Imperfect Randomized Algorithms for Optimal Control of Wireless Networks

Atilla Eryilmaz
(Ohio State University)

Joint work with:
Asu Ozdaglar, Devavrat Shah, Eytan Modiano
(Massachusetts Institute of Technology)
Outline

- Wireless Network Model
- Part 1 – Optimization-based Network Control
 - (Dynamic) Network Optimal Control (NOC) Problem
 - (Static) Network Utility Maximization (NUM) Problem
 - Optimal solution for NOC through Dual-NUM
 - Problem – Assumes high-complexity, centralized computations
- Part 2 – Impact of Randomized Implementations
 - Description of a class of randomized algorithms amenable to low-complexity, distributed implementation
 - Optimality characteristics under randomized implementation
- Summary & Conclusions
Outline

- Wireless Network Model

- Part 1 – Optimization-based Network Control
 - (Dynamic) Network Optimal Control (NOC) Problem
 - (Static) Network Utility Maximization (NUM) Problem
 - Optimal solution for NOC through Dual-NUM
 - Problem – Assumes high-complexity, centralized computations

- Part 2 – Impact of Randomized Implementations
 - Description of a class of randomized algorithms amenable to low-complexity, distributed implementation
 - Optimality characteristics under randomized implementation

- Summary & Conclusions
Wireless Network Model

\[\mathcal{F} \]
\[g = (\mathcal{N}, \mathcal{L}) \]

Mean Rate:
\[\bar{x}_f \]
\[b(f) \]

\[e(f) \]

\[U_f(\cdot) \] is a strictly concave, non-decreasing function that measures the utility of Flow-\(f\) as a function of its mean rate.
Wireless Network Model

F
$g = (N, L)$

- S: Set of feasible link activation vectors (or feasible schedules)
- Schedule of slot t, denoted $\pi[t] = (\pi_{(i,j)}[t])_{(i,j) \in L}$, must be in S, $\forall t$
- $\Pi = \text{Convex Hull}\{ S \}$: Achievable mean link rates
- A scheduling policy P is a mapping from the current “state” of the system to feasible schedules
- Let \mathcal{P} denote the set of all scheduling policies
Each node maintains a queue for each destination node.

The evolution of a queue length is described by

\[q_i^d[t+1] = q_i^d[t] + x_{\text{into}(i)}^{(d)}[t] + \pi_{\text{into}(i)}^{(d)}[t] - \pi_{\text{out}(i)}^{(d)}[t] \]
Definitions

- A queue, say q_i^d, is **stable** if

 $$\limsup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} q_i^d[t] < \infty$$

- A **queue-length based flow control policy** $X : q \to [0, M] |F|$ is a mapping from queue-lengths to feasible rates.

- Let \mathcal{X} denote the set of all queue-length-based flow control policies.

- Then, the queue-length evolution for a given scheduling policy P, can be written as

 $$q[t + 1] = f(q[t], P, X(q[t]))$$

 for some function f
Outline

Wireless Network Model

Part 1 – Optimization-based Network Control
- (Dynamic) Network Optimal Control (NOC) Problem
- (Static) Network Utility Maximization (NUM) Problem
- Optimal solution for NOC through Dual-NUM
- Problem – Assumes high-complexity, centralized computations

Part 2 – Impact of Randomized Implementations
- Description of a class of randomized algorithms amenable to low-complexity, distributed implementation
- Optimality characteristics under randomized implementation

Summary & Conclusions
Network Optimal Control (NOC) Problem

where

\[
\max_{X \in X, P \in P} \sum_{f \in \mathcal{F}} U_f(\bar{x}_f)
\]

s.t.

\[
q[0] \equiv 0, \quad t \in \mathbb{Z}_+, \\
q[t + 1] = f(q[t], P, X(q[t])), \\
\limsup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} q_i^d[t] < \infty, \quad \forall i, d \in \mathcal{N},
\]

where \(\bar{x}_f := \liminf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} x_f[t]. \)
Network Utility Maximization (NUM) Problem

- Define the **optimal mean rate vector** x^* as

$$x^* \in \arg \max_x \sum_{f \in \mathcal{F}} U_f(x_f) \quad \text{s.t.} \quad x \in \Lambda$$

Network Utility Maximization (NUM)
Dual Formulation of NUM

- A Dual function associated with the previous problem is:

\[
D(\lambda) = \sum_{f \in \mathcal{F}} \max_{x_f \geq 0} \{ U_f(x_f) - x_f \lambda^e_b(f) \} \\
+ \max_{\pi \in \Pi} \sum_{(i,j) \in \mathcal{L}} \pi(i,j) \max_{d \in \mathcal{N}} \{ |\lambda^d_i - \lambda^d_j| \}
\]

where we \(\lambda^d_i \) can be interpreted as the price associated with sending a unit rate of flow from node \(i \) to node \(d \).

