
ORF 523 Lecture 4 Spring 2015, Princeton University

Instructor: A.A. Ahmadi

Scribe: G. Hall Tuesday, February 16, 2016

When in doubt on the accuracy of these notes, please cross check with the instructor’s notes,

on aaa. princeton. edu/ orf523 . Any typos should be emailed to gh4@princeton.edu.

Consider the general form of an optimization problem:

min. f(x)

s.t. x ∈ Ω.

The few optimality conditions we’ve seen so far characterize locally optimal solutions. (In

fact, they do not even do that since we did not have a “necessary and sufficient” condition).

But ideally, we would like to make statements about global solutions. This comes at the

expense of imposing some additional structure on f and Ω. By and large, the most successful

structural property that we know of that achieves this goal is convexity. This motivates an

in-depth study of convex sets and convex functions. In short, the reasons for focusing on

convex optimization problems are as follows:

• They are close to being the broadest class of problems we know how to solve efficiently.

• They enjoy nice geometric properties (e.g., local minima are global).

• There’s excellent software that readily solves a large class of convex problems.

• Numerous important problems in a variety of application domains are convex!

1 From local to global minima

1.1 Definition

Definition 1. A set Ω ⊆ Rn is convex, if for all x, y ∈ Ω and ∀λ ∈ [0, 1]

λx+ (1− λ)y ∈ Ω.

A point of the form λx+ (1−λ)y, λ ∈ [0, 1] is called a convex combination of x and y. As λ

varies between [0, 1], a “line segment” is being formed between x and y as shown in Figure 1.
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Figure 1: Convex sets and convex combinations.

Definition 2. A function f : Rn → R is convex if its domain dom(f) is a convex set and

for all x, y ∈ dom(f) and ∀λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Geometrically, the line segment connecting (x, f(x)) to (y, f(y)) should sit above the graph

of the function.

Figure 2: An illustration of the definition of a convex function.

Theorem 1. Consider an optimization problem

min. f(x)

s.t. x ∈ Ω,

where f is a convex function and Ω is a convex set. Then, any local minimum is also a global

minimum.

Proof: Let x̄ be a local minimum.

⇒ x̄ ∈ Ω and ∃ε > 0 s.t. f(x̄) ≤ f(x) ∀x ∈ B(x̄, ε).
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Suppose for the sake of contradiction that ∃z ∈ Ω with

f(z) < f(x̄).

Because of convexity of Ω, we have

λx̄+ (1− λ)z ∈ Ω, ∀λ ∈ [0, 1].

By convexity of f , we have

f(λx̄+ (1− λ)z) ≤ λf(x̄) + (1− λ)f(z)

< λf(x̄) + (1− λ)f(x̄) = f(x̄).

But, as λ→ 1, (λx̄+ (1− λ)z)→ x̄ and the previous inequality contradicts local optimality

of x̄. �

This theorem, as simple as it is, is one of the most important theorems in convex analysis.

Let’s now delve deeper in the theory of convex sets and convex functions.

2 Convex sets

If you refer back to the definition of a convex set, you see that the condition is required

∀x, y ∈ Ω and ∀λ ∈ [0, 1]. Under mild conditions, it is possible to fix λ to a constant.

2.1 Midpoint convexity

Definition 3. A set Ω ⊆ Rn is midpoint convex if for all x, y ∈ Ω, the midpoint between x

and y is also in Ω. In other words,

x, y ∈ Ω⇒ 1

2
x+

1

2
y ∈ Ω.

It’s clear that convex sets are midpoint convex. But the converse is also true except in

pathological cases.

Figure 3: Intuition
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Theorem 2. A closed midpoint convex set Ω is convex.

Proof: Pick x, y ∈ Ω, λ ∈ [0, 1]. For any integer k, define λk to be the k-bit rational number

closest to λ:

λk = c12−1 + c22−2 + . . .+ ck2
−k,

where ci ∈ {0, 1}. Then for all k, λkx + (1 − λk)y ∈ Ω as we can apply midpoint convexity

k times recursively.

As k →∞, λk → λ. By closedness of Ω, we conclude that λx+ (1− λ)y ∈ Ω. �

Remark: An example of a midpoint convex set that’s not convex is the set of all rationals in

[0, 1].

