Microwave

related topics
{math, energy, light}
{system, computer, user}
{album, band, music}
{acid, form, water}
{disease, patient, cell}
{theory, work, human}
{car, race, vehicle}

Microwaves are electromagnetic waves with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz (0.3 GHz) and 300 GHz.[1] This broad definition includes both UHF and EHF (millimeter waves), and various sources use different boundaries.[2] In all cases, microwave includes the entire SHF band (3 to 30 GHz, or 10 to 1 cm) at minimum, with RF engineering often putting the lower boundary at 1 GHz (30 cm), and the upper around 100 GHz (3mm).

Apparatus and techniques may be described qualitatively as "microwave" when the wavelengths of signals are roughly the same as the dimensions of the equipment, so that lumped-element circuit theory is inaccurate. As a consequence, practical microwave technique tends to move away from the discrete resistors, capacitors, and inductors used with lower frequency radio waves. Instead, distributed circuit elements and transmission-line theory are more useful methods for design and analysis. Open-wire and coaxial transmission lines give way to waveguides and stripline, and lumped-element tuned circuits are replaced by cavity resonators or resonant lines. Effects of reflection, polarization, scattering, diffraction and atmospheric absorption usually associated with visible light are of practical significance in the study of microwave propagation. The same equations of electromagnetic theory apply at all frequencies.

While the name may suggest a micrometer wavelength, it is better understood as indicating wavelengths much shorter than those used in radio broadcasting. The boundaries between far infrared light, terahertz radiation, microwaves, and ultra-high-frequency radio waves are fairly arbitrary and are used variously between different fields of study.

Electromagnetic waves longer (lower frequency) than microwaves are called "radio waves". Electromagnetic radiation with shorter wavelengths may be called "millimeter waves", terahertz radiation or even T-rays. Definitions differ for millimeter wave band, which the IEEE defines as 110 GHz to 300 GHz.

Above 300 GHz, the absorption of electromagnetic radiation by Earth's atmosphere is so great that it is effectively opaque, until the atmosphere becomes transparent again in the so-called infrared and optical window frequency ranges.

Contents

Full article ▸

related documents
Fourier transform spectroscopy
Geosynchronous orbit
LIGO
Foucault pendulum
Betelgeuse
Hydrostatic equilibrium
Electromagnetic spectrum
Hubble sequence
Solar flare
Deferent and epicycle
Group velocity
Large-scale structure of the cosmos
Mechanical work
Propagation constant
Circular polarization
Molecular cloud
Beam diameter
Mirage
Energy level
Superparamagnetism
Surface wave
Circle
Voyager 1
Absolute zero
Shot noise
Supernova remnant
Stellarator
Standing wave
Explorer program
Brewster's angle