Ecological selection

related topics
{specie, animal, plant}
{woman, child, man}
{rate, high, increase}
{theory, work, human}
{disease, patient, cell}
{service, military, aircraft}
{land, century, early}
{math, energy, light}
{city, population, household}

Ecological selection (or environmental selection or survival selection or individual selection or asexual selection) refers to natural selection minus sexual selection, i.e. strictly ecological processes that operate on a species' inherited traits without reference to mating or secondary sex characteristics.[citation needed] The variant names describe varying circumstances where sexual selection is wholly suppressed as a mating factor.[citation needed]

Circumstances in which it occurs

Ecological selection can be said to be taking place in any circumstance where inheritance of specific traits is determined by ecology alone without direct sexual competition, when e.g. sexual competition is strictly ecological or economic, there is little or no mate choice, females do not resist any male who wishes to mate, all traits will be equally propagated regardless of mating, or the species is hermaphroditic or asexually reproducing, an ecological selection is taking place.

In sexually reproducing species, it is applicable mostly to situations where ecological pressures prevent most competitors from reaching maturity, or where crowding or pair-bonding or an extreme suppression of sexual selection factors prevents the normal sexual competition rituals and selection from taking place, but which also prevent artificial selection from operating, e.g. arranged marriages, where parents rather than the young select the mate based on economic or even astrological factors, and where the sexual desires of the mated pair are often subordinated to these factors, are artificial unless wholly based on an ecological factor such as control of land which is held by their own force.

Ecological selection vs sexual selection

In cases where ecological and sexual selection factors are strongly at odds, simultaneously encouraging and discouraging the same traits, it may also be important to distinguish them as sub-processes within natural selection.

For instance, Ceratogaulus, the Oligocene horned gopher, left in the fossil record a series of individuals with successively longer and longer horns, that seemed to be unrelated or maladaptive to its ecological niche. Some modern scientists have theorized that the horns were useful or impressive in mating rituals among males (although other scientists dispute this theory, pointing out that the horns were not sexually dimorphic) and that it was an example of runaway evolution. The species seems to have suddenly died out when horns reached approximately the body length of the animal itself, possibly because it could no longer run or evade predators - thus ecological selection seems to have ultimately trumped sexual.

It is also important to distinguish ecological selection in cases of extreme ecological abundance, e.g. the human built environment, cities or zoos, where sexual selection must generally predominate, as there is no threat of the species or individuals losing their ecological niche. Even in these situations, however, where survival is not in question, the variety and the quality of food, e.g. as presented by male to female monkeys in exchange for sex in some species, still has an impact on reproduction, however it becomes a sexual selection factor. Similar phenomena can be said to exist in humans e.g. the "mail order bride" who primarily mates for economic advantage.

Differentiating ecological selection from sexual is useful especially in such extreme cases; Above examples demonstrate exceptions rather than a typical selection in the wild. In general, ecological selection is assumed to be the dominant process in natural selection, except in highly cognitive species that do not, or do not always, pair bond, e.g. walrus, gorilla, human. But even in these species, one would distinguish cases where isolated populations had no real choice of mates, or where the vast majority of individuals died before sexual maturity, leaving only the ecologically selected survivor to mate - regardless of its sexual fitness under normal sexual selection processes for that species.

Full article ▸

related documents
Marsupial
Platypus
Python reticulatus
Bagworm moth
Pangolin
Polyploidy
Chondrichthyes
Accipitridae
Drosophila
Polyp
Human genome
Cuttlefish
Pollinator
Hammerhead shark
Condor
Manta ray
Rat
Peccary
Crustacean
Smooth Newt
Passerine
Armadillo
Coppicing
Komondor
Anglerfish
Pheromone
Orangutan
Steller Sea Lion
Equidae
Hippopotamus