4.10 U–Th–Pb Geochronology

Blair Schoene, Princeton University, Princeton, NJ, USA

© 2014 Elsevier Ltd. All rights reserved.

4.10.1	Introduction	341
4.10.2	Decay of U and Th to Pb	342
4.10.2.1	Decay Mechanisms	342
4.10.2.2	Age Equations	343
4.10.2.3	Visualization of U–Th–Pb Data	345
4.10.2.3.1	2D isochrons	345
4.10.2.3.2	The Wetherill concordia plot	345
4.10.2.3.3	Tera–Wasserburg diagram and 3D isochrons	347
4.10.3	Causes of Discordance in the U–Th–Pb System	347
4.10.3.1	Mixing of Different Age Domains	348
4.10.3.2	Pb Loss	348
4.10.3.3	Intermediate Daughter Product Disequilibrium	349
4.10.3.4	Correction for Initial Pb	350
4.10.4	Measurement Techniques	351
4.10.4.1	ID-TIMS	352
4.10.4.2	SIMS	355
4.10.4.3	LA-ICPMS	355
4.10.5	Precision and Accuracy of U–Th–Pb Geochronology	356
4.10.5.1	Random and Systematic Uncertainties, Precision, and Accuracy	358
4.10.5.2	Isotopic Composition of Natural U	359
4.10.5.3	U and Th Decay Constants	359
4.10.5.4	Tracer Calibration	360
4.10.5.5	‘Geologic’ Uncertainty	360
4.10.5.6	Statistical Models	362
4.10.6	Applications: The Present and Future of U–Th–Pb Geochronology	364
4.10.6.1	Measuring Geologic Time and Earth History	364
4.10.6.2	Integration of Geochronology, Geochemistry, and Petrology	365
4.10.6.3	Detrital Zircon Analysis	367
4.10.6.4	Lithospheric Thermal Evolution Through U–Pb Thermochronology	368
4.10.6.5	Calibrating the Archean	368

Acknowledgments

References

4.10.1 Introduction

The year 2011 marked the one hundredth anniversary of what may be the first real geochronology paper, published by Arthur Holmes, entitled “The Association of Lead with Uranium in Rock-Minerals and Its Application to the Measurement of Geological Time” (Holmes, 1911). Holmes’ early work was surprisingly accurate, even though it was carried out prior to the discovery of isotopes (Soddy, 1913) and restricted to whole-rock geochemical analyses. This and complementary efforts examining U decay and utilizing U–Pb chemical geochronology (e.g., Barrell, 1917; Bateman, 1910; Boltwood, 1907; Holmes and Lawson, 1927) laid the foundation for what was to become one of the most important isotopic dating methods, capable of measuring the timescales of events from the early solar system ~4.57 Ga into the Pleistocene.

We now know that the element lead has four naturally occurring stable isotopes, 204Pb, 206Pb, 207Pb, and 208Pb, of which the latter three have a radiogenic component produced through the independent decay of 238U, 235U, and 232Th, respectively. The abundance of high-U minerals in most rock types, as well as the resistance of many of these minerals to chemical and physical weathering, contributes to the popularity and prolificacy of the U–Pb system. Though zircon is by far the most commonly utilized mineral for U–Pb dating (Hanchar and Hoskin, 2003), monazite, apatite, xenotime, titanite, rutile, baddeleyite, allanite, and perovskite are also commonly dated and provide a spectrum of geochronologic and thermochronologic applications in igneous, metamorphic, hydrothermal, and epithermal systems (Corfu, 1988; Corfu et al., 1994; Crowley et al., 2009; Gregory et al., 2007; Hawkins and Bowring, 1999; Heaman, 1989; Heaman and LeCheminant, 1993; Mezger et al., 1991; Nemchin and Pidgeon, 1999; Oberli et al., 2004; Parrish, 1990; Rasmussen et al., 2005, 2006; Rubatto, 2002; Schaltegger, 2007; Schoene and Bowring, 2006; Storey et al., 2007; Verts et al., 1996; von Blanckenburg, 1992). Combined with whole-rock partial dissolution techniques of increasing sophistication (Amelin et al., 2009; Connelly and Bizzarro, 2009; Connelly et al., 2008; Wadhwa et al., 2009), the U–Pb system has provided
crucial time constraints for the formation of the solar system, the calibration of the geologic timescale, the rates of tectono-thermal processes in the lithosphere, and the reconstruction of paleogeography and supercontinent cycles.

The amount of material in a given analysis has continually decreased and the precision of analyses has increased since mass spectrometers were first applied to U–Pb geochronology in the 1960s. The last decade has seen an explosion of U–Pb data in the literature (Figure 1), in part because of the ease of dating high-U minerals in situ through the application of laser ablation methods to geochronology. However, more time-intensive high-precision U–Pb geochronology has remained the standard to which all other geochronologic methods are compared. An increasing number of other radioisotope decay constants are calibrated directly against the U decay constants through geochronologic methods (Nebel et al., 2011; Renne et al., 2010; Scherer et al., 2001; Selby et al., 2007), and the timescales of early solar system differentiation based on the decay of extinct radionuclides are connected to the absolute U–Pb timescale (Kita et al., 2005; Wadhwa et al., 2009). This is in part because the U decay constants are the most precisely determined among all geochronologic decay schemes (Begemann et al., 2001; Jaffey et al., 1971), but also because their accuracy is cross-calibrated with one another through high-precision geochronology of closed-system minerals (Mattinson, 2000, 2010; Schoene et al., 2006). The benefit of the dual U decay thus goes further to provide an internal check for closed-system behavior over long timescales, cross-checking the accuracy of many age determinations and also yielding information on multiple geologic events from single datasets (Tera and Wasserburg, 1972a; Wetherill, 1956).

This chapter focuses on modern U–Th–Pb geochronology of relatively high-U–Th minerals in high-temperature systems. It does not adequately cover exciting related fields of geochronology, such as U-series dating, for which the reader is referred elsewhere (e.g., Bourdon et al., 2003; Chapters 4.5 and 4.15, and references therein). This chapter also does not describe in much detail the geochronology of low-U materials (e.g., carbonates; Rasbury and Cole, 2009) or the field of Pb isotopes (see summary in Faure and Mensing, 2005), though the principles discussed here are easily extended to those fields. This chapter outlines the decay schemes and geochemistry of parent and daughter products (Section 4.10.2), summarizes the most popular data visualization techniques and ways to interpret such data (Sections 4.10.2 and 4.10.3), describes the three analytical methods used to measure parent and daughter isotope ratios (Section 4.10.4), discusses the controls on the precision and accuracy of the method (Section 4.10.5), and finally illustrates a few of the most exciting modern applications of U-Th-Pb geochronology to problems in the earth sciences (Section 4.10.6). Though not nearly comprehensive, this chapter is intended to give the reader a basic understanding of the U–Th–Pb system and provide the tools to delve deeper into the literature with an appreciation for the complexity and richness of the method.

4.10.2 Decay of U and Th to Pb

4.10.2.1 Decay Mechanisms

The power of U–Th–Pb geochronology is largely drawn from the decay of multiple parent isotopes to different stable isotopes of Pb, each with different half-lives (Figures 2 and 3(a)). None of the parent isotopes decays directly to Pb, but instead follows a sequence of alpha and beta decays (which entails the ejection of an alpha or beta particle, respectively, from the nucleus) that create a series of intermediate daughter isotopes, and always lead to the same stable isotope of Pb (Bateman, 1910). The decay chains are summarized in Figure 2, with estimated decay constants and half-lives of the parent isotopes illustrated (see also Dickin, 2005; Faure and Mensing, 2005). The half-lives of each intermediate daughter are far shorter than that of the parent isotope; half-lives for intermediate daughter isotopes are given in Figure 2 if greater than 10 years. To understand the effects of these complicated decay chains on U–Th–Pb geochronology, we must introduce the concept of secular equilibrium. A decay chain is in secular equilibrium when the product of the abundance of an isotope and its decay constant are equal among all intermediate daughter products and the parent isotope:

![Figure 1](image_url)
Figure 1 Plot of number of publications per year for various radioisotopic dating methods. Curves were constructed by counting all publications per year with the dating method listed in the title, as recorded on the web of knowledge (www.webofknowledge.com). A similar analysis on Google Scholar (scholar.google.com) reveals similar trends with slightly different magnitudes. A compilation that searched for the method listed anywhere in the paper revealed roughly the same relative trends, but with much higher values.
Equilibrium, one atom of cations arise from this formulation: (1) if a system is in secular fractionation during chemical weathering. Two important implications chemical partitioning in a magmatic system or low-temperature topes in the chain is fractionated from the others, for instance by will remain in secular equilibrium until one or more of the iso-

The system will reach secular equilibrium in a time proportional to the longest half-life of the intermediate daughter product. The system outlined in red, as are the stable daughter isotopes of Pb. See inset for description of symbols used in each box. An illustration of the U–Th–Pb decay chains. Each isotope occurring in a given decay chain is color-coded to its parent isotope, which are fractionated during crystallization or partial melting, the apparent age calculated by a geochronologist will be jeopardized – but only if the half-life of the isotope that is fractionated is significantly long. For example, even if a magma is in secular equilibrium, it is unlikely that the noble gas radon (Rn) is partitioned into zircon during crystallization. In secular equilibrium, there is one atom of 222Rn for every 430 billion atoms of 238U. Exclusion of all 222Rn therefore will result in one fewer 206Pb atom for every 430 billion parent atoms, or a calculated age that is too young by about 1 ppt, which is insignificant compared to precision on a calculated date, which is at best $\sim 0.5\%$ (see Section 4.10.4). However, several intermediate daughter products have sufficiently long half-lives that they must be considered in U–Pb geochronology, namely 230Th and 231Pa, and these will be discussed in Section 4.10.3. Other intermediate daughter products are also very important because they are exploited themselves as geochronometers of young materials. So-called U-series dating methods have been crucial for informing our understanding of the rates of magmatic and climatic processes in young systems (< 250 ka), and are discussed in detail elsewhere (e.g., Bourdon et al., 2003; Chapters 4.5 and 4.15).

4.10.2.2 Age Equations

Treating each of the three decay systems independently permits the construction of three separate age equations, assuming secular equilibrium at the time of system closure. Derivation of the decay equation and isochron equations are given in Chapter 4.8, which in the U–Th–Pb system leads to the following classic isochron equations:

$$
\left(\frac{^{206}\text{Pb}}{^{238}\text{U}} \right) = \left(\frac{^{206}\text{Pb}}{^{238}\text{U}} \right)_0 + \left(^{238}\text{U} \right) \left(e^{t/\lambda_{238}} - 1 \right) \quad [3]
$$

$$
\left(\frac{^{207}\text{Pb}}{^{235}\text{U}} \right) = \left(\frac{^{207}\text{Pb}}{^{235}\text{U}} \right)_0 + \left(^{235}\text{U} \right) \left(e^{t/\lambda_{235}} - 1 \right) \quad [4]
$$

$$
\left(\frac{^{208}\text{Pb}}{^{232}\text{Th}} \right) = \left(\frac{^{208}\text{Pb}}{^{232}\text{Th}} \right)_0 + \left(^{232}\text{Th} \right) \left(e^{t/\lambda_{232}} - 1 \right) \quad [5]
$$

where the subscript 0 follows the ratio of the isotopic composition of Pb when the system closed (e.g., crystallization of a mineral), t is the time since the system closed, and λ_{238}, λ_{235}, and λ_{232} are the decay constants of 238U, 235U, and 232Th. Note that initial Pb is colloquially called common lead, and denoted $^{206}\text{Pb}_c$. Here, $^{206}\text{Pb}_c$ is used as initial Pb plus blank and

$$
N_1 \lambda_1 = N_2 \lambda_2 = N_3 \lambda_3 = \ldots \quad [1]
$$

$$
[N_1] = [N_2] = [N_3] \ldots \quad [2]
$$

where N_1 is the moles of parent isotope 1 and λ_1 is its decay constant. Equation [2] rewrites this in the common nomenclature for activity of a given isotope (denoted by the square brackets), which describes its decay rate. In a closed system, any decay chain will reach secular equilibrium in a time proportional to the longest half-life of the intermediate daughter product. The system will remain in secular equilibrium until one or more of the isotopes in the chain is fractionated from the others, for instance by chemical partitioning in a magmatic system or low-temperature fractionation during chemical weathering. Two important implications arise from this formulation: (1) if a system is in secular equilibrium, one atom of 206Pb is created for every 430 billion atoms of 238U that decays, which is an implicit assumption when using the simplified dating equations employed in geochronology (see Section 4.10.2.2); and (2) if secular equilibrium is disturbed during crystallization or partial melting, the apparent age calculated by a geochronologist will be jeopardized – but only if the half-life of the isotope that is fractionated is significantly long. For example, even if a magma is in secular equilibrium, it is unlikely that the noble gas radon (Rn) is partitioned into zircon during crystallization. In secular equilibrium, there is one atom of 222Rn for every 430 billion atoms of 238U. Exclusion of all 222Rn therefore will result in one fewer 206Pb atom for every 430 billion parent atoms, or a calculated age that is too young by about 1 ppt, which is insignificant compared to precision on a calculated date, which is at best $\sim 0.5\%$ (see Section 4.10.4). However, several intermediate daughter products have sufficiently long half-lives that they must be considered in U–Pb geochronology, namely 230Th and 231Pa, and these will be discussed in Section 4.10.3. Other intermediate daughter products are also very important because they are exploited themselves as geochronometers of young materials. So-called U-series dating methods have been crucial for informing our understanding of the rates of magmatic and climatic processes in young systems (< 250 ka), and are discussed in detail elsewhere (e.g., Bourdon et al., 2003; Chapters 4.5 and 4.15).
contamination Pb (i.e., nonradiogenic Pb introduced during laboratory work or naturally prior to sampling). (It should be noted that other nomenclature also exists. For example, some prefer the term nonradiogenic Pb rather than common Pb, as used here.) As with isochron equations in other commonly used dating systems, a stable isotope of the daughter element is chosen for normalization, which in this case is 204Pb, the only nonradiogenic isotope of Pb (Figure 3(b)). Normalization has several benefits. One is that it removes the systematic uncertainty of calculated moles of both parent isotope and daughter product, which is typically large compared to the precision of the isotopic ratio. In other words, one can measure 206Pb/204Pb much more precisely than one can measure the moles of 206Pb, which is a function of the relatively poorly known concentration of the tracer solution or standard mineral used for the analysis (see Section 4.10.3). A second benefit is that it allows one to ignore the absolute concentration of both U and Pb and focus simply on their ratio, which again can be measured very precisely compared to the concentrations. Each of eqns [3]–[5] can be used to calculate a model age if the isotopic composition of initial Pb at $t = 0$ is known or if its contribution can be neglected, and if other sources of Pb, have been accounted for. Alternatively, a collection of mineral or bulk rock analyses may form a linear

Figure 3 (a) Illustration of the different half-lives of 232Th, 238U, and 235U through decay of the parent isotope and ingrowth of the daughter. Curves are color-coded by decay system. (b) An example of one of three possible parent–daughter isochron diagrams in the U–Th–Pb system. t_0, t_1, etc., refer to different times in the system’s evolution and are color-coded to the positions of the points, which migrate as shown by the arrows. See Section 4.10.2.2 and eqns [3]–[5].
array on an isochron diagram (e.g., $^{206}\text{Pb}/^{204}\text{Pb}$ vs. $^{238}\text{U}/^{204}\text{Pb}$), where the slope of the line is equal to $e^{\gamma t} - 1$ and the y-intercept is equivalent to the initial isotopic composition of Pb; this is the classic isochron approach used in nearly all geochronologic methods and is shown graphically in Figure 3(b).