- Then the Dual Problem is given as:

\[
\min_{\lambda \geq 0} D(\lambda)
\]

- Fact: There is no duality gap, i.e., there exists a nonempty set \(\Psi^* \) such that:

\[
\sum_{f \in \mathcal{F}} U_f(x^*_f) = D(\lambda^*), \quad \forall \lambda^* \in \Psi^*
\]
Sub-gradient Methods to Solve NUM

- Employ Dual (or Primal-Dual) Methods:

\[
\lambda^d_i [t + 1] = \left[\lambda^d_i [t] + \theta_t \left(x^{(d)}_{\text{into}(i)} [t] + \pi^{(d)}_{\text{into}(i)} [t] - \pi^{(d)}_{\text{out}(i)} [t] \right) \right]^+
\]

\[
x_f [t] = \left[U_f^{-1} (\lambda_f [t]) \right]^M_0
\]

where \(\theta_t \) is the step-size, and \(\lambda_f = \lambda^{e(f)} \)

- Then, using results from optimization theory, we have, under appropriate step-size rules,

\[
\lambda \rightarrow \Psi^*, \text{ and } x \rightarrow x^*
\]
Cross-layer Mechanism for NOC

- \(q[t] \) in the network can be interpreted as a scaled version of the prices \(\lambda[t] \)
- Introduce a design parameter \(K \)

\[
\begin{align*}
 w_{(i,j)}[t] &:= \max_{d \in \mathcal{N}} |q_i^d[t] - q_j^d[t]| \\
 q[t] &
\end{align*}
\]

- \(q[t] \approx K \lambda[t] \), and the mechanism solves NOC

Flow Control (Source-\(f \))

\[
x_f[t] = \left[U_f^{-1} \left(\frac{q_f[t]}{K} \right) \right]_0^M
\]

Scheduling/Routing (Network)

\[
\max_{\pi \in \Pi} \sum_{l \in \mathcal{L}} \pi_l w_l[t]
\]
Relevant Literature [partial list] & Complexity Issue

- **Routing/Scheduling** – [Tassiulas, Ephremides ’92], [Neely, Modiano, Rohrs ’03], [Eryilmaz, Srikant ’03], [Ho, Viswanathan ’06], [Eryilmaz, D. Lun ’07]

- **Optimization** – [Kelly, Moullo, Tan ’98], [Low, Lapsley ’99], [Srikant ’04]

- **Cross-Layer** – [Stolyar ’04], [Lin, Shroff ’04], [Eryilmaz, Srikant ’05, ’06], [Neely, Modiano ’05], [Chen, Low, Chiang, and Doyle ’06]

- The solution to $\max_{\pi \in \Pi} \sum_{l \in \mathcal{L}} \pi_l w_l[t]$, assumed in these works, is generally difficult to compute (even NP-hard for many interference models)

- Thus, the cross-layer mechanism is impractical
Outline

- Wireless Network Model
- Part 1 – Optimization-based Network Control
 - (Dynamic) Network Optimal Control (NOC) Problem
 - (Static) Network Utility Maximization (NUM) Problem
 - Optimal solution for NOC through Dual-NUM
 - Problem – Assumes high-complexity, centralized computations
- Part 2 – Impact of Randomized Implementations
 - Description of a class of randomized algorithms amenable to low-complexity, distributed implementation
 - Optimality characteristics under randomized implementation
- Summary & Conclusions
Towards Distributed Implementation

- Several low-complexity schedulers are proposed to provide approximate solutions to

\[
\max_{\pi \in \Pi} \sum_{l \in \mathcal{L}} \pi_l w_l[t]
\]

(e.g. [Lin, Shroff ’05], [Wu, Srikant ’06], [Bui, Eryilmaz, Srikant, Wu ’06], [Gupta, Lin, Srikant ’06], [Modiano, Shah, Zussman ‘06], [Eryilmaz, Ozdaglar, Modiano ‘07], [Sanghavi, Bui, Srikant ’07])

- However, little is done in understanding the optimality properties

- **Our contribution:** Study the optimality performance of a large class of high-performance randomized policies that are amenable to low-complexity and distributed implementation
An Earlier Work

- **γ-Imperfect Scheduler** [Lin, Shroff `05]: Assume that the scheduler picks $\pi[t]$ such that

$$
\sum_{l \in \mathcal{L}} \pi_l[t]w_l[t] \geq \gamma \max_{\pi \in \Pi} \sum_{l \in \mathcal{L}} \pi_l w_l[t], \text{ for some } \gamma \in (0, 1]
$$

(1)

$$
\mathbf{x}^*(\gamma) = \arg \max_{x \in \gamma \Lambda} \sum_f U_f(x_f)
$$

For a given $\varepsilon > 0$,

$$
\sum_f U_f(\bar{x}_f) \geq \sum_f U_f(\mathbf{x}_f^*(\gamma)) - \varepsilon,
$$

where $\bar{x}_f := \lim \inf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} x_f[t]$
Comments

- Greedy Maximal Schedulers are available that satisfy (1) with $\gamma \leq \frac{1}{2}$

- However, these schedulers can perform arbitrarily badly depending on the interference model [Chaporkar, Kar, Sarkar ‘05]

- It is difficult to find low-complexity algorithms that guarantee (1) with γ close to 1.

