, 2020


3:00 p.m.