In some mineral systems, as is commonly the case with zircon and monazite, the contribution of initial lead is negligible compared to the radiogenic component, in which case eqns [3]–[5] simplify to

\[
\begin{align*}
\frac{^{206}\text{Pb}^*}{^{238}\text{U}} &= (e^{\gamma t} - 1) \quad [6] \\
\frac{^{207}\text{Pb}^*}{^{235}\text{U}} &= (e^{\gamma t} - 1) \quad [7] \\
\frac{^{208}\text{Pb}^*}{^{232}\text{Th}} &= (e^{\gamma t} - 1) \quad [8]
\end{align*}
\]

where * stands for radiogenic.

An added benefit of the U–Pb dual decay system is that it permits a fourth isochron equation to be constructed, which comes about by dividing eqn [4] by eqn [3]:

\[
\begin{align*}
\frac{^{207}\text{Pb}}{^{206}\text{Pb}} - \frac{^{207}\text{Pb}}{^{206}\text{Pb}}/_{\text{G}} &= \frac{^{235}\text{U}}{^{238}\text{U}} \left(e^{\gamma t} - 1 \right) = \frac{^{207}\text{Pb}^*}{^{206}\text{Pb}} \quad [9]
\end{align*}
\]

where * refers to the ratio of radiogenic $^{207}\text{Pb}/^{206}\text{Pb}$. This equation is especially useful as the present-day $^{235}\text{U}/^{238}\text{U}$ is assumed to be a known constant in terrestrial and meteoritic systems (though see Section 4.10.5), eliminating the need to measure U. The concentration of Pb can also be ignored. Equation [9] can be used to calculate an age by linear fitting in $^{206}\text{Pb}/^{204}\text{Pb}$ vs. $^{207}\text{Pb}/^{204}\text{Pb}$ space, or if initial Pb is negligible, then the measured $^{206}\text{Pb}/^{208}\text{Pb}^*$ can be used to directly calculate a date. In both cases, the equation must be solved iteratively; this is commonly called the Pb–Pb date. Thus, by measuring U and Pb isotopes alone, one can calculate three isotopic dates, and in a closed system, all three would agree. Because, as with any dating method, the requirement of closed-system behavior is often violated, geochronologists have developed numerous graphical and numerical methods aimed to test the assumption of closed-system behavior and to extract additional information on the geologic history of samples by quantifying open-system behavior recorded by this system.

4.10.2.3 Visualization of U–Th–Pb Data

Because of the numerous equations that permit calculation of dates and Pb$_0$ compositions in U–Th–Pb geochronology, a several popular graphical representations of data are used to display the numerous variables. While the same information can be pulled from any of these graphical depictions, different diagrams have been used as convenient ways of displaying different types of data.

4.10.2.3.1 2D isochrons

Equations [3]–[5] can be used to create traditional isochron plots that are used widely in many geochronometric systems, all of which are interpreted as outlined earlier (Holmes, 1946; Houtermans, 1946). The U–Pb system is also amenable to 3D isochrons (Ludwig, 1998; Wendt, 1984; Zheng, 1992), which simultaneously determine the initial $^{206}\text{Pb}/^{204}\text{Pb}$ and $^{207}\text{Pb}/^{204}\text{Pb}$ compositions and age for co-genetic samples. A suite of rocks and/or minerals can be used to calculate a date on 2D or 3D isochrons if each rock or mineral on the isochron (1) became a closed system at the same time, (2) has remained closed since that time, and (3) had the same initial isotopic composition of Pb. These prerequisites are the same as those for all other isochron calculations and need to be evaluated both statistically (Ludwig, 1998; Wendt and Carl, 1991; York, 1968; York et al., 2004) and using the geology of the samples measured.

Rearranging eqn [9] allows the construction of a Pb–Pb isochron diagram in $^{206}\text{Pb}/^{204}\text{Pb}$–$^{207}\text{Pb}/^{204}\text{Pb}$ space (Holmes, 1946; Houtermans, 1946). The main difference graphically is that all minerals or rocks that satisfy the isochron criteria start at the exact same point in $^{206}\text{Pb}/^{204}\text{Pb}$–$^{207}\text{Pb}/^{204}\text{Pb}$ space and follow an arc whose radius depends on the U/Pb in the sample (Armstrong, 1968; Stacey and Kramers, 1975). Samples with different U/Pb, despite following different paths, will still fall on a line whose slope can be used to calculate the time since system closure. Perhaps the most famous Pb–Pb isochron was calculated by Patterson (1956), who used terrestrial and meteorite samples to define an isochron whose date of 4.55 ± 0.07 Ga was interpreted as the time at which meteorites and Earth began evolving separately – in other words, the age of Earth. As with U–Pb isochrons, Pb–Pb isochrons can yield age information while avoiding the assumption of an initial Pb isotopic composition. It is more useful than U–Pb isochrons in systems where recent open-system behavior is suspected for either U or, if the U measurement is difficult (e.g., Barfod et al., 2002; Chen et al., 2004; Toulkeridis et al., 2010). Modern meteorite geochronology employs a modification of the Pb–Pb isochron by plotting $^{204}\text{Pb}/^{206}\text{Pb}$ versus $^{207}\text{Pb}/^{206}\text{Pb}$. This approach allows very precise calculation of $^{207}\text{Pb}/^{206}\text{Pb}^*$, which is weighted toward samples that are the least sensitive to Pb$_0$ (Amelin et al., 2009; Baker et al., 2005; Connelly et al., 2008; Wadhwa et al., 2009).

4.10.2.3.2 The Wetherill concordia plot

Early workers noted the important constraints that the dual decay of U to Pb could provide for geochronological applications. Wetherill (1956) introduced the concordia diagram, which plots $^{206}\text{Pb}/^{238}\text{U}$ versus $^{207}\text{Pb}/^{235}\text{U}$ from the same analyses. The parametric concordia curve can then be drawn as the set of solutions to eqns [6] and [7] for equal values of t (Figure 3), which is nonlinear because ^{238}U and ^{235}U have different half-lives. In other words, points on the concordia curve are where $^{207}\text{Pb}/^{235}\text{U}$ and $^{206}\text{Pb}/^{238}\text{U}$ both correspond to the same date. On the concordia plot, all samples that remained a closed system since the time of formation fall on the concordia curve; those that do not are called discordant and have experienced some form of open-system behavior.

This plot was quickly adopted by U–Pb geochronologists as a means of identifying and quantifying open-system behavior.
in datable materials (Davis et al., 2003; Pidgeon et al., 1966; Russell and Ahrens, 1957; Tilton, 1960; Wasserburg, 1963). It has been used countless times since, and so understanding its use is essential for every earth scientist with an interest in geologic time, and it is briefly outlined here. The concordia plot is also discussed at length in the literature and also in several good textbooks (Dickin, 2005; Faure and Mensing, 2005). The discussion that follows assumes that all analyses have been corrected for Pb, and thus contain only radiogenic lead.

Sections 4.10.3 and 4.10.5 summarize most of the geologic and analytical sources of discordance, respectively. Here the causes of large amounts of discordance are examined in order to introduce how to interpret data in concordia space, without going into detail about the mechanisms by which open-system behavior occurs. Pb loss, Pb gain, U loss, U gain, and mixing of different-aged material can all cause discordant arrays. Pb-loss and mixing, or some combination of these, are the only ones entertained regularly in the literature and have similar interpretations in concordia space. Some empirical and experimental evidence has been used to argue that U mobility may be important under certain conditions (e.g., Sinha et al., 1992; Williams et al., 1984).

When a mineral crystallizes and begins accumulating Pb* in a closed system, 207Pb*/206U and 206Pb*/238U evolve such that both ratios follow the concordia curve (Figure 4). If the system experiences a single episode of Pb loss, the lead leaving the system has a 207Pb/206Pb composition of the mineral at that time, which corresponds to its Pb–Pb date (eqn [9]). Multiple minerals that experience a similar evolution but with different amounts of Pb loss will initially fall on a discordia line that goes through the origin and intersects the concordia curve at the date that corresponds to the real age. (Please note the difference between a date and an age, which is described in Section 4.10.5.1.) In such a case, the Pb–Pb date will be identical to the upper intercept date. If the minerals then become closed systems again, they continue to accumulate Pb* and evolve on a trajectory such that the discordia array is preserved as a line. If one were to date these minerals 100 My later, the upper intercept date would correspond to the true formation age of the mineral and the lower intercept of the discordia line would represent the original igneous crystallization event at t1, and a lower intercept age representing t2, the time before the present at which Pb loss or overgrowth occurred. (c) The same scenario as in (b) but in a T–W diagram. (d) Illustration of how the scenario in (a) and (b) would possibly be recorded in the event of metamorphism as t3. Zircon image in (d) is from Schmitz and Bowring (2004). Note color coordination from (a)–(c) with descriptions in (d) and (e).
intersect the concordia curve at a date corresponding to the time of the Pb-loss event. In such a case, none of the U–Pb or Pb–Pb dates of single minerals will have geologic meaning, but the discordia line would yield geologic insight. If an analysis mixes two domains with different ages, for example an old zircon core and a younger zircon rim, the exact same effect is observed and the interpretation in concordia space is the same. This simple graphical analysis can be extended to multiple Pb-loss events or mixing of multiple aged end-members, though the data will become scattered off of a line, making robust geologic information difficult to extract.

4.10.2.3.3 Tera–Wasserburg diagram and 3D isochrons

Several other types of concordia diagrams can be constructed in the U–Th–Pb system by placing any two (or more) of the four utilizable clocks onto axes. Th–Pb versus U–Pb diagrams have been used (Searle et al., 2007; Steiger and Wasserburg, 1966; Villeneuve et al., 2000), especially for monazite, whose 206Pb/238U systematics are compromised by 230Th disequilibrium due to very high Th/U (see Section 4.10.3; Searle et al., 2007; Villeneuve et al., 2000). The most popular alternative to the Wetherill diagram is the Tera–Wasserburg (T–W) concordia diagram, which places 238U/206Pb and 207Pb/206Pb on the x- and y-axes, respectively (Tera and Wasserburg, 1972a,b). If 238U/206Pb* and 207Pb*/206Pb* (i.e., corrected for Pb0, as is done on the Wetherill diagram) are plotted on the T–W diagram, discordant and discordant data can be interpreted identically to the Wetherill concordia diagram (Figure 4). However, if a cogenetic suite of samples fall off of concordia solely from variable contamination by a single initial Pb composition, then a line drawn through the dataset will intercept concordia at the true age and the 207Pb/206Pb axis at the composition of Pb0 (i.e., where U = 0, so there is no Pb*). It therefore combines some of the power of isochron methods by displaying initial Pb compositions with the power of a concordia diagram by simultaneously testing for signs of open system behavior (Figure 5).

The power of linear regression in T–W space to identify Pb0 composition breaks down, however, if a sample is affected by Pb loss or mixing of multiple age domains. This could be identified if a discordia does not statistically fit a line, or if different age domains within the analyzed minerals can be dated. A statistically more rigorous way of testing these assumptions is by using a 3D isochron (Ludwig, 1998; Wendt, 1984), which simultaneously determines the initial 206Pb/204Pb and 207Pb/204Pb compositions and age for cogenetic samples (Figure 5). The method plots 238U/206Pb versus 207Pb/206Pb in one plane of the coordinate system and 204Pb/206Pb in the third dimension. A suite of cogenetic minerals whose spread is caused solely by Pb0 should fall on a line in this space, and so, in addition to providing high-precision dates, this method can test whether Pb loss or inheritance is important in a given high-Pb, dataset (Ludwig, 1998). These methods have been applied successfully in numerous cases, and usually yield more precise estimates of Pb0 isotopic composition than 2D isochrons (Amelin and Zaitsev, 2002; Gelich et al., 2005; Schoene and Bowring, 2006).

4.10.3 Causes of Discordance in the U–Th–Pb System

Because the U–Th–Pb system is amenable to scrutiny of open-system behavior, the causes of discordance have received much attention. As a result, some of these causes are well understood,
while others remain more enigmatic. Here, the term discordance is used synonymously with open-system behavior. However, as will be discussed in Section 4.10.5, many samples may have experienced open-system behavior but are still statistically concordant (i.e., overlap the concordia curve within uncertainty), especially in young rocks, or for data obtained using low-precision analytical techniques. Nonanalytical, or ‘geologic,’ reasons for discordance discussed here in some detail are (1) mixing, (2) Pb loss, (3) intermediate daughter product disequilibrium, and (4) initial Pb. Other factors causing discordance, such as the U isotopic composition of the sample and decay constant uncertainties, will be discussed in Section 4.10.5.

4.10.3.1 Mixing of Different Age Domains

It has long been known that zircon and other minerals can contain old cores and one or more generations of younger overgrowth that, if analyzed together, can lead to discordant arrays in concordia space. These were initially identified optically in mineral separates or grain-mount (Bickford et al., 1981; Corfu and Ayres, 1984; Krogh and Davis, 1975), later by backscatter electron imaging (Wayne and Sinha, 1988; Wayne et al., 1992), and finally cathodoluminescence imaging was widely popularized (Hancher and Miller, 1993; Hancher and Rudnick, 1995; Schenk, 1980). Backscattered and cathodoluminescence imaging have revealed internal zonation within minerals that may record whether different growth zones are igneous or metamorphic in origin, whether resorption occurred prior to overgrowth, etc. These simple yet powerful tools are now used ubiquitously by analysts doing in situ U–Pb geochronology as a means of identifying and isolating different growth domains in zircon, monazite, titanite, and apatite. The high spatial resolution of these techniques (see Section 4.10.4) has been crucial in revealing the metamorphic histories of rocks with complexly zoned minerals (e.g., Bowring et al., 1989; Cottle et al., 2009b; Harley and Kelly, 2007; Kelly and Harley, 2005; Rubatto, 2002; Schaltegger et al., 1999; Vavra et al., 1996). Grain imaging prior to isotopic dilution thermal ionization mass spectrometry (ID-TIMS) is gaining increasing use as a means of avoiding grains with obvious inherited cores or by isolating different growth domains by mechanically breaking imaged grains prior to analysis (Corrie and Kohn, 2007; Crowley et al., 2007; Gordon et al., 2010; Hawkins and Bowring, 1999; Schoene and Bowring, 2007). Whichever technique is used, the goal is either to isolate mineral cores and rims in order to date those events with higher precision and accuracy than is achievable by calculating upper or lower intercept dates in concordia space, or to establish that the different spatial domains are not temporally resolvable (Dumond et al., 2008).

4.10.3.2 Pb Loss

A major focus of U–Pb geochronologists has been to understand discordia arrays in zircon analyses. Though mixing of growth domains with different ages is easily understood and is now often resolvable using high spatial resolution measurement techniques, the process of Pb loss has numerous possible causes that are difficult to quantify. The example given in Figure 4 follows the common interpretation that the lower intercepts of discordant arrays represent geologically significant events that caused Pb loss in a suite of zircons. Tilton (1960) noted the odd coincidence that many zircon concordia arrays from different continents had broadly similar lower intercepts of ~600 Ma, but did not follow linear arrays, as would be expected from a single Pb-loss event. He instead derived formulas to explain Pb loss in concordia space as a result of volume diffusion of Pb through the zircon crystal lattice. He realized the conundrum of this model, namely that while many zircons remain closed systems through high-temperature metamorphism, others fall on discordant arrays with lower intercepts that are in fact younger than K–Ar dates in biotite (in which Ar diffuses at lower temperatures than 300 °C) from the same rocks. Following the detailed empirical study of Silver and Deutsch (1963), Wasserburg (1963) derived equations for a model in which Pb loss occurred by diffusion, but with a diffusion coefficient that was a function of U- and Th-induced radiation damage to the zircon lattice. Models for volume diffusion of Pb have now been described analytically and numerically, and applied to U–Pb thermochronometers such as titanite, apatite, and rutile. These applications will be highlighted separately in Section 4.10.6, while zircon is given special treatment here.

