Microtubule

related topics
{acid, form, water}
{@card@, make, design}
{line, north, south}
{disease, patient, cell}
{service, military, aircraft}

Microtubules are one of the components of the cytoskeleton. They have a diameter of 25 nm and length varying from 200 nanometers to 25 micrometers. Microtubules serve as structural components within cells and are involved in many cellular processes including mitosis, cytokinesis, and vesicular transport.[2]

Contents

Structure

Microtubules are polymers of α- and β-tubulin dimers. The tubulin dimers polymerize end to end in protofilaments. The protofilaments then bundle into hollow cylindrical filaments. Typically the protofilaments arrange themselves in an imperfect helix with one turn of the helix containing 13 tubulin dimers each from a different protofilament. The image above illustrates a small section of microtubule, a few αβ dimers in length.

Another important feature of microtubule structure is polarity. Tubulin polymerizes end to end with the α subunit of one tubulin dimer contacting the β subunit of the next. Therefore, in a protofilament, one end will have the α subunit exposed while the other end will have the β subunit exposed. These ends are designated the (−) and (+) ends, respectively. The protofilaments bundle parallel to one another, so in a microtubule, there is one end, the (+) end, with only β subunits exposed while the other end, the (−) end, only has α subunits exposed. The (-) end is capped so elongation of the microtubule occurs from the (+) direction.

Organization within cells

Microtubules are nucleated and organized by the microtubule organizing centers (MTOCs), such as centrioles and basal bodies. Microtubules are part of a structural network (the cytoskeleton) within the cell's cytoplasm, but, in addition to structural support, microtubules take part in many other processes, as well. They are capable of growing and shrinking in order to generate force, and there are also motor proteins that allow organelles and other cellular factors to move along the microtubule. A notable structure involving microtubules is the mitotic spindle used by eukaryotic cells to segregate their chromosomes correctly during cell division. Microtubules are also part of the cilia and flagella of eukaryotic cells (prokaryote flagella are entirely different).

Full article ▸

related documents
Pyrite
Wafer (electronics)
Alloy
Actinium
Perchloric acid
Complementary DNA
Allotropy
Berkelium
Samarium
Heavy metal (chemistry)
Hygroscopy
Electrode
Ductility
Hematite
Protactinium
Active transport
Cell biology
Condensation polymer
Compounds of carbon
Rutile
Tyrosine
Rotaxane
Transuranium element
Intron
Diamondoid
Peptidoglycan
Bicarbonate
Promethium
Humus
Osmotic pressure