2.2 Common examples of convex sets

The following sets are convex (prove convexity in each case):

• Hyperplanes:{x| aTx = b} (a ∈ Rn, b ∈ R, a 6= 0)

• Halfspaces: {x| aTx ≤ b} (a ∈ Rn, b ∈ R, a 6= 0)

• Euclidian balls: {x| ||x− xc|| ≤ r} (xc ∈ Rn, r ∈ R, ||.|| is the 2-norm)

• Ellipsoids: {x|
√

(x− xc)TP (x− xc) ≤ r} (xc ∈ Rn, r ∈ R, P � 0)

Proof: Define ||x||P =
√
xTPx. This is a norm (as you proved on the homework!).

As this set is closed, it suffices to show midpoint convexity. Pick x, y ∈ S. We have

||x− xc||P ≤ r and ||y − xc||P ≤ r. Then∣∣∣∣∣∣∣∣x+ y

2
− xc

∣∣∣∣∣∣∣∣
P

=

∣∣∣∣∣∣∣∣12x− 1

2
xc +

1

2
y − 1

2
xc

∣∣∣∣∣∣∣∣
P

≤ 1

2
||x− xc||P +

1

2
||y − xc||P

≤ 1

2
r +

1

2
r = r.

• The set of symmetric positive semidefinite matrices:

Sn×n+ = {P ∈ Sn×n | P � 0}.

Proof: Let A � 0, B � 0 and λ ∈ [0, 1]. (Again, it would be enough to look at λ = 1
2

as the set is closed.) Pick any y ∈ Rn. Then,

yT (λA+ (1− λ)B) y = λyTAy + (1− λ)yTBy ≥ 0.
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• The set of nonnegative polynomials in n variables and of degree d. (A

polynomial p is nonnegative, if p(x) ≥ 0,∀x ∈ Rn.)

• The set of optimal solutions of the problem minx∈Ω f(x) where f is convex and

Ω is a convex set.

• Proving convexity of a set is not always easy like our previous examples. For instance,

for n > 2, fix any Q1, Q2 ∈ Sn×n: try to show that the following set in R2 is convex

S = {(xTQ1x, x
TQ2x) | ||x|| = 1}.

In Figure 4g, you can see an example of what the set S can look like in the case of two

quadratics in four variables.

• Interestingly, the analogue of the statement above would fail to be true if we had three

quadratic maps or for two polynomial maps of higher degree.

The following theorem (which we will prove later) shows that indeed testing convexity of

sets can be a very computationally demanding task.

Theorem 3 ([1]). Given a multivariate polynomial p of degree 4, it is NP-hard to test

whether the set {x| p(x) ≤ 1} is convex.
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(a) A hyperplane (b) A halfspace (c) A Euclidian ball

(d) An ellipsoid

(e)

{
(x, y, z) |

(
x y

y z

)
� 0

}
(Image credit: [3])

(f) Matlab code to generate S (g) The set S generated by this Matlab code

Figure 4: Examples of convex sets
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2.3 Operations on convex sets

It is very easy to see that the intersection of two convex sets is convex:

Ω1 convex, Ω2 convex⇒ Ω1 ∩ Ω2 convex.

Proof: Pick x ∈ Ω1 ∩ Ω2, y ∈ Ω1 ∩ Ω2. We have, for all λ ∈ [0, 1]:

λx+ (1− λ)y ∈ Ω1 because Ω1 is convex, λx+ (1− λ)y ∈ Ω2 because Ω2 is convex

⇒ λx+ (1− λ)y ∈ Ω1 ∩ Ω2. �

This statement is also true for infinite intersections. Obviously the union of two convex sets

may not be convex.

Similarly, it is easy to show that the Minkowski sum of two convex sets is convex.

Example: Polyhedra

• A polyhedron is the solution set of finitely many linear inequalities. These sets are

very important sets in optimization theory. as they form the feasible sets of linear

programs.

• A polyhedron can be written in the form

{x| Ax ≤ b}

where A is an m× n matrix and b is an m× 1 vector.

• These sets are convex as they are the intersection of halfspaces aTi x ≤ bi, where aTi is

the ith row of A.

Figure 5: An example of a polyhedron
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2.4 Epigraphs

The notion of epigraphs nicely connects the concepts of convex functions and convex sets.

