Exocytosis

related topics
{acid, form, water}
{disease, patient, cell}
{ship, engine, design}
{area, part, region}
{car, race, vehicle}

Exocytosis (/ˌɛksoʊsaɪˈtoʊsɪs/; from Greek ἔξω "out" and English cyto- "cell" from Gk. κύτος "receptacle"), also known as 'reverse pino-cytosis', is the durable process by which a cell directs the contents of secretory vesicles out of the cell membrane. These membrane-bound vesicles contain soluble proteins to be secreted to the extracellular environment, as well as membrane proteins and lipids that are sent to become components of the cell membrane.

Contents

Types

In multicellular organisms there are two types of exocytosis: 1) Ca2+ triggered non-constitutive and 2) non Ca2+ triggered constitutive. Exocytosis in neuronal chemical synapses is Ca2+ triggered and serves interneuronal signalling. Constitutive exocytosis is performed by all cells and serves the release of components of the extracellular matrix, or just delivery of newly-synthesized membrane proteins that are incorporated in the plasma membrane after the fusion of the transport vesicle. Regulated exocytosis, on the other hand, requires an external signal, a specific sorting signal on the vesicles, a clathrin coat, as well as an increase in intracellular calcium. Exocytosis is the opposite of endocytosis

Steps

Five steps are involved in exocytosis:

Vesicle trafficking

Certain vesicle-trafficking steps require the translocation of a vesicle over a significant distance. For example, vesicles that carry proteins from the Golgi apparatus to the cell surface are likely to use motor proteins and a cytoskeletal track to get close to their target before tethering would be appropriate. Both the actin- and the microtubule-base are implicated in these processes, along with several motor proteins. Once the vesicles reach their targets, they come into contact with tethering factors that can restrain them.

Vesicle tethering

It is useful to distinguish between the initial, loose tethering of vesicles with their objective from the more stable, packing interactions. Tethering involves links over distances of more than about half the diameter of a vesicle from a given membrane surface (>25 nm). Tethering interactions are likely to be involved in concentrating synaptic vesicles at the synapse.

Full article ▸

related documents
Deamination
Proteinoid
Facilitated diffusion
Peptide bond
Nucleobase
Decay product
Pyrochlore
Cystine
Paraffin
Stable isotope
Xanthine oxidase
Succinic acid
Methyl group
Thymidine
Acetyl
Amphibole
Pyruvic acid
Pyrophosphate
Disaccharide
Cytochrome c
Photosynthetic pigment
Aerobic organism
Proteome
Heterocyclic compound
Condensation
Hemicellulose
Adenylate cyclase
Ozone layer
Monomer
Ammonium perchlorate