Invention sorts microscopic particles with speed and precision

In a remarkable collaboration between engineers, physicists and biologists, Princeton scientists have invented a device that rapidly sorts microscopic particles into extremely fine gradations of sizes, opening a range of potential uses.

The researchers have used the device to sort particles ranging in size from bacterial cells to large segments of DNA and reported their results in the May 14 issue of Science. The technology could greatly accelerate the work of sequencing genomes and could find uses in many other areas, from improving the performance of pharmaceuticals to detecting bioterrorism agents.

Until now there was no way to sort large quantities of molecules or cells by size with such speed and precision, according to the researchers. Current methods separate particles only according to major differences in size and, for particles such as DNA, can take hours to perform. The Princeton invention can distinguish large quantities of particles that are 1.00 micrometer (a millionth of a meter) from others that are 1.005 microns in a matter of seconds.

The device is dubbed a "tango array" for the precise choreography it imposes upon particles.

More details are available in a news release.

Contact: Eric Quinones (609) 258-3601