Definition 4. The epigraph epi(f) of a function f : Rn → R is a subset of Rn+1 defined as

epi(f) = {(x, t) | x ∈ domain(f), f(x) ≤ t}.

Figure 6: Examples of epigraphs

Theorem 4. A function f : Rn → R is convex if and only if its epigraph is convex (as a

set).

Proof:

(⇒) Suppose epi(f) not convex ⇒ ∃(x, tx), (y, ty), λ ∈ [0, 1] s.t. f(x) ≤ tx, f(y) ≤ ty and

(λx+ (1− λ)y, λtx + (1− λty) /∈ epi(f)

⇒f(λx+ (1− λ)y) > λtx + (1− λ)ty ≥ λf(x) + (1− λ)f(y).

This implies that f is not convex.

(⇐) Suppose f is not convex ⇒ ∃x, y ∈ dom(f), λ ∈ [0, 1] s.t.

f(λx+ (1− λ)y) > λf(x) + (1− λ)f(y). (1)

Pick (x, f(x)), (y, f(y)) ∈ epi(f). Then

(1)⇒ (λx+ (1− λ)y, λf(x) + (1− λ)f(y)) /∈ epi(f).

�
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2.5 Convexity of sublevel sets

Definition 5. The α-sublevel set of a function f : Rn → R is the set

Sα = {x ∈ domain(f) | f(x) ≤ α}.

(a) Sublevel set of a function in one

dimension

(b) Sublevel sets of a bivariate

function

Figure 7: Examples of sublevel sets

Theorem 5. If a function f : Rn → R is convex then all its sublevel sets are convex sets.

Proof: Pick x, y ∈ Sα, λ ∈ [0, 1].

x ∈ Sα ⇒ f(x) ≤ α; y ∈ Sα ⇒ f(y) ≤ α

f convex⇒f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

≤ λα + (1− λ)α

= α

⇒ λx+ (1− λ)y ∈ Sα.

A function whose sublevel sets are all convex is called quasiconvex. Although convexity

implies quasiconvexity, the converse is not true. See Figure 8.

2.6 Convex hulls

Given x1, . . . , xm ∈ Rn, a point of the form λ1x1 + . . . + λmxm with λi ≥ 0,
∑

i λi = 1 is

called a convex combination of the points x1, . . . , xm.

9



Figure 8: Examples of quasiconvex functions that are not convex

Lemma 1. A set S ⊆ Rn is convex iff it contains every convex combination of its points.

Definition 6. The convex hull of a set S ⊆ Rn, denoted by conv(S), is the set of all convex

combinations of the points in S:

conv(S) = {
m∑
i=1

λixi | xi ∈ S, λi ≥ 0,
∑

λi = 1}.

Theorem 6 (Carathéodory, 1907). Consider a set S ⊆ Rd. Then every point in conv(S)

can be written as a convex combinaiton of d+ 1 points in S.

Proof: We give the standard proof as it appears, e.g., in [2]. Let x ∈ conv(S), then

x = α1y1 + . . .+ αmym,

for some αi ≥ 0,
∑

i αi = 1, and yi ∈ S. If m ≤ d + 1, we are done (why?). Suppose

m > d + 1. We’ll give another representation of x using m − 1 points. An iteration of this

idea would finish the proof.

Consider the system of d+ 1 equations:γ1y1 + . . .+ γmym = 0

γ1 + . . .+ γm = 0

in m variables γi ∈ R. As m > d+1, this system has infinitely many solutions. Let γ1, . . . , γm

be any nonzero solution. We must have γi > 0 for some i (why?). Let

τ = min
i

{
αi
γi

: γi > 0

}
:=

αi0
γi0

.
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Let λi = αi − τγi for i = 1, . . . ,m.

Claims:

(i) λi ≥ 0, (ii)
m∑
i=1

λi = 1, (iii)
∑

λiyi = xi, (iv) λi0 = 0.

(i) λi = αi −
αi0

γi0
γi ≥ αi − αi

γi
γi = 0.

(ii)
∑
λi =

∑
αi − τ

∑
γi =

∑
αi = 1.

(iii)
∑
λiyi =

∑
(αi − τγi)yi =

∑
αiyi − τ

∑
γiyi = x.

