PRINCETON UNIVERSITY

ORF 523 Midterm Exam, Spring 2025

MARCH 6, 2025, 1:30PM - 2:50PM EST.

Instructor:
Amir Ali Ahmadi

AIs:
Yixuan Hua
Joah Jed Macosko

Please read the exam rules below before you start.

- 1. Please write your names on the exam booklet and on the exam sheet. Please return both items to us once the exam is over.
- 2. All questions should be answered in the booklet. Please write out and sign the following pledge on the booklet: "I pledge my honor that I have not violated the honor code during this examination."
- 3. You are allowed a single sheet of A4 paper, double sided, hand-written or typed.
- 4. No electronic devices are allowed (e.g., cell phones, calculators, laptops, etc.), except for checking the time.
- 5. You can cite results proven in lecture or on problem sets without proof.
- 6. Good luck!

You need to justify your arguments (correct proofs or counterexamples) to receive full credit.

Problem 1: Polytopes defined by totally unimodular matrices

Let $A \in \mathbb{R}^{m \times n}$ be a totally unimodular matrix and $b \in \mathbb{Z}^m$ be an integral vector. Suppose $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ is a polytope, i.e., a bounded polyhedron. Let $S = P \cap \mathbb{Z}^n$ be the set of integral points in P, and let $\operatorname{conv}(S)$ denote the convex hull of S. Show that $P = \operatorname{conv}(S)$.

Problem 2: A characterization of descent directions

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex differentiable function. Show that a direction $d \in \mathbb{R}^n$ is a descent direction for f at a point $x \in \mathbb{R}^n$ if and only if $d^T \nabla f(x) < 0$. Furthermore, give an example to demonstrate that this statement is not true without the convexity assumption.

Problem 3: Closed convex sets

Let Ω be a non-empty closed convex set in \mathbb{R}^n . Show that for any point $y \in \mathbb{R}^n$, there exists a unique point $x^* \in \Omega$ that satisfies

$$(x - x^*)^T (y - x^*) \le 0, \forall x \in \Omega.$$

Problem 4: Convex piecewise affine/quadratic functions

Let $\Omega_1, \ldots, \Omega_m \subseteq \mathbb{R}^n$ be non-overlapping sets with non-empty interior (i.e., each containing a ball of positive radius) such that $\mathbb{R}^n = \bigcup_{k=1}^m \Omega_k$. Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined piecewise as

$$f(x) = f_k(x)$$
 when $x \in \Omega_k$,

where $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are given functions. In the two situations below, prove or disprove the following claim:

"If f is convex, then
$$f(x) = \max_{k \in \{1, ..., m\}} f_k(x), \forall x \in \mathbb{R}^n$$
."

- (a) f is piecewise affine; i.e., for k = 1, ..., m, $f_k(x) = a_k^T x + b_k$, for some $a_k \in \mathbb{R}^n$ and $b_k \in \mathbb{R}$.
- (b) f is piecewise quadratic; i.e., for k = 1, ..., m, $f_k(x) = x^T Q_k x + c_k^T x + d_k$, for some $Q_k \in \mathbb{R}^{n \times n}$, $c_k \in \mathbb{R}^n$, and $d_k \in \mathbb{R}$.