Radiation damage to zircon is a result of both alpha recoil and fission track accumulation (Deliens et al., 1977; Meldrum et al., 1998; Nasdala et al., 1996; Pidgeon et al., 1966; Silver and Deutsch, 1963), and has been shown to correlate roughly with the degree of discordance in some zircon suites (Nasdala et al., 1998). At temperatures above ~250 °C, radiation damage in zircon is annealed on short geologic timescales (Ketcham et al., 1999); experimental data for diffusion of Pb in zircon show it to be negligible at temperatures of even >900 °C in non-metamict crystals (Cherniak and Watson, 2001; Lee, 1997). Attempts at revising equations for radiation-induced Pb diffusion, for example by adopting short-circuit diffusion models (Lee, 1995), have not proven useful for zircon. Additional mechanisms that may contribute to Pb loss are crystal plastic deformation as a means of generating fast-diffusion pathways (Reddy et al., 2006) and low-temperature hydrothermal dissolution–reprecipitation (Geisler et al., 2002, 2003). Nonetheless, the conclusion remains that Pb loss should not occur in zircons except at low temperatures. Mezger and Kroqstad (1997) inferred that Pb loss at high temperatures is a result of recrystallization of metamict zircon, and could result in meaningful or meaningless lower intercept dates. The concept of ‘recrystallization,’ however, is a nebulous and poorly defined process. Alternatively, it may be more reasonable that lower intercept dates that appear to have geologic meaning (i.e., they correspond to a known metamorphic event) may represent core–rim mixing arrays that are perhaps superimposed on low-temperature Pb loss in metamict zircons. Or, more simply, that the exact opposite of the traditional interpretation is correct: that lower intercept dates represent not the time at which Pb loss occurred, but the time at which Pb loss stopped due to high temperature annealing.

Whatever the exact mechanism of Pb loss in zircons, the most important advances in overcoming discordance have not been from understanding its cause but instead from eliminating it. In addition to methods of avoiding selection of metamict grains (e.g., Krogh, 1982a), these can be summarized in three advances: (1) the air abrasion technique (Krogh, 1982b), which
mechanically removes the outer, often higher-U and more metatmic domains of grains prior to analysis of whole grains; (2) the use of in situ dating techniques, which have sufficient spatial resolution to attempt either avoiding domains that have undergone Pb loss or intentionally isolating different age domains that have been identified texturally; and (3) the invention of the chemical abrasion technique (Mattinson, 2005), which partially anneals zircons and then chemically dissolves discordant domains, leaving a closed-system residue amenable to analysis. The latter two techniques will be discussed in more detail in Sections 4.10.4 and 4.10.5.

4.10.3.3 Intermediate Daughter Product Disequilibrium

The assumption of secular equilibrium, outlined in Section 4.10.2.1, is crucial for simplifying the complicated U–Th–Pb decay chains into manageable equations from which a date can be calculated. This assumption is incorrect, however, if one or more of the intermediate daughter products is fractionated from its parent isotope such that the crystallized mineral is not in secular equilibrium immediately after formation (Mattinson, 1973; Schärer, 1984). This can occur due to fractionation of the intermediate product during partial melting or during crystallization of the resulting liquid. Though fractionation of intermediate products certainly occurs during partial melting processes, and has been documented in young volcanic rocks (e.g., Condomines et al., 2003, and references therein), the effect of this process on older minerals is difficult to quantify or even treat qualitatively. However, correcting for fractionation during crystallization is commonly attempted. Qualitatively, if an intermediate product is preferentially partitioned into the mineral over its parent, it will result in an excess amount of Pb*, and therefore an overestimate of the true age. Conversely, an age will be underestimated if an intermediate product is preferentially excluded during crystallization (Figure 6). Given the diversity of geochemical behavior of all elements in the three decay chains, it is unlikely that any mineral is, in fact, in secular equilibrium at the time of crystallization.

For reasons described in Section 4.10.2.1 and apparent in eqns [1] and [2], only intermediate products with long enough half-lives will be present or absent in enough quantity to affect a resulting date. The intermediate products that meet this criteria in the 238U decay chain are 230Th (t1/2 = 75.4 ky) and 234U (t1/2 = 245 ky), but it is often assumed that 234U is not significantly fractionated from 238U at high temperatures. 231Pa is the only relatively long-lived isotope in the 235U decay chain. 230Th disequilibrium has received the most attention in the literature, in part because very high Th/U minerals such as monazite induce strong Th and U fractionations from melt to mineral, resulting in excess 206Pb that is easily recognizable when plotted against 207Pb/235U on a conventional concordia plot (Mattinson, 1973). Schärer (1984) and Parrish (1990) quantified these effects by relating the amount of intermediate product lost or gained relative to secular equilibrium during mineral crystallization using versions of eqn [10]:

\[
t_{\text{excess}} = \frac{1}{f_{238}} \ln \left[1 + \left(1 - f_{238} \right) \right]
\]

where

\[
f = \frac{\left(\frac{\text{Th}}{\text{U}} \right)_{\text{mineral}}}{\left(\frac{\text{Th}}{\text{U}} \right)_{\text{liquid}}}
\]

Thus, f is equivalent to the ratio of the mineral/melt partition coefficients for Th and U for the phase of interest (\(D_{\text{Th}/U}_{\text{mineral/melt}}\)). In theory, if partition coefficients for minerals are invariant, then f should always be the same and one

Figure 6 Illustration of intermediate daughter product disequilibrium (intermediate product D). (a) Depiction of what would happen to an ellipse in concordia space if it were moved from its true age by intermediate product disequilibrium of 230Th and/or 231Pa (concordia ticks are in Ma). (b) Plot showing the excess age expected, given the Th/U values of a liquid that the mineral crystallized from, for the Th/U values in the mineral indicated by each curve. For example, if a mineral crystallized with a Th/U of 20 from a liquid with Th/U of 1, the mineral would have a 206Pb/238U date that was ~3 Ma too old. (c) Magnification of panel (b) to illustrate where zircon commonly falls: Th/Umineral < Th/Uliquid. Note that for a zircon of Th/U = 0.5 and an assumed Th/U magma of 4 ± 2, the total age offset of ~95 ka is far greater than the uncertainty in the correction (~±10 ka). Thus, it is better to estimate the Th/Uliquid and propagate uncertainties than to ignore the correction.
could easily correct for intermediate product disequilibrium; in reality, the relative partition coefficients of Th and U for high-U minerals are not well understood. Published zircon/melt partition coefficients for Th and U are variable (Fukuoka and Kigoshi, 1974; Hanchar and van Westrenen, 2007; Hinton and Upton, 1991; Sano et al., 2002; Thomas et al., 2002) and may be dependent on temperature, pressure, and magma composition (Rubatto and Hermann, 2007). Partitioning of Th and U between melt and titanite and apatite have been determined experimentally (Prowatke and Klemme, 2005, 2006a,b), but the range observed in experiments (e.g., as a result of magma composition) precludes a bulk correction for intermediate product disequilibrium, even in magmatic minerals. Because of the uncertainties in $f_{\text{Th/Th}}$ determined experimentally and the inconsistency of the f factor calculated empirically using $^{232}\text{Th}/^{208}\text{Pb}$ dates (Barth et al., 1994; Oberli et al., 2004), correcting for ^{230}Th disequilibrium is inherently imprecise. Fortunately, $\text{Th/Th}_{\text{mineral}}$ can be measured directly during mass spectrometry or estimated by assuming concordance between the U–Pb and Th–Pb dates, measuring ^{208}Pb*, and then calculating ^{232}Th. This leaves one unknown, $\text{Th/Th}_{\text{liquid}}$. One approach is to use the Th/U of the rock from which the mineral is extracted (Schräer et al., 1990). However, this estimate may be inaccurate because one must assume the rock represents a liquid composition and that U and Th have not been fractionated since crystallization. Another approach, for volcanic minerals, is to use the Th/U of the host glass (Bachmann et al., 2010; Schmitz and Bowring, 2001), assuming that the mineral grew directly from the liquid that quenched to form the glass.

For minerals where $f<1$, such as zircon and xenotime, the correction for ^{230}Th disequilibrium has a lower limit at $f=0$, yielding a date that is 110 ka too young (Schräer, 1984; using the ^{230}Th decay constant of Cheng et al., 2000; Figure 6). In such cases, it is common to assume a Th/U$_{\text{liquid}}$ given that this ratio usually falls between 2 and 6 in magmas. Equations [10] and [11] can be used to evaluate the influence of this assumption (Figure 6). Such an exercise shows that it is more accurate to make the correction assuming a Th/U$_{\text{liquid}}$ than not make the correction at all. Propagating the uncertainty of the correction into final dates results in minimal added uncertainty, except for very young samples or samples hypothesized to have similar Th/U for the melt and mineral (Bachmann et al., 2010; Crowley et al., 2007). For minerals where $f>1$, such as allanite and monazite (and sometimes titanite and apatite), the excess age resulting from initial ^{230}Th disequilibrium can be debilitating; many geochronologists simply avoid using the $^{208}\text{Pb}/^{238}\text{U}$ date in such cases (Cottle et al., 2009b; Crowley et al., 2009; Schoene and Bowring, 2006; Villeneuve et al., 2000).

The effect of ^{231}Pa disequilibrium is poorly understood, in part because there are no other isotopes of Pa that can be used as a proxy for Pa and U partitioning. Furthermore, Pa is not generally targeted in experimental partitioning studies. Schmitt (2007) measured $^{231}\text{Pa}/[^{235}\text{U}]$ in young volcanic zircons and found values slightly greater than 1, suggesting that only a 15 ka age excess would be present in older samples. Nonetheless, extreme ^{231}Pa disequilibrium has been documented in zircon (Anczkiewicz et al., 2001), which indicates the importance of future experimental studies to understand the effect of Pa partitioning on $^{206}\text{Pb}/[^{235}\text{U}]$ dates.

4.10.3.4 Correction for Initial Pb

Equations [3]–[5] illustrate the importance of correcting for the presence of initial lead (^{204}Pb). Note the distinction used here that Pb$_0$ differs from Pb, in that Pb, is a more general term that includes laboratory blank Pb in a system in order to obtain an accurate date. Both 2D and 3D isochrons can be used to solve for the isotopic composition of Pb$_0$ if a dataset meets the required assumptions that go into isochron calculations. On the T–W concordia diagram (part of most 3D isochrons; Section 4.10.2.3.3), the $^{207}\text{Pb}/^{206}\text{Pb}$ of Pb$_0$ is the y-intercept, given an otherwise closed system and adequate spread of data to define a line. The effect of Pb$_0$ on a Wetherill concordia diagram is to create a discordia with slope equal to the $^{208}\text{Pb}/^{207}\text{Pb}*(^{238}\text{U}/[^{235}\text{U}])$ (i.e., the isotopic composition of U in the sample), though data are usually corrected for Pb$_0$ before being plotted. A dataset in either concordia diagram can also form a linear array because of mixing or Pb loss. It is possible to determine whether Pb$_0$ or Pb loss is responsible for the spread in data for young samples because the linear array created by Pb$_0$ is at high angles to concordia and the upper intercept with concordia is >4.5 Ga. For Paleoproterozoic or Archean samples, however, the Pb$_0$ array can be nearly parallel to discordias created by mixing/Pb loss, and it is thus dangerous to assume the source of the discordance.

Other methods for common Pb correction involve an assumption about its composition. For example, by measuring the moles of ^{204}Pb in a sample and assuming a $^{206}\text{Pb}/^{204}\text{Pb}$ of the Pb$_0$ from a single source, one can calculate directly the amount of $^{206}\text{Pb}^*$ (Williams, 1998). If one assumes that total ^{206}Pb is composed of $^{206}\text{Pb}_0$ and ^{206}Pb from blank, or any number of sources, then it is also necessary to measure or assume the $^{206}\text{Pb}/^{204}\text{Pb}$ of the other sources, in which case the equations become slightly more complicated (Ludwig, 1980; McLean et al., 2011; Schmitz and Schoene, 2007). Assuming or measuring multiple sources of nonradiogenic Pb is standard in ID-TIMS, though the amount and composition of each is still difficult to determine accurately and, in cases where Pb$_0$ is very low relative to Pb, this presents a significant source of uncertainty. In the case of zircon, it is easily argued that there is no Pb$_0$, and all Pb is introduced through one or more sources of laboratory contamination. The isotopic composition of Pb$_0$ adopted for other minerals is often assumed based on a bulk-Pb evolution model (e.g., Cumming and Richards, 1975; Stacey and Kramers, 1975) given an estimated crystallization age for the mineral. Alternatively, it can be estimated by dissolving or leaching Pb from coexisting low-U phases such as feldspar (Catanazzo and Hanson, 1971; Chamberlain and Bowring, 2000; Housh and Bowring, 1991); several papers make direct comparisons of these techniques (Chamberlain and Bowring, 2000; Schmitz and Bowring, 2001; Schoene and Bowring, 2006, 2007) with the general conclusion that analyzing cogenetic phases is more robust (Figure 7). However, Schoene and Bowring (2006) argue that apatite and titanite Pb$_0$ from a synenite were derived from an evolving source that is not defined by feldspar Pb and instead prefer the 3D isochron-derived Pb$_0$ composition.

As ^{206}Pb is always the least abundant Pb isotope present ($^{206}\text{Pb}/^{204}\text{Pb} > 1000$ is typical for zircon), ^{204}Pb is difficult to measure and is also affected by isobaric interferences.
In fact, in many analytical setups typical for LA-ICPMS U–Pb dating, ^{204}Pb is not measured due to the unresolvable isobaric interference from ^{204}Hg, requiring different methods of Pb_c correction (Andersen, 2002; Horstwood et al., 2003). Most of these are similar to the ^{204}Pb correction, but instead involve assuming an initial $^{207}\text{Pb}/^{206}\text{Pb}$ or $^{208}\text{Pb}/^{206}\text{Pb}$ and concordance between the U–Th systems (Williams, 1998). The former, ‘207 correction,’ is essentially the same as fixing a $^{207}\text{Pb}/^{206}\text{Pb}$ intercept on a T–W concordia plot and regressing it through the data, and thus assumes concordance. If Pb loss and mixing are important in a dataset, then both the 208 and 207 corrections are inaccurate. Andersen (2002) presents a method of 204-absent Pb correction utilizing all three decay schemes that does not assume concordance, but instead must assume a time of Pb loss.

4.10.4 Measurement Techniques

There are three principal analytical methods used for U–Th–Pb geochronology: (1) ID-TIMS, (2) secondary ion mass spectrometry (SIMS), and (3) laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS: Figure 8). Most modern applications of U–Th–Pb geochronology now involve either separating the minerals of interest by standard magnetic...
and density techniques and dating single, carefully chosen mineral grains, or measuring grains in thin section or epoxy grain mounts using in situ techniques. Exceptions are studies involving dating low-U materials such as carbonates and meteorites, where different approaches must be taken (e.g., Connelly and Bizzarro, 2009; Rasbury and Cole, 2009). The nuts and bolts of these analytical methods and instrumentation are outlined in separate chapters of the Treatise on Geochemistry (see Volume 15), and so here the focus is only on those aspects that are the most important or unique to U–Pb geochronology, and the various sources of uncertainty that contribute to the precision of each technique. A more general discussion of precision and accuracy of the U–Pb method is given in Section 4.10.5.

Several methods for U–Th–Pb geochronology exist that do not measure both U and Pb isotopes or any isotopes at all. The zircon evaporation method, which places a zircon directly on a filament in a TIMS, measures $^{207}\text{Pb}/^{206}\text{Pb}$, and was applied widely to Archean rocks with the intention of eliminating discordance, which unfortunately cannot be tested without U measurements (Davis, 2008; Kober, 1986; Kröner and Todt, 1988; Kröner et al., 1996). Another method involves measuring U–Th–Pb elemental abundances but not isotopes. The U–Th–total Pb method, colloquially called electron microprobe U–Th–Pb dating, permits calculations of an age by measuring chemical composition on an electron microprobe (Cocherie et al., 1998; Montel et al., 1996). The limitations of this method are that one must assume concordance and no Pb, and the method is also restricted to minerals with enough U, Th, and Pb to be measured with adequate precision by electron microprobe (e.g., monazite). The advantage is the unrivaled spatial resolution of $\sim 1\ \mu\text{m}$, which can be critical for resolving growth histories of polygenetic monazite (Mahan et al., 2006; Williams and Jercinovic, 2002; Williams et al., 2007).