- We study the network utilization factor of a generic class of randomized schedulers that iteratively improve the schedule as the system evolves
1. Dual Flow Control Policy:

- At each slot t, Flow-f updates its arrival rate as

$$x_f[t] = \left[U_f' - 1 \left(\frac{q_f[t]}{K} \right) \right]^M_0,$$

where K and M are positive design parameters.

- K can be interpreted as a measure of aggressiveness of the flow controller.
2. Generic Randomized Scheduling-Routing Policy:

- Define link weights: \(w_{i,j}[t] = \max_d \left| q_i^d[t] - q_j^d[t] \right| \)
- Let \(\pi^*[t] \in \arg\max_{\pi} \sum_{(n,m) \in \mathcal{L}} \max_{\pi(n,m)} \pi(n,m)[t] \)
- There exists a randomized policy \((R)\) that picks a schedule \(\pi^{(R)}\) satisfying
 \[
P \left(\pi^{(R)} = \pi^*[t] \mid q[t] \right) \geq \delta > 0 \quad \forall q[t].
 \]
- Repeat:
 \[
 \pi^{(R)}[t] \leftarrow \text{Pick a random allocation}
 \]
 \[
 \text{Set } \pi[t] \text{ s.t. } P \left(w[t] \cdot \pi[t] \right) \geq \max \left\{ \left(w[t] \cdot \pi[t-1] \right), \left(1 - \alpha \right) \left(w[t] \cdot \pi^{(R)}[t] \right) \right\} \geq (1 - \eta)
 \]
 \[
 t \leftarrow t + 1;
 \]

PICK

COMPUTE

COMPARE
Visualization – Picking $\pi[t]$

$w[t-1] \rightarrow w[t]$

L

$\pi[t]_1$

$w[t] \cdot \pi[t-1]$

$(1-\alpha) (w[t] \cdot \pi^{(R)})$

\bigwedge

\mathcal{S}

Sack of Feasible Schedules

$P(\pi^{(R)}=\pi^{*}[t]) \geq \delta$

w.p. η
Main Result

Under the Generic Randomized Cross-layer Controller, we have

$$\sum_f U_f(\bar{x}_f) \geq \sum_f U_f \left(x_f^* \left(1 - \alpha - 2\sqrt{\frac{\eta}{\delta}} \right) \right) - \frac{M^2|\mathcal{L}|}{2K},$$

where $\bar{x}_f := \liminf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} x_f[t]$.

Shows that the network utilization factor γ satisfies

$$\gamma = 1 - \alpha - 2\sqrt{\frac{\eta}{\delta}}$$

Easy to design low-complexity schedulers with $\gamma \approx 1$
Example Algorithms

- [Modiano, Shah, Zussman ’06] –
 - First-order interference model with $\eta=\alpha=0$, $\delta>0$

- [Eryilmaz, Ozdaglar, Modiano ’07] –
 - General interference model with $\eta=\alpha=0$, $\delta>0$

- [Modiano, Shah, Zussman ’06] – Gossip Algorithms
 - η and α can be set to arbitrarily small values at the expense of slower convergence

- [Sanghavi, Bui, Srikant `07] –
 - First-order interference model with $\eta=0$, $\alpha=1/m$, $\delta>0$ for a design parameter m
Summary – A roadmap

Wireless Network

Network Optimal Control (NOC) [Dynamic]

Low-complexity Generic class of Randomized Implementations parametrized with \((\eta,\alpha,\delta)\)

Network Utility Max. (NUM) [Static]

Flow Control, Routing Scheduling

Duality Theory/ Dual Methods

Lagrange Multipliers

Iterative Methods [Dynamic]

Queue Evolutions

Queue lengths

Optimality Properties of the Cross-layer Protocol as an explicit function of \((\eta,\alpha,\delta)\)
Conclusions & Future Directions

- Identified the relationship between the degree of optimality and the algorithm parameters
- Observed that high degree of optimality is achievable with these schedulers with low-complexity implementations
- Development of other schedulers with favorable qualities in terms of metrics of interest (e.g. complexity, delay, rate of convergence) that fit into this framework
Thank you!

Questions?
Supplemental Slides
Translation of Π to Λ

\[x = (x_{b(f)}^{e(f)})_f \geq 0 \in \Lambda \text{ if} \]

there exists a $\pi \in \Pi$ for which we have:

\[x_i^d + \pi_{\text{into}}^d(i) \leq \pi_{\text{out}}^d(i), \quad d, i \in \mathcal{N} \]

(Flow Conservation Constraints)