(iv) λi0 = αi0 −
αi0

γi0
γi0 = 0.

�

Theorem 7. The convex hull of S is the smallest convex set that contains S; i.e., if B is

convex and S ⊆ B, then conv(S) ⊆ B.

The proof is an exercise on the homework. Let us just show that conv(S) is convex.

Pick x, y ∈ conv(S). This implies:

x = µ1u1 + . . .+ µkuk, ui ∈ S, µi ≥ 0,
∑

µi = 1

y = η1v1 + . . .+ ηmvm, vi ∈ S, ηi ≥ 0,
∑

ηi = 1

Let λ ∈ [0, 1].

λx+ (1− λ)y = λµ1u1 + . . .+ λµkuk + (1− λ)η1v1 + . . .+ ηmvm

where ui, vi ∈ S, λiµi ≥ 0, (1− λi)ηi ≥ 0 and

λ
∑

µi + (1− λ)
∑

ηi = λ+ (1− λ) = 1.

�

Theorem 8. Let l : Rn → R be a linear function and Ω ⊂ Rn a compact set. Then,

min
x∈Ω

l(x) = min
x∈conv(Ω)

l(x).
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(You can remove the compactness assumption and replace “min” with “inf”.)

Proof: It is clear that RHS ≤ LHS as we are optimizing over a larger set (S ⊆ conv(S)). To

show that LHS ≤ RHS, let

x̄ ∈ argminx∈conv(Ω)l(x).

Then,

x̄ =
k∑
i=1

λiyi, with yi ∈ Ω,
∑

λi = 1, λi ≥ 0.

RHS = l(x̄) = l(
∑

λiyi) =
∑

λil(yi)

≥
∑

λi min
i
l(yi)

= min
i
l(yi)

≥ LHS.

where we used for the last inequality that yi ∈ S. �.

Consider a general optimization problem

min
x
f(x)

s.t. x ∈ Ω.

We can first rewrite it in the so-called “epigraph form” :

min
x,α

α

s.t. x ∈ Ω, f(x) ≤ α.

These problems are equivalent in the sense that they achieve the same optimal value and

one can map any optimal solution of one to the other. Notice that in the new problem, the

objective is linear. We can rewrite it again (via Theorem 8):

min
x,α

α

s.t. (x, α) ∈ conv{x ∈ Ω, f(x) ≤ α}.
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Note that the objective is linear and the feasible set is convex! So we rewrote an arbitrary

optimization problem as an optimization problem with a convex objective and a convex

feasible set. But there is a catch: this transformation is not algorithmic at all. We are

hiding all the difficulty in the convex hull operation. In general, it is not easy to write down

a description for the convex hull a set, even if the set has a simple description (let’s say it’s

described by quadratic inequalities).

Note that the argument we gave also goes against the common belief about “convex problems

being easy”. Indeed, the structure and functional description of the feasible set, beyond

convexity, cannot be ignored.

3 Convex optimization problems

Motivated in part by our discussion above, we will define a convex optimization problem to

be any optimization problem of the form

min. f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , k,

where f, gi : Rn → R are convex functions and hi : Rn → R are affine functions.

Let Ω denote the feasible set, i.e., Ω = {x ∈ Rn| gi(x) ≤ 0, hj(x) = 0}.

• For a convex optimization problem, the set Ω is always a convex set (why?).

• The converse is not true:

– Consider for example, Ω = {x ∈ R| x3 ≤ 0}. Then Ω is a convex set, but

minimizing a convex function over Ω is not a convex optimization problem per

our definition.

– However, the same set can be represented as Ω = {x ∈ Rn| x ≤ 0}, and then this

would be a convex optimization problem with our definition.

• We require this stronger notion because otherwise many abstract and complicated

optimization problems can be formulated as optimization problems over a convex set.

(Think, e.g., of the set of nonnegative polynomials). The stronger definition is much

closer to what we can solve algorithmically.
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Figure 9: The feasible set S = {x| g1(x) ≤ 0, g2(x) ≤ 0} can be convex even when the

defininig inequalities are not even quasiconvex.

The software CVX that we will be using only accepts convex optimization problems defined

as above; i.e, CVX accepts the following constraints:

• Convex ≤ 0.

• Affine == 0.

Notes

Further reading for this lecture can include Chapter 2 of [3].
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