4.10.4.1 ID-TIMS

ID-TIMS was pioneered in the 1950s by Alfred Nier and was the only tool for U–Pb geochronology for several decades. Initially, samples ranged from whole rocks to very large (many grams) aliquots of relatively pure mineral separates that were dissolved in steel vessels prior to analysis, with quoted precisions of a few percent on Pb/U ratios (Figure 9). Sample size has been reduced by many orders of magnitude and precision increased by a factor of 10–100, such that now some labs measure small fragments of single minerals to a precision better than 0.1% for a $^{206}\text{Pb}/^{238}\text{U}$ date (Figures 8 and 9). Other summaries of the ID-TIMS method applied to U–Pb geochronology can be found in Bowring et al. (2006) and Parrish and Noble (2003).

The well-documented complexity of zircon populations from single samples makes it necessary to measure single mineral grains by ID-TIMS. These are generally hand-picked under an optical microscope, though it is becoming more common to prescreen zircons via backscattered or cathodoluminescence imaging prior to analysis, as is routinely done in situ methods. Remediation of Pb loss in zircons was accomplished for over 20 years by the air-abrasion method (Krogh, 1982b), removing the higher-U outer rims of zircons, which are often more radiation-damaged and prone to Pb loss. More recently, Pb-loss amelioration or elimination is approached through chemical abrasion (CA-TIMS; Mattinson, 2005), which selectively dissolves radiation-damaged or altered domains of zircon, regardless of their position within a grain. This method has improved considerably both the precision and accuracy of the ID-TIMS method and is discussed in Section 4.10.5.5.

Minerals selected for dating (±chemical abrasion) are spiked with a tracer solution (see below), dissolved in Teflon vessels in either HF or HCl, and U and Pb are ideally separated from other elements using ion exchange chemistry. This methodology has not changed since the introduction of Teflon to geochronology (Krogh, 1973), though all materials and vessels have been vastly downsized to account for smaller sample size and to reduce Pb blank (e.g., Parrish, 1987). Separating U and Pb through ion exchange chemistry serves two purposes: (1) because thermal ionization mass spectrometers are high-sensitivity, low-mass resolution instruments, potential isobaric interferences are best removed prior to analysis, and (2) other elements have a tendency to impede ionization of Pb and U on the filament, thereby reducing signal size and therefore precision.

TIMS involves placing a sample onto a metal filament (typically Re) and heating it to ionize the elements of interest, which are in turn accelerated into a magnetic sector mass spectrometer by applying an $\sim 8000–10000$ V electric potential near the filament under high vacuum (see Chapter 15.18). In U–Pb measurements, Pb ionizes predominantly as Pb$^+$ and U is measured either as the metal U$^+$ or as the oxide UO$_2$$^+$. For uranium oxide measurements, both U and Pb can be placed on the same filament in a silica gel emitter (e.g., Cameron et al., 1969; Gerstenberger and Haase, 1997) and analyzed at different temperatures. Uranium ratios must, in this case, be corrected for an assumed or measured isotope composition of oxygen (e.g., Schmitz and Bowring, 2001; Wasserburg et al., 1981). Uranium metal is analyzed by loading U onto a separate filament from Pb in a reducing substance or by using a triple-filament technique (Chen and Wasserburg, 1981; Condon et al., 2010; Hiess et al., 2012). Typical measurement times are on the order of a few hours for Pb, if measured on a single ion counter, and much faster if measured on faraday cups, though the latter is only possible with large samples (>100 pg Pb). Uranium can also be measured on an ion counter or faraday cups, but ideally the latter, given the higher precision that is possible ($\geq 0.002\%$ instead of $\geq 0.01\%$) for single minerals with a few nanograms of U. The high precision that is achieved by TIMS relative to other techniques is primarily a result of generating stable ion beams with relatively small and predictable mass-dependent fractionation over hours of analysis.

Isotope dilution refers to the process of spiking a sample with a known quantity of one or more tracer isotopes in order to convert ratios measured by mass spectrometry to moles of sample isotopes. A mixed U–Pb tracer is required for U–Pb measurements done by TIMS because both elements cannot be measured simultaneously during an analysis, and even if one tried to, the ionization efficiency is so different between the elements that a substantial and imprecise correction would have to be applied to account for elemental fractionation. Modern tracers for U–Pb ID-TIMS work involve some mixture of ^{205}Pb, ^{207}Pb, ^{231}U, ^{235}U, and ^{238}U. Of those isotopes, only ^{235}U is naturally occurring, making the equations used to
calculate moles of, for example, ^{206}Pb in the sample fairly simple:

$$
\left(\frac{^{206}\text{Pb}}{^{205}\text{Pb}} \right)_{\text{measured}} = \left(\frac{^{206}\text{Pb}_{\text{sample}} + ^{206}\text{Pb}_{\text{blank}} + ^{206}\text{Pb}_{\text{tracer}}}{^{205}\text{Pb}_{\text{tracer}}} \right)
$$

where $\left(\frac{^{206}\text{Pb}}{^{205}\text{Pb}} \right)_{\text{measured}}$ is already corrected for mass-dependent isotope fractionation during analysis, $^{206}\text{Pb}_{\text{tracer}}$ and $^{205}\text{Pb}_{\text{tracer}}$ are known, and $^{206}\text{Pb}_{\text{blank}}$ can be estimated from the amount of ^{204}Pb measured relative to ^{206}Pb and the $^{206}\text{Pb}/^{204}\text{Pb}$ of the blank. In minerals that contain initial Pb, this equation becomes slightly more complicated given the necessity to partition the ^{204}Pb into its blank Pb_c and Pb_0 components. Thorough examinations of these algorithms have been published recently (McLean et al., 2011; Schmitz and Schoene, 2007), building on previous work (Ludwig, 2010, 2005, 2000, 1995, 1990, 1985, 1980, 1975, 1970, 1965, 1960)
The correction for mass fractionation applied to \((206\text{Pb}/205\text{Pb})_{measured}\) and all other Pb ratios is typically done either by (1) regularly measuring a standard of known composition and calculating the mean and variability of its mass fractionation, then applying the same correction to samples; or (2) using double spikes, where the ratio of two spike isotopes are known and can be used to calculate mass fractionation during each analysis. In the second case, \(^{206}\text{Pb}\) and \(^{205}\text{Pb}\) can be used (Amelin and Davis, 2006; Parrish and Krogh, 1987; Roddick et al., 1987; Schoene et al., 2010a; Todt et al., 1996) and \(^{235}\text{U}\) and \(^{236}\text{U}\), or \(^{235}\text{U}\) can be used (Roddick et al., 1987). Using \(^{235}\text{U}\) as the second U spike isotope requires that a U isotopic composition be assumed for the sample (though see Section 4.10.5.2; full equations for this correction are given in Schmitz and Schoene, 2007).

As shown in Figure 9, ID-TIMS U–Pb geochronology is by far the most precise analytical technique. Initial advances in precision through the 1960s and 1970s were the result of better mass spectrometry and lower Pb contamination levels. The precipitous decline in sample size and increased mass spectrometry and lower Pb contamination levels in the late 1970s may have been entirely the result of improvements in Teflon to isotope geochemistry (Krogh, 1973). The next 20 years saw little improvement in precision but several orders of magnitude decrease in sample size as mass spectrometry and ionization efficiency of Pb have further reduced the uncertainty in reported dates, such that average precisions reported in the past few years on single zircons are about 0.2% of the reported date, but 0.05% is routinely achieved in some labs.

Due to reproducibility of mass fractionation and the use of isotopic dilution, the sources of uncertainty in ID-TIMS U–Pb dating are both identifiable and quantifiable. Recent efforts to redraw data reduction and uncertainty estimation have resulted in transparent and well-documented software that is freely available and amenable to numerous mass spectrometer platforms (Bowring et al., 2011; McLean et al., 2011; Schmitz and Schoene, 2007). An interesting outcome of these efforts is the ability to quantify different sources and magnitudes of uncertainty from each U–Pb analysis, thereby providing targets for further improvement. Figure 10 illustrates the most significant sources of uncertainty to three different single zircon analyses using pie charts. The charts are constructed by comparing the magnitudes of all sources of variance that sum up to the variance of the resulting date (Schmitz and Schoene, 2007), where the variance is the standard deviation squared. For other visualization diagrams that (importantly) contain more information about sources of covariance, see McLean et al. (2011) and Bowring et al. (2011). Note that the relative variance contributions from each variable can be quite different and depend on the age, Pb* content, Pb blank, etc. A user can thus identify the largest uncertainty contributions and aim to improve them in future work, through lower Pb blanks, a better constrained Pb blank isotopic composition, or better mass spectrometry.

It is worth noting, however, that a number of these sources of uncertainty are still difficult to quantify. The isotopic

![Figure 10](image-url) Pie charts illustrating the most important sources of uncertainty in ID-TIMS U–Pb analyses, and how they change as a function of age, \(\text{Pb}^*/\text{Pb}_b\), and \(\text{Pb}_c\), and analytical precision. Dates are \(206\text{Pb}/238\text{U}\) dates ± 2\(\sigma\) uncertainties and represent the square root of summed variances of the individual components. The two charts on the left are analyses from Schoene et al. (2010a,b), and the one on the right is from Bachmann et al. (2010). On the left chart, about 70% of the 0.05 Ma variance is derived from the variance in mass fractionation during mass spectrometry. This implies that using a double-Pb tracer will improve uncertainties drastically for this sample. In the center chart, where \(\text{Pb}^*\) is very low, about 55% of the variance comes from the isotopic composition of the blank, and using a double-Pb spike will not increase precision markedly. The third chart illustrates the extreme example where correction for \(^{230}\text{Th}\) disequilibrium contributes a significant percentage of the total uncertainty. Pie charts were generated using algorithms and modified spreadsheet from Schmitz and Schoene (2007).
composition of the Pb blank, which provides the basis for subtracting Pb, isotopes from sample isotopes, is difficult to measure and potentially highly variable because the blank can come from many different potential sources (reagents, Re filaments, etc.). The correction for nonblank Pb, though not usually applicable to zircon, is also difficult to measure directly but is important for minerals with high initial Pb, such as titanite and apatite (see Section 4.10.3.4). Isobaric interferences such as 203Ti and BaPO$_4$, though mostly removed during ion exchange chemistry prior to loading the sample onto the filament, still require careful consideration (e.g., Amelin and Davis, 2006). Pb mass fractionation during measurement is a significant source of uncertainty, especially when corrected using the mean of repeated standard measurements, as one must assign its reproducibility as an uncertainty in each measurement. The addition of a double-Pb spike, double-U spike tracer solution for isotope dilution dramatically lessens the uncertainty contribution from mass fractionation (Schoene et al., 2010a), which can reduce U–Pb and Pb–Pb date uncertainties by up to 50% for low-blank, high-Pb* analyses. Some studies using double-Pb spikes have also recognized the importance of mass-independent fractionation (e.g., Thirlwall, 2000), and though the magnitude of this effect is relatively small ($\sim 0.01 \text{\% amu}^{-1}$), quantifying this will likely become more important in high-precision geochronology in the near future. Other targets for improved precision include lowering the Pb blank to femtogram levels, better calibration of nonspike isotopes in tracer solutions (e.g., 206Pb), and improving the ionization efficiency for Pb and U.

4.10.4.2 SIMS

SIMS was developed in the 1970s as a means of measuring small domains of material for isotopic composition and elemental abundances (Andersen and Hinthorne, 1972a,b; Shimizu et al., 1978). SIMS was quickly recognized as a powerful tool for resolving dates within single zircons with complicated growth histories through U–Th–Pb geochronology (Compton et al., 1984; Hinthorne et al., 1979). The development of the sensitive high-resolution ion microprobe (SHRIMP) formed the foundation of modern SIMS U–Th–Pb geochronology (Compton et al., 1984), which remains a powerful tool to date small ($<100 \mu$m) minerals within their petrographic context and/or domains in single crystals that are revealed through various imaging techniques (see Section 4.10.3.1). Excellent descriptions of this technique applied to U–Th–Pb analysis are given elsewhere (Ireland and Williams, 2003; Williams, 1998), and here just the outline of the most important aspects is given.

The power of SIMS lies in its ability to ablate small-diameter spots (10–40 μm) with very shallow pit depth ($<4 \mu$m) by hitting the surface with a high-energy ion beam (typically O$^-$/O$_2^-$) under vacuum. A small portion of the liberated material forms atomic ions or molecular ionic compounds and is accelerated into a mass spectrometer (this process is called sputtering). Because ionized matter is composed of every element present in the targeted mineral, as well as their oxides and hydroxides, very high mass resolution is required to resolve potential isobaric interferences. The combination of a large-radius magnetic sector and electrostatic analyzer results in mass resolutions as high as 10,000. This allows one to distinguish between, for example, 206Pb$^+$ (M = 205.97) and HfSi$^+$ (M = 205.92), which is crucial for dating zircon by this method (Ireland and Williams, 2003).

Unlike TIMS geochronology, SIMS cannot use isotope dilution to calculate Pb/U. Instead, sample unknowns are analyzed in rotation with a mineral standard of known Pb/U and a correction is applied assuming that fractionation of Pb from U during sputtering is the same in both cases. Though this is generally not achievable, it was shown that Pb/U can be measured directly, the offset of true Pb/U from standard can be estimated with more confidence. Nonetheless, reproducibility requires that conditions for both standard and unknown are identical – from the flatness of the polished sample surface, to the pit size and beam intensity, to matching the matrix material (i.e., zircon standard for zircon unknown, but also matching compositions of zircons can be important; Black et al., 2004; Williams, 1998).

Reported precision on single SIMS U–Pb dates is on average ~3%, which has only improved slightly in several decades of use. This lack of improvement is partly due to the inherent limitations in Pb/U fractionation during measurement and also a testament to the analytical rigor practiced by the pioneers of this method. Sputtering of analyzed material is done at very slow rates, leaving pits only a few microns deep over about 30 min of analysis time. Nonetheless, during the analysis time, elemental fractionation, coupled with compositional changes in the target mineral and standard, in addition to variable beam intensity limits the achievable precision (Ireland and Williams, 2003; Williams, 1998). Grain-to-grain reproducibility on standards over an analytical session or between sessions gives a good measure of the expected precision on unknowns (Stern and Amelin, 2003). Time-dependent averages based on standard measurement over a session can be calculated by linear or nonlinear regression and the associated uncertainties are propagated into each unknown (Ludwig, 2000b).

Analyzing secondary standards within grain mounts, whose dates should be identical relative to the primary standard over the course of an analytical session, reveals systematic offsets between different zircon standards. These are suspected to be due to ‘matrix effects,’ related to different Pb/U fractionation between minerals of potentially different composition (Black et al., 2003; Fletcher et al., 2010) or U-content (White and Ireland, 2012). The latter may be due to different Pb and U ionization efficiency in metamict zircon – a result of crystal lattice damage due to the decay of U (White and Ireland, 2012). This remains an important source of systematic uncertainty that has not been adequately characterized, and is difficult to propagate into the uncertainty of an unknown zircon, demonstrating the importance of having large quantities of well-characterized and homogeneous standard materials available to many labs (Black et al., 2003; Ireland and Williams, 2003; Wiedenbeck et al., 1995).

