Orthogonal matrix

 related topics {math, number, function} {math, energy, light}

In linear algebra, an orthogonal matrix, is a square matrix with real entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors).

Equivalently, a matrix Q is orthogonal if its transpose is equal to its inverse:

which entails

where I is the identity matrix.

An orthogonal matrix Q is necessarily square and invertible, with inverse Q−1 = QT. As a linear transformation, an orthogonal matrix preserves the dot product of vectors, and therefore acts as an isometry of Euclidean space, such as a rotation or reflection. In other words, it is a unitary transformation.

The set of n × n orthogonal matrices forms a group O(n), known as the orthogonal group. The subgroup SO(n) consisting of orthogonal matrices with determinant +1 is called the special orthogonal group, and each of its elements is a special orthogonal matrix. As a linear transformation, every special orthogonal matrix acts as a rotation.

The complex analogue of an orthogonal matrix is a unitary matrix.