Marine eukaryotic phytoplankton produce organic matter that is depleted in 13C relative to ambient dissolved carbon dioxide. This photosynthetic carbon isotope fractionation (ε_P) is recorded in marine sediments and used to resolve changes in the global carbon cycle, including variations in atmospheric CO$_2$ levels. These applications rely on a coherent understanding of the environmental and physiological controls on ε_P. I performed CO$_2$ and growth rate (μ) manipulation experiments with modern phytoplankton in chemostat cultures to address outstanding questions regarding the mechanistic underpinning of ε_P, and to evaluate the potential for new paleobarometry (pCO$_2$) proxies derived from algal biomass. In this talk, I will discuss experiments characterizing the stable carbon isotope ratios of coccolith-associated polysaccharides (CAPs) and other cellular constituents (bulk biomass, coccolith calcite, and alkenones) of *Emiliania huxleyi*. CAPs are involved in regulating calcification and have been recovered from sediments dating back ~180 Ma. It has been proposed that the carbon isotopic contents of CAPs may be used in combination with other proxies to reconstruct ancient atmospheric pCO$_2$ levels. I will also discuss chemostat culture experiments with the dinoflagellate *Alexandrium tamarense*, which uses an unusual form of the carbon-fixing enzyme RubisCO (Form II). Based on the surprising outcome of this study and other support from the literature, I will propose a revised framework for interpreting ε_P. The results of this work imply that the kinetics, intrinsic discrimination, and taxonomy of RubisCO may be largely irrelevant to the expression of ε_P under growth conditions of low nutrients and high photosynthetic activity, *e.g.*, in the ocean gyres or away from coastal upwelling zones.