4.10.4.3 LA-ICPMS

LA-ICPMS, which involves lasing the surface of a mineral and carrying the resulting ablated aerosols into a mass spectrometer, was first applied to U–Pb geochronology in the 1990s
It has since become the most rapidly adopted method of U–Pb measurement because of its high spatial resolution, rapid analysis time, and affordability relative to SIMS. In fact, the explosion of U–Pb papers published since ~2003 (Figure 1) is probably due in large part to the advent and availability of LA-ICPMS data. Detailed coverage of the topic is beyond the scope of this chapter; reviews and recent examples of the more technical aspects of this rapidly evolving technique are given elsewhere (Arevalo et al., 2010; Cocherie and Robert, 2008; Gehrels et al., 2008; Horstwood et al., 2003; Kosler and Sylvester, 2003; Simonetti et al., 2005; Sylvester, 2008; Arevalo ToG Vo1. 15).

An LA-ICPMS system consists of two parts: (1) the laser ablation system, including the sample cell, and (2) the ICPMS. Laser ablation systems commonly used in U–Pb geochronology consist of a solid-state (e.g., Nd-YAG) or gas-source (e.g., Ar–F Excimer) laser of short wavelength (<266 nm). Detailed studies of different lasers and ablation techniques reveal that short-wavelength lasers coupled with carefully controlled pulse rates (typically on the nanosecond scale) and energy densities more efficiently ablate the tested materials with minimized heating and also reduced, more predictable elemental and isotopic fractionation (Guillong et al., 2003; Günther and Heinrich, 1999a; Günther et al., 1997). Recent advances in femtosecond-pulse-rate lasers continue to minimize elemental fractionation (Claverie et al., 2009; Garcia et al., 2008; Gonzalez et al., 2008; see Section 4.10.5).

The sample is ablated inside a sample cell with a laser-transparent window, and ablated particles are swept from the cell to the plasma torch by incorporation into a carrier gas. A range of carrier gases has been explored, noting that the choice of gas affects instrument sensitivity (Guillong and Heinrich, 2007; Günther and Heinrich, 1999b; Horn and Günther, 2003). As a result of these and complementary studies, most labs use He gas with or without a trace of N$_2$, Ar, and H. The size and geometry of the sample cell can also affect the efficiency and stability with which the particles are transported to the inductively coupled plasma (Cottle et al., 2009a; Kosler and Sylvester, 2003; Muller et al., 2009; Pisonero et al., 2006).

Several types of ICP-MS are used in laser ablation U–Th–Pb geochronology: quadrupole, single-, or multi-collector magnetic sector instruments. The latter two are increasing in popularity because of their versatility at measuring isotope ratios in many elemental systems, but reported precisions and duration of analysis (now typically less than a couple of minutes) for U–Th–Pb geochronology for each instrument are not very different. The magnetic sector instruments, however, have higher sensitivity and generally allow for smaller spot sizes in single grains (Figure 8(c)). ICP-MS analysis is discussed in depth in Arevelo (2012; Volume 15) of the treatise.

Multi-collector and single-collector magnetic sector or quadrupole instruments report similar uncertainties, implying that much of the uncertainty in LA-ICPMS U–Pb data comes from the complicated nature of the ablation process and/or transport to and ionization in the plasma. In particular, U and Pb fractionation at the ablation site can be quite variable and depend on (1) the depth within an ablation pit (Hergenroder, 2006; Horn et al., 2000; Kosler et al., 2005; Paton et al., 2010), (2) the process by which the laser forms aerosols, and the resulting particle size distribution (Guillong et al., 2003; Günther and Heinrich, 1999a; Günther et al., 1997), and (3) ionization in the plasma and the related complications introduced by choice of carrier gas (Guillong and Heinrich, 2007; Günther and Heinrich, 1999b; Horn and Günther, 2003).

In addition, as with SIMS, differences in ablation resulting from different matrix materials and/or compositions can result in systematic biases in U and Pb fractionation (Black et al., 2004; Kosler et al., 2005). While this effect may be expected between glasses and minerals of different matrices, a few studies document systematic biases even between zircon standards when compared to ID-TIMS dates, and this process is not yet well understood (Black et al., 2004; Gehrels et al., 2008). This assertion is substantiated by a large dataset from the Arizona Laserchron Center (Figure 11; G. Gehrels, personal communication). Analysis of numerous zircon standards against one primary standard (SL-1 Sri Lankan zircon) reveals that the mean of ten replicate analyses is within ~2% of the ID-TIMS age and the standard deviation of those means usually overlaps with the ID-TIMS age, as also reported by Gehrels et al. (2008). Systematic offset between different zircon standards is also observed, which Gehrels et al. (2008) attribute to matrix effects between zircon standards. The implication is that similar matrix effects may be important in zircon unknowns, and until the causes of systematic uncertainties from matrix effects are better understood, the precision on single analyses and weighted means derived from LA-ICPMS is ultimately limited by standard variability, which appears to be ~2% (Horstwood, 2008; Sylvester, 2008).

Because LA-ICPMS geochronology is being adopted so quickly by many laboratories, many different freely or commercially available software packages for data reduction and uncertainty analysis exist, in addition to other home-grown approaches (e.g., Chang et al., 2006; Gehrels et al., 2008; Horstwood, 2008; Paton et al., 2011; Petrus and Kamber, 2012; Sylvester, 2008; van Achterbergh et al., 2001). Reducing data using several common software-independent methods reveals differences in the resulting date and precision of up to several percent for the exact same analysis (Fisher et al., 2010). Recent community-driven efforts have adopted the goal of standardizing these procedures, and once transparency is achieved, further progress can be made at assessing the maximum achievable precision on U–Pb dates by LA-ICPMS. These efforts will parallel the current exploration of minimizing and/or correctly parameterizing U–Pb fractionation during LA-ICPMS analyses.

4.10.5 Precision and Accuracy of U–Th–Pb Geochronology

The previous section briefly outlined the three most widely used methods of obtaining U–Th–Pb dates and the achievable precision of each method at present. In addition to differences in spatial resolution of the different methods, the precision afforded by ID-TIMS and the in situ methods differs by 1–2 orders of magnitude (Figures 8–11). Furthermore, because TIMS instruments are far more stable (e.g., in terms of drift in elemental and isotopic fractionation) than LA-ICP-MS and SIMS setups and because isotope dilution ensures that ID-TIMS dates are measured relative to well-calibrated isotopic
Figure 11 Comparison of 206Pb/238U LA-ICPMS ages with ID-TIMS ages for well-characterized zircons that range in age from 28 to 1434 Ma conducted in the Arizona Laserchron Center (figure courtesy of G. Gehrels, see Gehrels et al., 2008, for more details). All data are relative to the SL-1 zircon standard. Each square is the weighted mean of a set of ten LA-ICPMS measurements, and the error bars show the 2σ standard deviation of the weighted mean. No analyses were rejected. Data collected between 2006 and 2011. Isoprobe and Nu refer to the ICPMS used, and NWR and PM refer to the laser used. Far = faraday cups, ctron = channeltron, and IC = ion counters. Measurements in μ refer to spot size in μm.
standards, the precision and accuracy of TIMS dates are easier to quantify. For all these reasons, ages of reference standards used by the in situ techniques are calibrated by ID-TIMS (Figure 12). Further, because an increasing number of decay constants are calibrated against U–Pb dates (Nebel et al., 2011; Renne et al., 2010; Scherer et al., 2001; Selby et al., 2007), a discussion of the precision and accuracy of ID-TIMS geochronology in effect is a discussion of how well we know geologic time. Therefore, this section begins with a general discussion of the accuracy of U–Pb geochronology with an emphasis on ID-TIMS, followed by common statistical models used to interpret U–Pb dates, which is generally applicable to all methods.

4.10.5.1 Random and Systematic Uncertainties, Precision, and Accuracy

A discussion of precision and accuracy requires a few definitions that are relatively standard in isotope geochemistry. This terminology is generally consistent with that recommended by the Joint Committee for Guides in Metrology (JCGM; GUM, 2008; VIM, 2012), but here these terms are highlighted as they are used in the geochronology literature because this lexicon is derived from direct application to the problems faced by geochronologists. For a recent discussion on the application of the Guide to the expression of Uncertainty in Measurement (GUM, 2008) to isotope measurements, the reader is referred to Potts (2012) and Bürger et al. (2010). Here, random uncertainties are those that arise from random effects during measurement. One example is raw isotope ratios measured by mass spectrometry, before mass fractionation and other corrections have been made. Sometimes known as ‘internal,’ random uncertainties can be improved by making more measurements. Systematic uncertainty components vary predictably or remain constant no matter how many measurements are taken. Examples include uncertainties in the tracer isotope composition for TIMS, decay constants, or compositions of age standards. These are sometimes called ‘external’ uncertainties.

It is now common to report U/Pb ages with various levels of systematic uncertainties included, for example as a $^{206}\text{Pb}/^{238}\text{U}$ date of 123 \pm 4/5/6, where 4 is the internal or random uncertainty, 5 is the uncertainty including the tracer calibration or standard age, and 6 is the uncertainty including decay constant uncertainties (Figure 12). When comparing $^{206}\text{Pb}/^{238}\text{U}$ dates generated from the same lab with the same tracer solution or primary age standard (assuming it’s homogeneous), one should use 123 \pm 4. When comparing to another $^{206}\text{Pb}/^{238}\text{U}$ date determined using a different tracer solution or age standard, 123 \pm 5 is appropriate. When comparing to another dating method, such as $^{40}\text{Ar}/^{39}\text{Ar}$, 123 \pm 6 would be the appropriate date to use.

Here the standard distinction between precision and accuracy is used: precision is a reflection of the reproducibility of an experiment, for example, the consistency of isotopic ratios measured from a single analysis on a mass spectrometer or calculated/derived precision through a weighted mean of numerous analyses; accuracy is a qualitative estimate of how well the mean and quoted uncertainty overlap the ‘true value.’ (Note that this definition of accuracy, though widely used in the geochronology literature, is slightly different than that recommended by the International Vocabulary of Metrology (VIM, 2012). In that terminology, accuracy is also affected by the precision of the measurement – i.e., a more precise estimate that overlaps with the true value is also more accurate than a less precise one. The standard use of accuracy in geochronology makes no reference to whether or not the measurement or date is precise, but simply whether it agrees with the true value – this definition more closely resembles what VIM (2012) refers to as ‘trueness.’) Precision is easier to measure than accuracy, because the latter involves both how well the quoted ratio or date reflects that of the sample (which is usually unknown for geologic studies) and how one interprets the data in terms of its geologic significance. The quoted uncertainties on dates of each method discussed earlier and shown in Figure 9 are largely a gauge of the precision of the method. Whether those dates are actually accurate within that quoted precision is a separate issue, and is best addressed by measurement of similarly behaving standards. The example of a secondary standard was given for the in situ techniques as a means of deriving the correct precision for each analysis, but also helps address the accuracy. This leads to a final but important point, and that is the distinction between dates and ages. It is common to use the term date to reflect a number derived from solving eqns [6]–[8] for t; time. A date has no geologic significance until it is interpreted in terms of a process, at which point it becomes an age.
An age is therefore an interpretation of a date, or set of dates, and these interpretations are discussed further later in the chapter. Examples of ages that will arise are crystallization ages, eruption ages, cooling ages, etc. Both dates and ages can be precise or imprecise, accurate or inaccurate.

4.10.5.2 Isotopic Composition of Natural U

The $^{238}\text{U}/^{235}\text{U}$ of natural uranium in most terrestrial materials has been assumed to be constant and equal to 137.88 for 30 years. This value was adopted by Steiger and Jäger (1977), citing measurements from Cowan and Adler (1976) from a variety of uranium ore deposits. Recently, deviation of $^{238}\text{U}/^{235}\text{U}$=137.88 of up to $\sim 1\%$ has been observed in low-temperature environments and crustal rocks, which might be the result of temperature-dependent mass fractionation, kinetic effects, or redox-sensitive partitioning (Bopp et al., 2009; Brennecka et al., 2011; Stirling et al., 2007; Weyer et al., 2008).

Excess ^{235}U, measured in refractory inclusions in chondritic meteorites, has been attributed to decay of the short-lived nuclide ^{247}Cm in the early solar system (Brennecka et al., 2010).

Recent efforts in the ID-TIMS U–Pb dating community have been directed at determining the natural composition of U relative to a reference quantifiable SI units (e.g., kilogram, Becquerel, second). Directly applicable to U–Pb geochronology isotope dilution with a tracer solution that was well calibrated gravimetrically (Condon et al., 2010; Richter et al., 2008). They found variability within these minerals of $\leq 1\%$, and suggested that a value of 137.818±0.045 be adopted for use in zircon geochronology.

The value of $^{238}\text{U}/^{235}\text{U}$ appears in several places during the calculation of an age. Most notable is its importance in the Pb–Pb age equation (eqn [9]), but this assumed value is also often used during mass spectrometry to correct for mass-dependent fractionation, for example during TIMS analyses with a $^{235}\text{U}/^{238}\text{U}$ tracer (see Section 4.10.4.1). Some analysts using low-precision dating techniques (see Section 4.10.4) or doing isotope dilution with a $^{235}\text{U}/^{238}\text{U}$ tracer do not even measure ^{235}U during mass spectrometry because of its low abundance, and thus assume a $^{238}\text{U}/^{235}\text{U}$ value of 137.88 to calculate $^{207}\text{Pb}/^{206}\text{Pb}$ dates. Adoption of a new $^{238}\text{U}/^{235}\text{U}$ value of ~ 137.82 could shift $^{206}\text{Pb}/^{206}\text{Pb}$ dates by as much as 0.03% for young samples, but is unimportant for old samples; $^{207}\text{Pb}/^{206}\text{Pb}$ dates can shift by as much as 0.07% for young samples and as little as 0.01% for samples >4 Ga (Hiess et al., 2012). Importantly, the $^{207}\text{Pb}/^{206}\text{Pb}$ dates from meteorites, used to calculate the age of the solar system and Earth, have been measured independently as well, resulting in Pb–Pb date increases by up to 1.4 Ma (Amelin et al., 2010).

4.10.5.3 U and Th Decay Constants

The uncertainties in decay constants are an important source of systematic uncertainty that affects the accuracy of U–Pb dates in absolute time, and also limits the precision to which U–Pb dates can be compared to dates from other radioisotopic systems. The uranium decay constants recommended for use by Steiger and Jäger (1977) were determined by Jaffey et al. (1971) by alpha counting methods on separate aliquots of enriched ^{235}U and ^{238}U, and were given 2σ uncertainties of ±0.137 and ±0.107%, respectively. These are by far the most precisely determined decay constants used in geochronology. Additionally, the accuracy of these numbers has been verified indirectly by U–Pb geochronology of closed-system minerals (Mattinson, 2000, 2010; Schoene et al., 2006). This can be done if a set of analyses are statistically equivalent in concordia space and the mineral remained a closed system. By using minerals with negligible Pb losses, eqns [6] and [7] can be solved for λ and set equal to one another, and rearranged to

$$\frac{\lambda_{235}}{\lambda_{238}} = \frac{\ln \left(\frac{207\text{Pb}^*}{235\text{U}} + 1\right)}{\ln \left(\frac{206\text{Pb}}{238\text{U}} + 1\right)} \quad [13]$$

Equation [13] shows that minerals with very different ages should all give the same solution for the ratio of the uranium decay constants if the analyses are truly concordant (Mattinson, 2000), and that this ratio can be calculated with very high precision using multiple analyses. Such exercises have shown that this ratio is correct to within the ±2σ uncertainty quoted by Jaffey et al. (1971), but that systematic discordance in the U–Pb system of about 0.3% exists within analyses spanning >3 Ga, suggesting that one or both of the mean values of the uranium decay constants are inaccurate (Figure 13). Though the alpha counting data for ^{238}U from Jaffey et al. (1971) appear more robust at face value, it is impossible to determine whether the inaccuracy exists in one or both of the decay constants. Nonetheless, these studies use λ_{235} to calculate a new λ_{238}, such that $^{207}\text{Pb}/^{206}\text{Pb}$ dates can be compared directly to $^{206}\text{Pb}/^{206}\text{Pb}$ dates without propagating decay constant uncertainties, though each of these studies cautions against its use given other outstanding sources of uncertainty (Mattinson, 2000, 2010; Schoene et al., 2006). For example, as discussed by Mattinson (2010), the calculated λ_{235} is also dependent on the assumed value of $^{238}\text{U}/^{235}\text{U}=137.88$. Using the value of 137.818±0.045 suggested by Hiess et al. (2012) would change the calculated λ_{235} by ~0.03%, though, as discussed in that paper (Figure 13), a single study with full traceability to SI units needs to be carried out before new values of λ_{235} are adopted for use in geochronology. Furthermore, increasing the absolute resolution of U–Pb geochronology beyond the 0.1% level and/or verification of the accuracy of the λ_{238} value from Jaffey et al. (1971) requires further counting experiments.

