Cygnus X-1

related topics
{math, energy, light}
{game, team, player}
{black, white, people}
{work, book, publish}
{rate, high, increase}
{son, year, death}
{mi², represent, 1st}

Cygnus X-1 (abbreviated Cyg X-1)[11] is a well known galactic X-ray source[12] in the constellation Cygnus. It was discovered in 1964 during a rocket flight and is one of the strongest X-ray sources seen from Earth, producing a peak X-ray flux density of 2.3×10−23 Wm−2Hz−1 (2.3×103 Jansky).[13][14] Cygnus X-1 was the first X-ray source widely accepted to be a black hole candidate and it remains among the most studied astronomical objects in its class. It is now estimated to have a mass about 8.7 times the mass of the Sun[6] and has been shown to be too compact to be any known kind of normal star or other likely object besides a black hole. If so, the radius of its event horizon is probably about 26 km.[15]

Cygnus X-1 belongs to a high-mass X-ray binary system about 6,000 light years from the Sun that includes a blue supergiant variable star designated HDE 226868 which it orbits at about 0.2 AU, or 20% of the distance from the Earth to the Sun. A stellar wind from the star provides material for an accretion disk around the X-ray source.[16] Matter in the inner disk is heated to millions of kelvins (K), generating the observed X-rays.[17][18] A pair of jets, arranged perpendicular to the disk, are carrying part of the infalling material away into interstellar space.[19]

This system may belong to a stellar association called Cygnus OB3, which would mean that Cygnus X-1 is about five million years old and formed from a progenitor star that had more than 40 solar masses. The majority of the star's mass was shed, most likely as a stellar wind. If this star had then exploded as a supernova, the resulting force would most likely have ejected the remnant from the system. Hence the star may have instead collapsed directly into a black hole.[10]

Cygnus X-1 was the subject of a friendly scientific wager between physicists Stephen Hawking and Kip Thorne in 1974, with Hawking betting that it was not a black hole. He conceded the bet in 1990 after observational data had strengthened the case for a gravitational singularity in the system.[20]

Full article ▸

related documents
Vega
Bohr model
Light
Loop quantum gravity
Luminiferous aether
Momentum
Surface tension
Cosmic inflation
Photon
Andromeda Galaxy
Uncertainty principle
Open cluster
Orbit
Stellar classification
Binary star
Astronomy
History of astronomy
Time travel
Bernoulli's principle
Holography
Spacetime
Speed of light
Electricity
Physical cosmology
Dirac equation
Extrasolar planet
Lightning
Planet
Centripetal force
Vacuum