Light curve

related topics
{math, energy, light}
{acid, form, water}
{rate, high, increase}
{area, community, home}

In astronomy, a light curve is a graph of light intensity of a celestial object or region, as a function of time. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, cepheid variables and other periodic variables, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it.[1]

Contents

Planetology

In planetology, a light curve can be used to estimate the rotation period of a minor planet, moon, or comet nucleus. From the Earth there is often no way to resolve a small object in our Solar System, even in the most powerful of telescopes, since the apparent angular size of the object is smaller than one pixel in the detector. Thus, astronomers measure the amount of light produced by an object as a function of time (the light curve). The time separation of peaks in the light curve gives an estimate of the rotational period of the object. The difference between the maximum and minimum brightnesses (the amplitude of the light curve) can be due to the shape of the object, or to bright and dark areas on its surface. For example, an asymmetrical asteroid's light curve generally has more pronounced peaks, while a more spherical object's light curve will be flatter.[2] When the light curve covers an extended period of time, it is called a secular light curve.

Botany

In botany, a light curve shows the photosynthetic response of leaf tissue or algal communities to varying light intensities. The shape of the curve illustrates the principle of limiting factors; in low light levels, the rate of photosynthesis is limited by the concentration of chlorophyll and the efficiency of the light-dependent reactions, but in higher light levels it is limited by the efficiency of RuBisCo and the availability of carbon dioxide. The point on the curve where these two differing slopes meet is called the light saturation point and is where the light-dependent reactions are producing more ATP and NADPH than can be utilized by the light-independent reactions. Since photosynthesis is also limited by ambient carbon dioxide levels, light curves are often repeated at several different constant carbon dioxide concentrations.[3]

Full article ▸

related documents
Statcoulomb
Reflectivity
Hadron
Luminance
Solar heating
Tokamak
Double star
3 Juno
IC 342/Maffei Group
Galactic astronomy
Gustav Kirchhoff
Boyle's law
Double planet
Accelerating universe
Gas constant
Reduced mass
Vernier scale
Procyon
Statics
Electrical conductance
Archimedean solid
Luna 2
Auger effect
Global illumination
Synchronous orbit
Free-space path loss
Stanford Linear Accelerator Center
Chromosphere
2060 Chiron
Jupiter trojan