The ^{232}Th decay constant suggested by Steiger and Jäger (1977) has a value of 4.948×10^{-11} (year$^{-1}$) with an uncertainty of ~1%, and comes from an abstract (Le Roux and Glendenin, 1963) with minimal documentation. Sparse U–Th–Pb data are at least near a $^{208}\text{Pb}/^{232}\text{Th}$, $^{207}\text{Pb}/^{235}\text{U}$ concordia curve (e.g., Villeneuve et al., 2000), giving some support to its accuracy. Amelin and Zaitsev (2002) recalculated λ_{232} by correcting $^{208}\text{Pb}/^{232}\text{Th}$apatite dates to zircon and baddeleyite $^{206}\text{Pb}/^{206}\text{U}$ dates, and obtained a value of 4.934×10^{-11} (year$^{-1}$)±0.3%. Though some workers are using this value currently, a Th–Pb/U–Pb study with similar rigor to those cited for the U decay constants is warranted.

Regardless of the magnitude of the uncertainties of the decay constants, and until these constants are perfectly...
and thus both would change with adoption of a new 235U decay constant. Also important is that studies utilizing only one decay constant need not propagate its uncertainty to calculate durations of, or intervals between, different events.

4.10.5.4 Tracer Calibration

As outlined in Section 4.10.4.1, the process of isotope dilution involves mixing a solution of known U/Pb with preferably nonnaturally occurring U and Pb isotopes with each unknown sample in order to calculate the U/Pb ratio of the sample. A U–Pb date determined by ID-TIMS is therefore no more accurate than the measured U/Pb of the tracer solution used. Because 206Pb and 208Pb are not available in large quantities and are difficult to obtain (Parrish and Krogh, 1987), it is impossible to mix the U/Pb tracer gravimetrically with high precision (i.e., by weighing aliquots of pure monoisotopic Pb). Instead, the tracer is calibrated against solutions of precisely determined U/Pb ratio and isotopic composition created by weighing high-purity metallic U (\pmTh) and Pb isotopic standards, then dissolving them together in the same acid. The tracer is preferably calibrated against multiple independently mixed gravimetric solutions (Schoene et al., 2006). Though most laboratories quote \sim0.1% precision as a tracer uncertainty for home-made tracers, the methodology and data of the calibrations are not usually given. As part of the EARTHTIME initiative (www.Earth-time.org), a large aliquot of freely available mixed (206Pb–207Pb–208Pb–235U–238U tracer was mixed and calibrated with the goal of quantifying all known sources of uncertainty back to SI units. The results indicate that the limiting sources of uncertainty in tracer calibration are the isotopic composition and purity of uranium and lead isotope standards (Condon et al., 2010; Todt et al., 1996), in addition to uncertainties in mass spectrometry; these amount to \sim0.03% uncertainty in a 206Pb/238U date. This is predominantly a systematic source of uncertainty, which need not be propagated into an age when compared to other U–Pb ages determined using the same tracer solution.

4.10.5.5 ‘Geologic’ Uncertainty

As described in Section 4.10.3, mixing, Pb loss, intermediate daughter product disequilibrium, and incorrect Pb subtraction are all ways of jeopardizing the accuracy of a U–Pb date if not corrected for or interpreted correctly. These ‘geologic’ phenomena can act as either random or systematic uncertainties on a given sample or dataset. For example, a set of minerals with ubiquitous inherited cores that go unrecognized will bias each analysis, so that calculated dates are too old. Unremediated Pb loss will bias ages in the opposite direction; although each grain will be too young by a different amount, the net effect is a systematic bias toward younger dates. As described in Section 4.10.3.1, grain polishing and imaging prior to analysis by in situ methods is a common way to avoid systematic bias by inheritance. However, recent work documenting the timescales of mineral growth in magmatic systems shows that it may be common for minerals with high closure temperatures (e.g., zircon, monazite, and allanite) to grow over tens of thousands to millions of years without obvious textural evidence (Bachmann et al., 2007; Miller

Figure 13 U decay constant uncertainties. (a) and (b) Two of the many examples presented in papers of systematic discordance in closed-system minerals using decay constants of Jaffey et al. (1971). This discordance is used to calculate a new 238U decay constant, assuming an accurate 238U decay constant using eqn [13] in the text. (c) Recalculated values for λ_{235}, assuming λ_{238} to be correct, from three studies with weighted mean plotted as well. Also pictured is the effect that using a natural U composition of 137.82 instead of 137.88 would have, as proposed by Hiess et al. (2012). All uncertainties are 2σ. It is important that decay constant uncertainties are considered when comparing 207Pb/235U, 206Pb/238U, and 207Pb/206Pb dates to each other. It is also important that, when using intercept dates and the concordia age (Ludwig, 1998, 2000a), one propagates the uncertainties in both U decay constants, because these calculations use both decay schemes (Begemann et al., 2001; Schoene et al., 2006).
et al., 2007; Schaltegger et al., 2009; Schmitt et al., 2010, 2011). Such extended growth periods can present subtle but important uncertainty in age interpretations if the goal is, for example, to date the timing of eruption of an ash bed or intrusion of a magma. This problem is an important source of systematic error when taking weighted means of many dates, which will be discussed in Section 4.10.5.6.

Accessing domains of closed-system zircon that has not undergone Pb loss was revolutionized by Mattinson (2005) with the advent of ‘chemical abrasion’ (CA)-ID-TIMS (Figure 14). This method involves annealing zircons prior to partial dissolution in HF acid to preferentially remove high-U, discordant domains of zircon (Figure 14(a) and 14(b)). The resulting residue is then rinsed, spiked with a U/Pb tracer, and analyzed by TIMS. The original work of Mattinson (2005) involved a step-leaching technique on large aliquots of zircon in order to show that after a few leaching steps, the dates measured in the leachate reach a plateau and effectively represent closed-system zircon (Figure 14(c)). In order to adapt this method to single-grain zircon ID-TIMS work, Mundil et al. (2004) performed an aggressive 12-hour leaching step on single zircons following annealing (Figure 14(a)). This method has been adopted by most ID-TIMS U–Pb labs, and has all but replaced the air-abrasion method of Krogh (1973) after 30 years of uncontested service.

During those three decades, several studies examining leaching of metamict zircon were carried out, but without the annealing step they were unsuccessful and even induced open-system behavior, such as fractionation of 207Pb from 206Pb (Chen et al., 2002; Davis and Krogh, 2000; Krogh and Davis, 1975; Mattinson, 1994). CA-TIMS has made ultrahigh-precision Pb–Pb dating of concordant zircons possible in Archean terranes, where Pb loss is both ubiquitous and obvious (Das and Davis, 2010; Schoene and Bowring, 2007, 2010; Schoene et al., 2008), but has also instilled greater confidence in U–Pb dates in Phanerozoic samples where a Pb loss trajectory is masked because it parallels concordia. Studies spanning the CA-TIMS revolution provide stunning comparisons of air-abraded and chemically abraded zircon, with the latter...
consistently yielding older dates that are more likely to produce homogeneous clusters with a single \(^{206}\text{Pb}/^{238}\text{U}\) date (Bowring et al., 2007; Mundil et al., 2004; Ovtcharova et al., 2006; Ramezani et al., 2007; Schoene and Bowring, 2006; Figure 14(d)). However, the technique is not perfect, especially when small sample size requires selection of imperfect (cloudy, cracked, magnetic, etc.) zircons for analysis, or in very metamict zircon (Das and Davis, 2010; Schoene et al., 2008, 2010a). Attempts to extend CA-TIMS to other minerals such as baddelyte and monazite have not yet been as successful at remedying open-system behavior but have revealed interesting characteristics of these minerals during annealing and partial dissolution (Peterman et al., 2012; Rioux et al., 2010). Given the looming possibility that subtle residual Pb loss may remain in some zircon populations following CA-TIMS, open-system behavior in the form of Pb loss and prolonged zircon growth remain important sources of inaccuracy in U–Pb geochronology. Because of the different strengths of the three analytical techniques outlined earlier, understanding age information from minerals with complicated growth histories or subsequent Pb loss can be aided by using both high spatial resolution and high-precision techniques on the same grains.

4.10.5.6 Statistical Models

The previous discussion has focused entirely on the precision and accuracy of single dates arising from ID-TIMS, SIMS, and LA-ICPMS U–Pb geochronology. It is common, however, to pool many analyses from a single sample and apply statistical models to (1) increase the precision of an age interpretation, and (2) account for analytical scatter in the dataset. The two most commonly used statistical models in geochronology are the least-squares linear fit, such as an isochron, and a weighted mean. Both 2D and 3D isochrons are used in U–Pb geochronology and the assumptions they require are listed in Section 4.10.2.3.1. Assuming that it is geologically reasonable for these assumptions to be met, the accuracy of the age obtained from linear regression is typically evaluated by the goodness of fit. Of particular importance in isotopic data is that linear regressions can account both for the uncertainties in x and y variables, but also for the covariance of those uncertainties, as these variables are usually ratios with common numerators or denominators. A successful and widely used approach to this problem was presented by York (1967, 1968), and is commonly called the York fit. Variations and improvements on this method have been published (e.g., Brooks et al., 1972; Ludwig, 1991, 1998; York et al., 2004), and freeware exists for performing such calculations on a number of different types of geochronologic data (the most important and versatile being ISOPLOT; Ludwig, 1991).

In addition to estimates of the slopes and intercepts provided by these methods, it is critical in geochronology to evaluate the goodness of fit of the data to the statistical model, in this case a straight line. Geochronologists typically use the mean square of weighted deviates (MSWD), first introduced by York (1967, 1968), which is a variation on the common \(\chi^2\) statistic but which accounts for the degrees of freedom of the regression. A dataset that matches the statistical model gives an MSWD of 1, indicating that the scatter around the best-fit line is consistent with the uncertainties assigned to the data. An MSWD \(\gg 1\) means the data scatter too much given the reported uncertainties, which can often be seen visually when the best-fit line lies far from the uncertainty envelopes, or ‘error bars,’ around the data. For an isochron, this means that one or more of the assumptions in Section 4.10.2.3.1 has not been met.

An MSWD \(\ll 1\) indicates that the uncertainties on the individual data are larger than expected given their observed scatter, which is seen on a plot where the best-fit line falls suspiciously close to the mean of each data point that has relatively large uncertainties. A very low MSWD may result from inappropriate propagation of systematic uncertainties into individual data points. Though it may appear to be a conservative approach to overestimate uncertainties, doing so can mask real systematic geologic uncertainty, and this, in turn, can bias a linear regression toward steeper or shallower slopes (and therefore different ages). An argument describing the acceptable distribution of MSWDs for a given number of data points used to fit a line is made by Wendt and Carl (1991), and is given by the following simple equation:

\[
\sigma_{\text{MSWD}} = \sqrt{\frac{2}{(N - 2)}} \tag{14}
\]

Though this model is not rigorously adhered to in the literature, it provides an important guide for those wishing to better understand the distribution of their data in the hope of more accurately determining uncertainties and geologic interpretations.

In modern U–Pb geochronology, the weighted mean is the statistical model most often applied to a set of individual analyses, and the result is often interpreted as the best estimate of the age of a sample. The underlying assumption in weighted mean calculations is that the data represent a single value and that the variance of the means is due entirely to analytical scatter. As with the York fit, the uncertainties of individual data are weighted by the inverse of their variance, so those data with larger uncertainties have less weight (though see McLean et al. (2011) for an approach that accounts for systematic uncertainty, and can result in negative weights!). The result is the best estimate of that true value given the dispersion in the means and their associated uncertainties. Again, an MSWD can be calculated to assess whether the data do in fact meet the model prediction (though eqn [14] should be modified so the denominator reads \(N - 1\)). This can be visually estimated by simply seeing whether a set of data points overlap within their \(2\sigma\) uncertainties. A common tool to do so, colloquially called the ‘weighted mean plot,’ plots on one axis a date or ratio and successive analyses are lined up on the other axis (Figure 15).

A weighted mean functions much like the standard error in that it asks the question: how well do we know the mean? As such, the uncertainties in the estimate of the mean are reduced by \(1/\sqrt{N}\) (if the data have comparable uncertainties), meaning the more data you have, the better you know the mean of those data. It is thus a way to increase the precision of an age interpretation when the individual dates have larger uncertainties. Use of the weighted mean can, however, result in inaccurate ages if the mean of the samples does not reflect the (instantaneous) process that is being dated. Assuming that the petrogenetic origin of the dated minerals is accurately
interpreted, an inaccurate age can result from a weighted mean with a statistically significant MSWD if a set of minerals is subject to ‘geologic uncertainty’ (e.g., Pb loss or mixing) whose effect is small relative to the uncertainties of individual data points. This is extremely important, and so two examples are given in Figure 15.

Pitfalls in interpreting weighted means are most easily illustrated by comparing low-precision datasets with high-precision datasets from the same sample. Figure 15(a) compares data from in situ U–Pb zircon geochronology by SHRIMP (Zhang et al., 2005) and whole-grain zircon ID-TIMS dating (Condon et al., 2005). The sample is a volcanic ash bed from the Neoproterozoic Duoshantuo Formation, which postdates the global Marinoan glaciation event. High-precision ID-TIMS data were obtained prior to the advent of chemical abrasion (Section 4.10.5.5) and exhibit a modest spread in dates, which the authors interpret as Pb loss. As such, they calculate a weighted mean date from the oldest homogeneous population of zircons, whose uncertainty in Figure 15(a) includes a tracer uncertainty of ~0.15%. The SHRIMP data show a single population of statistically indistinguishable analyses, though a weighted mean results in a \(^{206}\text{Pb}/^{238}\text{U}\) age that is resolvably younger than the ID-TIMS estimate. An argument could be made that, although each individual SHRIMP analysis is accurate, the weighted mean is biased by subtle Pb loss toward a mean that is too young.

Another illustration of the complications of applying weighted means to datasets comes from an ash bed near the Triassic–Jurassic boundary (Figure 15(b)). In this example, the authors attempt to correlate the biostratigraphically calibrated end-Triassic mass extinction event with the onset of flood basalt volcanism in the Central Atlantic Magmatic Province (CAMP; Marzoli et al., 1999) from a section in Peru with abundant volcanic ash horizons. An initial dataset by CA-TIMS (Schaltegger et al., 2008), for a sample closest to the extinction horizon, used a \(^{205}\text{Pb}/^{235}\text{U}\) tracer solution and reported a homogeneous population of zircon dates that were used to calculate a weighted mean age for the eruption of the ash bed. The calculated age is older than the very precisely dated North Mtn. Basalt – the lowermost basalt in the CAMP in North America – precluding a causal link. As discussed by Schaltegger et al. (2008), because the two ages were...
determined using a different tracer solution in different labs, the potential for systematic biases existed.

