Idempotence

related topics
{math, number, function}
{car, race, vehicle}
{system, computer, user}

Idempotence (pronounced /ˌaɪdɨmˈpoʊtəns/ EYE-dəm-POH-təns) is the property of certain operations in mathematics and computer science, that they can be applied multiple times without changing the result. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency).

The term was introduced by Benjamin Peirce[1] in the context of elements of an algebra that remain invariant when raised to a power.

There are several meanings of idempotence, depending on what the concept is applied to:

  • A unary operation (or function) is idempotent if, whenever it is applied twice to any value, it gives the same result as if it were applied once. For example, the absolute value function is idempotent as a function from the set of real numbers to the set of real numbers: abs(abs (x)) = abs(x).
  • A binary operation is idempotent if, whenever it is applied to two equal values, it gives that value as the result. For example, the operation giving the maximum value of two values is idempotent: max(x, x) = x.
  • Given a binary operation, an idempotent element (or simply an idempotent) for the operation is a value for which the operation, when given that value for both of its operands, gives the value as the result. For example, the number 1 is an idempotent of multiplication: 1 × 1 = 1.

Contents

Full article ▸

related documents
Ring (mathematics)
Presburger arithmetic
Preorder
Chain rule
Assignment problem
Richard's paradox
Extended real number line
Merkle-Hellman
Splitting lemma
Boolean ring
ML (programming language)
Haar measure
Trie
Meromorphic function
Unicity distance
Definable real number
Axiom of pairing
Queue (data structure)
Oracle machine
Generalized mean
Monster group
Legendre symbol
Base (topology)
Functional analysis
Mathematical model
XSL Transformations
B-tree
Elementary group theory
Examples of groups
Associativity