A subsequent reanalysis of the ash bed using a $^{202}\text{Pb} - ^{205}\text{Pb}/^{238}\text{U} - ^{235}\text{U}$ tracer solution (Schoene et al., 2010a) results in a more precise dataset due to the reduced uncertainty related to mass fractionation during TIMS analysis. The newer dataset exhibits a substantial spread in dates that are no longer amenable to a statistically significant weighted mean age. Because these zircons were analyzed using chemical abrasion, the authors conclude that the spread is due to pre-eruptive zircon growth rather than Pb loss. Both a weighted mean of the youngest three analyses (barring one much younger grain, interpreted as Pb loss) and the youngest single-grain overlap in age with the eruption age calculated by Schaltegger et al. (2008), but the new study results in synchronicity with a re-determined age for the North Mtn. Basalt Schoene et al. (2010a) conclude that the dataset from Schaltegger et al. (2008) was subtly biased to appear too old by entrainment of pre-eruptive zircons in the volcanic ash, which are resolvable by the more precise dataset.

These two examples illustrate how the application of weighted means to both low- and high-precision datasets must be done with scrutiny. It is commonly known that the growth of high-U minerals and subsequent Pb loss or alteration can happen on timescales that are unresolvable at present by any geochronologic technique. Increasing precision in U–Pb datasets is usually met by increasing complexity in the resulting dates, and it has been shown repeatedly that arriving at high-precession ages through weighted means of many low-precision dates can be inaccurate due to unrecognized systematic bias. As such, the ultimate temporal resolution of U–Pb geochronology is limited by the precision of a single data point (Horstwood, 2008; Ludwig, 1991; Sylvester, 2008). For ID-TIMS, this precision is now similar in magnitude to the systematic uncertainties of decay constants and tracer calibration (Figure 12), but there is much room for improved precision with in situ methods before similar systematic uncertainties become limiting factors.

4.10.6 Applications: The Present and Future of U–Th–Pb Geochronology

4.10.6.1 Measuring Geologic Time and Earth History

Changes in the biosphere, atmosphere, hydrosphere, and the surface environment through Earth history are recorded within sedimentary rocks. Correlating disparate stratigraphic records with each other and with events in the solid Earth system requires high-precision geochronology. This is typically carried out by dating igneous minerals from volcanic tuffs that are intercalated in sedimentary strata (Tucker et al., 1990), thus providing an anchor in absolute time. These tie points also form the temporal framework of the geologic timescale (Gradstein et al., 2004). The periods, epochs and stages that comprise geologic time rely heavily on U–Pb geochronology for time constraints; the demand for absolute time and the abundance of U–Pb data dedicated toward this end are steadily increasing (Bowring and Schmitz, 2003; Bowring et al., 2006; Condon et al., 2005; Davydov et al., 2010; Furin et al., 2006; Hoffmann et al., 2004; Macdonald et al., 2010; Mazzini et al., 2010; Meyers et al., 2012; Mundil et al., 2003, 2004; Ovtcharova et al., 2006; Ramezani et al., 2007; Schaltegger et al., 2008; Schoene et al., 2010a; Smith et al., 2010).

Timescale geochronology requires the highest precision and accuracy, and therefore single-zircon ID-TIMS U–Pb dating is frequently the method of choice (Bowring and Schmitz, 2003; Bowring et al., 2006; Ireland and Williams, 2003). However, eruption ages determined by U–Pb ID-TIMS should also be subjected to considerable scrutiny. One example is the very subtle but important differences arising from increased precision and application of statistical models to ash bed zircon populations near the Triassic–Jurassic boundary discussed in Section 4.10.5.6 and shown in Figure 15(b). A further example arises from the Permian–Triassic boundary, as dated by ID-TIMS, which has yielded four different nonoverlapping $^{206}\text{Pb}/^{238}\text{U}$ ages in the last 14 years from the same stratigraphic section in Meishan, China: 251.4 ± 0.3 Ma (Bowring et al., 1998), >253 Ma (Mundil et al., 2001), 252.6 ± 0.2 Ma (Mundil et al., 2004), and most recently 252.17 ± 0.08 Ma (Shen et al., 2011; uncertainties do not include tracer calibration or decay constant contributions). While this evolving dataset is undoubtedly related to analytical improvements such as a switch from multigrain to single-grain analyses, application of CA-TIMS, decreased Pb blanks, and improved mass spectrometry, discrepancies may also be related to zircon selection, ash bed sample size and heterogeneity, Pb loss and inheritance in zircon populations, unresolved systematic errors biasing weighted mean calculations, and other interlaboratory biases. Interlaboratory bias is being actively addressed by the ID-TIMS community through interlaboratory calibration studies and distribution of freely available U–Pb tracer solutions to remove tracer bias (Condon et al., 2008). Recent studies carrying out high-precision comparison on homogeneous zircon populations show that agreement to better than 0.05% of the age is achievable on weighted means between multiple laboratories (Schoene et al., 2010a; Slama et al., 2008). However, for complicated datasets exhibiting considerable scatter in dates – as is becoming the norm – different geochronologists use different techniques to interpret an eruption age from a set of dates. Those who think a combination of Pb loss, inheritance, and analytical scatter are the most important sources of error extract the most statistically equivalent populations of zircons and apply weighted means (Davydov et al., 2010; Ramezani et al., 2007; Shen et al., 2011). Those who consider pre-eruptive growth of zircon as the source of the spread in dates focus on the youngest grain or subset of youngest grains from an ash bed as the best estimate of the eruption age (Meyers et al., 2012; Schmitz and Davydov, 2012; Schoene et al., 2010a). The latter approach has also been applied when significant reworking of ash material is suspected after initial eruption and deposition (Irmis et al., 2011).

How best to interpret complicated zircon populations in ash beds in the Mesozoic and Paleozoic can be aided by investigations of younger volcanic material where analytical uncertainty can be smaller relative to the observed spread in dates and significant Pb loss is not expected. Such studies using both U–Pb and U-series dating have revealed that, in some cases, all zircon in a magmatic system crystallizes in less than a few thousand years prior to eruption (Bachmann et al., 2010; Charlier and Wilson, 2010; Crowley et al., 2007; Schmitt et al., 2011).
while other tuffs contain zircon predating eruption by several hundred thousand to millions of years (Bachmann et al., 2007; Bacon and Lowenstern, 2005; Charlier et al., 2005; Claiborne et al., 2010; Schmitt et al., 2010). In all cases, it is important that a subset of zircon dates overlap with the eruption age, which may be estimated by 40Ar/39Ar or U–Th/He geochronology or may be known from historical records. It follows that in the absence of Pb loss, from a set of >10 ID-TIMS single-zircon dates from pre-Cenozoic ash beds, it is likely that the youngest one will overlap with the eruption age. Nonetheless, recent studies confirm that CA-TIMS is not 100% effective at eliminating Pb loss (Meyers et al., 2012; Schmitz and Davydov, 2012; Schoene et al., 2010a), which must be addressed by using large datasets (Shen et al., 2011) and taking advantage of the requirement that strata must get younger upward (Davydov et al., 2010; Guex et al., 2012; Meyers et al., 2012; Mundil et al., 2004; Schmitz and Davydov, 2012). Further understanding of zircon populations and increasing confidence in weighted mean calculations will come from integrating zircon textures and geochemistry with high-precision geochronology of ash bed zircons (Claiborne et al., 2010; Crowley et al., 2007; Schoene et al., 2010b, 2012).

U–Pb geochronology will undoubtedly play a large role in the further refinement of the geologic timescale (Gradstein et al., 2012). Data from the U–Pb system will be further integrated with other radioisotopic systems and results from orbital tuning (Kuiper et al., 2008; Meyers et al., 2012; Renne et al., 1998, 2010), along with bio-, chemo-, litho-, and magnetostratigraphic information, and increasingly higher-precision data will be required to address more specific hypotheses. Highlights include testing correlations between biostratigraphically calibrated mass extinction events and large igneous province eruptions, intercalibrating U–Pb data with potential Milankovitch cyclicity in orbitally tuned sections, measuring the tempo of the radiation of complex life in the early Paleozoic, and understanding the relationship between carbon cycling and glacial events. Continuing to increase precision in deposition ages for ash beds without sacrificing accuracy will require further work understanding the growth of zircon in magmatic systems and how it is transported during eruptive cycles and subsequent deposition.

4.10.6.2 Integration of Geochronology, Geochemistry, and Petrology

The accuracy of U–Th–Pb ages depends, in part, on correctly interpreting the meaning of a date, which can be aided by geochemical and/or petrographic information about the dated material. Such information provides a crucial context for generating pressure–temperature–time paths in metamorphic rocks by tying the growth of high-U accessory minerals to phase equilibria (see also Chapter 4.7). Geochemical and textural context can also be important for interpreting the timescales of igneous petrogenesis (see also Chapter 4.5). The ability of nondestructive in situ methods of U–Th–Pb geochronology has paved the way for this type of work through combining multiple analytical methods on single minerals with high spatial resolution. Integration of petrographic and geochemical data with ID-TIMS U–Th–Pb geochronology is logistically more challenging, often less direct, and more limited by sample size, but nonetheless essential if high-precision time constraints are necessary.

Though zircon zonation has served as a useful tool for deciphering metamorphic versus igneous growth histories (Corfu et al., 2003), determining its utility for tracking changing geochemical equilibria in metamorphic and igneous systems has not been straightforward. It was recognized long ago that Th/U is often higher in igneous than metamorphic zircon, and, more recently, rare earth element (REE) patterns in metamorphic zircon have been argued to be sensitive to the presence of garnet, and thus when coupled with geochronology, could fingerprint garnet growth or dissolution (Harley and Kelly, 2007; Kelly and Harley, 2005; Rubatto, 2002; Whitehouse and Platt, 2003). However, measured zircon–garnet–liquid partition coefficients are highly variable, and relatively few data documenting the effect of temperature, pressure, and bulk composition exist (Hanch et al. and van Westrenen, 2007; Rubatto and Hermann, 2007). Though several studies suggest that zircon REE patterns are not sensitive to magma composition (Hoskin and Ireland, 2000; Hoskin et al., 2000), other studies have argued that both REE and other trace elements vary significantly between rock types (Belousova et al., 2002, 2006; Heaman et al., 1990; Schoene et al., 2010b) and can track evolving magma composition in relative (Reid et al., 2011) or absolute (Schoene et al., 2012) time.

High-U phosphates (monazite, xenotime, and apatite) and allanite are involved in a host of metamorphic reactions (Bea and Montero, 1999; Finger et al., 1998; Spear and Pyle, 2002; Wing et al., 2003), which, when coupled with geochronology, can provide time constraints on metamorphism. SIMS U–Th–Pb dating of monazite preceded by geochemical and textural characterization has shown that monazite growth and geochemical composition are sensitive to the growth and dissolution of other high-REE minerals, such as garnet and allanite, and also to anatexis (Figure 16(a); Gibson et al., 2004; Kohn and Malloy, 2004; Kohn et al., 2005; Zhu et al., 1997). ID-TIMS U–Pb dating of chemically and texturally characterized monazite, xenotime, and allanite is also feasible by removing grains from thin-section or grain mount and carrying out targeted microsampling of discreet domains (Corrie and Kohn, 2007; Hawkins and Bowring, 1997; Lanzirroti and Hanson, 1996; Romer and Siegesmund, 2003; Viskupic and Hodges, 2001). LA-ICPMS U–Th–Pb analysis of monazite is also widespread (Cottle et al., 2009a,b; Kosler et al., 2001; Paquette and Tiepolo, 2007; Willigers et al., 2002), though systematic and unexplained errors of up to 5% in monazite 206Pb/238U dates relative to ID-TIMS dates are not yet well understood (Kohn and Vervoort, 2008). U–Th–total Pb geochronology (Section 4.10.4) of monazite has been used to map and date geochemical zones at very high spatial resolution by measuring just elemental abundances of U, Th, and Pb (Figure 16(d); Cocker et al., 1998; Montel et al., 1996; Williams and Jercinovic, 2002). Recently, LA-ICPMS has also been applied to dating allanite (Darling et al., 2012; Gregory et al., 2007) and apatite (Chew et al., 2011), which are important in a wide range of igneous rocks and participants in numerous metamorphic reactions (Spear, 2010; Spear and Pyle, 2002).

SIMS and LA-ICPMS have been used to characterize metamorphic reactions involving titanite, which had previously been known to form multiple populations in single hand
samples (Corfu and Stone, 1998; Frost et al., 2000; Verts et al., 1996). Aleinikoff et al. (2002) identified multiple generations of metamorphic titanite based on geochemistry and SIMS U–Pb analysis. Storey et al. (2007) conducted a similar study using LA-ICPMS on titanite, rutile, and apatite and argued that multiple chemically distinct zones in titanite recorded a protracted growth history.

A relatively new development is the application of mineral thermometry directly to high-U minerals. These thermometers are calibrated both empirically and experimentally and posit that the concentration of certain elements partitioned into a mineral structure is a strong function of temperature, assuming equilibrium partitioning and negligible subsequent loss or gain.

An example is the Ti-in-zircon thermometer (Figure 16(b); Ferry and Watson, 2007; Watson et al., 2006), which has been applied to Earth’s oldest zircons as a means of understanding crustal genesis (Watson and Harrison, 2005), and also to a wide range of magmatic and metamorphic systems. This tool is most commonly applied by in situ methods because both temperature and date can be measured on the same growth zone within

Figure 16 Combining geochronology and geochemistry. (a) Using element maps of monazite to guide SIMS 232Th–208Pb geochronology, from Kohn et al. (2005). Color indicates Y content, with more yellow colors indicating higher concentrations. Uncertainties are 2σ. (b) Combining Ti-in-zircon thermometry (results indicated by temperatures in °C) with in situ SIMS U–Pb geochronology, from Watson and Harrison (2005). Image on left is backscatter electron; image on right is cathodoluminescence showing igneous oscillatory zonation. (c) Electron microprobe U–Th–total Pb dating of monazite in situ, from Williams and Jercinovic (2002). Image on left is color scaled for Th content of monazite. Bright, high-Th, rim is interpreted to have formed in pressure shadows resulting from dextral shear, indicated by a cartoon on the right, constraining shearing to ~1800 Ma. (d) Example of combining in situ geochemical analysis with ID-TIMS geochronology. Blue circles on CL image show spot analyses for geochemistry determined by LA-ICPMS (J. Cottle, unpublished data), projected onto Lu/Hf graph below. Zircon was subsequently fragmented along red dashed lines and the tips were analyzed by ID-TIMS (K. Samperton, J. Crowley, M. Schmitz, and B. Schoene, unpublished data). Dates are 206Pb/238U, uncertainties are 2σ.
single zircons. A limitation to its accuracy is that the activity of Ti in the melt must be assumed, measured, or argued to be unity, for example if cognetic rutile is present (Ferry and Watson, 2007). Furthermore, there is evidence that Ti partitioning into zircon may be controlled by factors other than temperature, for example nonequilibrium partitioning, pressure, or magma composition (Fu et al., 2008; Hofmann et al., 2009). Other thermometers such as Zr-in-rutile (Ferry and Watson, 2007; Zack et al., 2004) and Zr-in-titanite (Hayden et al., 2008) will also be powerful tools for relating temperature to time, though these systems are more sensitive to pressure and subsequent Zr diffusion (Cherniak, 2006; Cherniak et al., 2007). Nonetheless, there is potential for combining these thermometers with U–Pb thermochronology and geochronology to elucidate high-temperature thermal histories that are inaccessible by thermochronology alone (Blackburn et al., 2012b; Meinhold, 2010).

Certainly with the number of labs now interested in conducting LA-ICPMS U–Pb geochronology on non-zircon minerals, new insight will be gained into the growth and cooling histories they record (e.g., Gao et al., 2011; Li et al., 2010; Poujol et al., 2010). Advances in this field will arise from more seamless integration of geochemical data with geochronological data from the exact same volume of analyzed material. One method recently developed is to split the aerosol stream arising from laser ablation and feed it into two ICPMSs – one for geochemical analysis and a multicollector instrument dedicated to U–Pb and Hf isotopic measurements (Yuan et al., 2008). Methods integrating ID-TIMS U–Pb measurements with trace element analysis by solution ICPMS (ID-TIMS-TEA) from the same volume of material can provide geochemical data coupled with high-precision dates (Schoene et al., 2010b, 2012), which build on previous efforts that retain aliquots containing isotopes and elements during ion separation chemistry for subsequent analysis (Amelin, 2009; Amelin et al., 1999; Crowley et al., 2006; Heaman et al., 1990; Lanzirotti and Hanson, 1996). These latter techniques emphasize the importance of integrating multiple methods – high spatial resolution with high temporal resolution (Figure 16d) – to gain a richer understanding of the geochemical, structural, and thermal history of rocks with time.

4.10.6.3 Detrital Zircon Analysis

LA-ICPMS provides a fast and affordable way to generate a huge amount of U–Pb isotopic data, which is ideal for characterizing complex detrital zircon populations (Pedo et al., 2003). Because of the availability of and excitement for detrital zircon studies, one may speculate that the sharp increase in U–Pb publications relative to other geochronologic methods shown in Figure 1 is strongly influenced by this application. Gehrels (2011) outlines three main motivations for detrital zircon studies: (1) to characterize the provenance of sediment compared to known sources, (2) to correlate sedimentary units, assuming identical provenance, and (3) to quantify the maximum depositional age of strata in the absence of datable volcanic material.

Provenance studies have proven useful in paleogeographic reconstructions, identifying tectonically induced drainage pattern switches, placing time constraints on uplift, and fingerprinting pulses of magmatism (e.g., Bruguier et al., 1997; DeGraaff-Surpless et al., 2002; Dickinson and Gehrels, 2003; Ireland et al., 1998; LaMaskin, 2012; Rainbird et al., 1992; Stewart et al., 2001). Using detrital zircons to correlate sedimentary strata has been a powerful tool for paleogeographic reconstructions (Murphy et al., 2004) and has led to improved tectonic models for orogenic belts such as the Himalaya, where the difficulty of correlating sedimentary sequences along strike has hindered an understanding of precollision basin geometries (DiPietro and Isachsen, 2001; Gehrels et al., 2003; Long et al., 2011; Myrow et al., 2009).

In the absence of datable ash beds, detrital zircon geochronology can provide maximum ages for deposition of sedimentary strata (Robb et al., 1990), which is aided by analyzing a large number of zircons (e.g., >100) and thus is not ideally done by ID-TIMS (Dickinson and Gehrels, 2009; Hervé et al., 2003). In studies where higher-precision time constraints are required, it is possible to target the youngest zircon population, identified by LA-ICPMS or SIMS, for ID-TIMS analysis.

Despite the successes of detrital zircon analysis, several challenges still remain. There is currently no consensus on the best way to interpret detrital zircon spectra in terms of the significance of peak heights (when plotted on probability density function diagrams; Figure 17), differences in the relative abundances of peaks between samples in stratigraphic succession, or what statistics can be applied to spectra (Gehrels, 2011). Furthermore, several recent studies on modern sediments highlight the impact that biased provenance sampling, especially with low sampling resolution (Hietpas et al., 2011b; Moecher and Samson, 2006), and grain-size sorting during sediment transport can have on depositional age interpretations.
(Hietpas et al., 2011b). As workers continue to decide how to interpret detrital zircon spectra quantitatively and apply statistical models to these data, equal effort could be applied to understanding these sources of ‘geologic’ bias. The addition of other detrital minerals such as monazite will also likely play a role in deciphering ages and provenance of sedimentary units (Hietpas et al., 2010, 2011a; Suzuki and Adachi, 1994; White et al., 2001).

The abundance of detrital and bedrock zircon U–Pb data produced by in situ methods, especially when coupled with isotopic tracers such as Hf and O, has also supplied new constraints on the rates and mechanisms of continental growth through Earth history (see also Chapter 4.11). Tens of thousands of zircon U–Pb (Figure 17) and Hf analyses have been used to spark debates about pulsed continental growth versus preservation bias, and growth models such as subduction versus plume-related crust production (Beloussova et al., 2010; Condie et al., 2009, 2011; Dhuime et al., 2012; Hawkesworth et al., 2006), subduction during major geodynamic events (e.g., the Eocene–Oligocene boundary) (Hawkesworth et al., 2011), and the preservation of juvenile crust in the lower crust (Condie et al., 2009; Dhuime et al., 2012; Hawkesworth et al., 2006; Lancaster et al., 2011; Voice et al., 2011).

4.10.6.4 Lithospheric Thermal Evolution Through U–Pb Thermochronology

The U–Th–Pb system has the unique quality that several high-temperature minerals undergo significant diffusive loss of Pb at mid- to lower-crustal temperatures, but become retentive near Earth’s surface (Figure 18(a)). These minerals may therefore be exploited for U–Pb thermochronology, which is based on temperature-sensitive volume diffusion of Pb through the crystal lattice. Diffusion kinetics of Pb have been determined experimentally (Cherniak, 1993; Cherniak and Watson, 2000, 2001; Cherniak et al., 1991), yielding nominal closure temperatures \(T_c \) (Dodson, 1973, 1986) for apatite \(T_c = 450–550 ^\circ C \), rutile \(T_c = 400–500 ^\circ C \) (though see Blackburn et al., 2012b, whose values are used in Figure 18; Schmitz and Bowring, 2003a), and titanite \(T_c = 550–650 ^\circ C \) (Figure 18(a)). These are broadly consistent with empirical measurements and intercalibration with \(40Ar/39Ar \) dates in hornblende \(T_c = 450–550 ^\circ C \) (Harrison, 1981). The relatively high closure temperatures of these minerals make them suitable to track mid- to lower-crustal cooling and exhumation over billions of years (Figure 18(b)).

Early workers recognized that titanite and apatite could be robust U–Pb geochronometers (Catanzaro and Hanson, 1971; Hanson et al., 1971; Oosthuyzen and Burger, 1973; Tilton and Grunenfelder, 1968), but more widespread application of these minerals for calibrating postorogenic cooling and exhumation was not employed until much later (Corfu, 1988; Corfu et al., 1985; Mezger et al., 1989, 1991; Tucker et al., 1986). Mezger et al. (1989) recognized that rutile dates were grain size-dependent, as predicted by Dodson (1973), suggesting that volume diffusion was the primary mechanism of Pb loss in this mineral, allowing more quantitative analysis of temperature time paths in this system. Kooijman et al. (2010) measured age gradients within single rutile by LA-ICPMS in support of volume diffusion as the Pb loss mechanism, and calculated time-dependent cooling histories of \(< 1 ^\circ C \cdot My^{-1} \) during post-Grenvillian stabilization in eastern Canada. Chamberlain and Bowring (2000) measured U–Pb cooling ages in apatite and titanite across several terranes in the western United States and also calculate very slow cooling rates of \(< 0.3 ^\circ C \cdot My^{-1} \) following \(\sim 1.4 \) Ga continental assembly. Hawkins and Bowring (1999) exploited the variation of age with grain size in titanite to extract quantitative temperature–time histories during \(\sim 1.6 \) Ga post-metamorphic cooling paths in the Grand Canyon, USA. This property was also utilized by Schoene and Bowring (2007) in both apatite and titanite from the same \(\sim 3.2 \) Ga rock in Swaziland, and they used a finite-difference forward-diffusion model to derive a unique nonlinear \(T-t \) path during exhumation from the lower to the upper crust. These studies are consistent with models for long-term structural and thermal resilience of cratonic lithosphere (Artemieva, 2011; Jordan, 1988), though rocks collected at the surface often do not capture the more recent thermal history of the middle and lower crust, required to address the importance of lithospheric reheating events (Heizler et al., 1997; Schmitz and Bowring, 2003b; Shaw et al., 2004).

In a novel application of U–Pb thermochronology, Schmitz and Bowring (2003a) determined cooling histories of rutile from lower-crustal xenoliths in the Kaapvaal craton. These data were used to calibrate the relaxation of cratonic geotherms following mid-Proterozoic thermal perturbation and subsequent Mesozoic lithospheric heating coincident with kimberlite eruption. Blackburn et al. (2011) conducted a similar study on kimberlite-borne lower crustal xenoliths from the Rocky Mountain region, USA. Using rutile U–Pb dates from three xenoliths, each representing different crustal depths, they employed a finite difference diffusion model to show that systematic discordance spanning \(> 1 \) Ga is inconsistent with Pb loss from reheating events. Instead, they fit \(T-t \) paths to the rutile data to illustrate that \(\sim 0.1 ^\circ C \cdot My^{-1} \) cooling in the lower crust is required and that the results fit the analytical solution for diffusive Pb loss derived by Tilton (1960, Figure 18(c)). A subsequent contribution coupled these and other U–Pb thermochronometric data to model extremely long-term cratonic exhumation rates of \(< 2 \) m My\(^{-1} \) (Blackburn et al., 2012a).

Though U–Pb thermochronology is a powerful and underutilized tool for understanding the long-term thermal history of continents, as outlined in Section 4.10.6.2, the minerals titanite, apatite, and rutile can be involved in numerous metamorphic reactions, complicating their interpretation in some rocks. Additionally, there is still debate regarding the closure temperatures of rutile (Blackburn et al., 2012b; Cherniak and Watson, 2000; Schmitz and Bowring, 2003a; Vry and Baker, 2006), and examples of retention of radiogenic Pb in titanite through granulite grade metamorphic events are confounding (Kylvander-Clark et al., 2008; Tucker et al., 1986).

4.10.6.5 Calibrating the Archean

There is general consensus that Earth’s heat budget was higher in the Archean and that there must have been some transitional period with regard to tectonic processes following Earth’s accretion to the relatively well-understood modern system. Our understanding of tectonic and magmatic processes in the Archean is hampered in part because the precision of geochronology in such old rocks is limited. In order to make robust comparisons with potential modern-day analogues for Archean terranes, it is necessary to produce time constraints relevant to the pace of plate tectonics.
The test of open-system behavior that is afforded by the dual decay of 235U to 207Pb and 238U to 206Pb is highly beneficial in Archean rocks because Pb loss results in a spread of data that falls far from the concordia curve. Pb loss in Archean zircons is ubiquitous, and because it is common for these minerals to also record complex polymetamorphic growth histories, single whole-grain analysis by TIMS has traditionally been difficult. Isolating the timing of multiple growth events is best done through textural imaging in grain mount or thin section, followed by U–Pb dating by SIMS or LA-ICPMS, but these analytical techniques are limited to a few percent precision. When coupled with Pb loss that may be masked by low precision, untangling the sequence of events during a single orogenic episode in the Archean is rarely possible.

The chemical-abrasion method (CA-TIMS; Mattinson, 2005; Section 4.10.5.5) has vastly improved our ability to resolve Pb loss by ID-TIMS in otherwise terminally discordant zircons. Leaching old radiation-damaged grains in HF frequently removes >90% of the original zircon, leaving <5 μm fragments of low-U zircon (Schoene and Bowring, 2007, 2010; Schoene et al., 2008). Analytical precision of U–Pb dates on such low-U (and therefore low-Pb) residues is, on average, 0.1–0.2%, compared to <0.1% precision of younger, higher-U zircon with greater intensity Pb ion beams. This level of precision is not ideal for age determination, but is adequate to resolve concordance in single grains. Establishing concordance for individual analyses permits use of the 207Pb/206Pb date with confidence in its accuracy, and this is by far the most precise date available for Archean rocks (Mattinson, 1987). Relatively high amounts of 206Pb* and 207Pb* in old zircons, along with modern sub-picogram Pb blanks, allows for precision in 207Pb/206Pb dates as low as 0.01% for weighted means of less than five analyses. Therefore, when analyzing zircons with relatively simple growth histories (i.e., single-stage growth), CA-TIMS analysis has the potential to resolve Archean events within 1 Ma of each other – essential when addressing typical, short-duration tectonic episodes or magmatic events.

Application of CA-TIMS with <1 Ma resolution, combined with field mapping and geochemistry, has resolved timescales of batholith construction through pulses of tonalitic to granodioritic magma during syngmatic contraction ~3.2 Ga in the eastern Kaapvaal craton (Schoene and Bowring, 2010; Schoene et al., 2008; Figure 19). Furthermore, high-precision geochronology coupled with geochemistry provides a means of time-series analysis of Archean magmatic events that can be used to evaluate the geochemical evolution of the magmatic function of time during relaxation from a hot geotherm to a cold geotherm over 2 Ga. Limits of colored envelopes encompass the PRZ for 10–50 μm grains using diffusion kinetics cited in the text. (c) Actual rutile U–Pb data from middle to lower crustal xenoliths from Blackburn et al. (2011) compared to the results of a numerical diffusion model. Black and white symbols are measured data from samples originating from various crustal depths, and colored circles show the range of closure times for 10–50 μm grains from variable crustal depth for a conductively relaxing geotherm given no surface erosion (Blackburn et al., 2011, 2012a,b). Note the good agreement between measured rutile dates and modeled dates, which preclude significant reheating as a source of discordance of the real data. All uncertainties are 2σ.

Figure 18 U–Pb thermochronology applied to craton thermal evolution. (a) Temperature versus depth through a generic cratonic lithosphere illustrating advective 'hot' geotherms compared to steady-state conductive 'cold' cratonic geotherms for different surface heat flow values (mW m$^{-2}$). Intersection of geotherms with mantle adiabat defines the base of the thermal lithosphere. Graphite/diamond transition shown as dotted line. Nominal closure temperatures for U–Pb thermochronometers shown as vertical colored lines (references in text). (b) An example showing how the 206Pb/207U partial retention zones (PRZ) of each thermochronometer move downward through the crust as a function of time during relaxation from a hot geotherm to a cold geotherm over 2 Ga. Limits of colored envelopes encompass the PRZ for 10–50 μm grains using diffusion kinetics cited in the text. (c) Actual rutile U–Pb data from middle to lower crustal xenoliths from Blackburn et al. (2011) compared to the results of a numerical diffusion model. Black and white symbols are measured data from samples originating from various crustal depths, and colored circles show the range of closure times for 10–50 μm grains from variable crustal depth for a conductively relaxing geotherm given no surface erosion (Blackburn et al., 2011, 2012a,b). Note the good agreement between measured rutile dates and modeled dates, which preclude significant reheating as a source of discordance of the real data. All uncertainties are 2σ.
system, which is critical for evaluating the tectonic process. Comparison of these data to the tempo of batholith construction observed in Mesozoic and Cenozoic arcs reveals a striking similarity (Figure 19). Further detailed analysis of the geochemical and structural evolution of Archean magmatic systems with high temporal resolution will provide a means to further test hypotheses regarding plate-tectonic versus plume-related lithospheric evolution through Earth history.

Acknowledgments

Though the (completely objective) views in this chapter are my own, I am tremendously lucky to have interacted with and learned from an amazing team of geochronologists at MIT and University of Geneva over the past dozen years. I am also extremely fortunate to have been supported and taught by a spectrum of people including the pioneers and up-and-comers in isotope geology through the EARTHTIME consortium, thoughtful paper reviews, and many fruitful international meetings. Although it is impossible to cover such a rich field of science in such a short document, I apologize for all the oversights and omissions in this chapter. R. Rudnick is thanked for both the invitation to write this chapter and her subsequent patience. Discussions with N. McLean and his comments on the manuscript are greatly acknowledged. Very thoughtful reviews by L. Heaman and Y. Amelin are gratefully acknowledged. Data for Figure 9 was compiled with the help of M. Barbón, J. Husson, and C.B. Keller. Thanks to G. Gehrels, T. Blackburn, and M. Schmitz for providing Figures 11, 18(b), 18(c), and 18(a), respectively. This work is dedicated to my grandfather, M.A. Bayly, who passed away during its writing. He is an inspiration for those who aspire to greatness in support of their family, community, and profession.

References

Vavra G, Gebauer D, Schmid R, and Compton W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in