Pyroxene

related topics
{acid, form, water}
{build, building, house}
{math, number, function}

The pyroxenes are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. They share a common structure consisting of single chains of silica tetrahedra and they crystallize in the monoclinic and orthorhombic systems. Pyroxenes have the general formula XY(Si,Al)2O6 (where X represents calcium, sodium, iron+2 and magnesium and more rarely zinc, manganese and lithium and Y represents ions of smaller size, such as chromium, aluminium, iron+3, magnesium, manganese, scandium, titanium, vanadium and even iron+2). Although aluminium substitutes extensively for silicon in silicates such as feldspars and amphiboles, the substitution occurs only to a limited extent in most pyroxenes.

The name pyroxene comes from the Greek words for fire (πυρ) and stranger (ξένος). Pyroxenes were named this way because of their presence in volcanic lavas, where they are sometimes seen as crystals embedded in volcanic glass; it was assumed they were impurities in the glass, hence the name "fire strangers". However, they are simply early-forming minerals that crystallized before the lava erupted.

The upper mantle of Earth is composed mainly of olivine and pyroxene. A piece of the mantle is shown at right (orthopyroxene is black, diopside (containing chromium) is bright green, and olivine is yellow-green) and is dominated by olivine, typical for common peridotite. Pyroxene and feldspar are the major minerals in basalt and gabbro.

Contents

Chemistry and nomenclature of the pyroxenes

The chain silicate structure of the pyroxenes offers much flexibility in the incorporation of various cations and the names of the pyroxene minerals are primarily defined by their chemical composition. Pyroxene minerals are named according to the chemical species occupying the X (or M2) site, the Y (or M1) site, and the tetrahederal T site. Cations in Y (M1) site are closely bound to 6 oxygens in octahedral coordination. Cations in the X (M2) site can be coordinated with 6 to 8 oxygen atoms, depending on the cation size. Twenty mineral names are recognised by the International Mineralogical Association's Commission on New Minerals and Mineral Names and 105 previously used names have been discarded (Morimoto et al., 1989).

A typical pyroxene has mostly silicon in the tetrahedral site and predominately ions with a charge of +2 in both the X and Y sites, giving the approximate formula XYT2O6. The names of the common calcium - iron - magnesium pyroxenes are defined in the 'pyroxene quadrilateral' shown in Figure 2. The enstatite-ferrosilite series ([Mg,Fe]SiO3) contain up to 5 mol.% calcium and exists in three polymorphs, orthorhombic orthoenstatite and protoenstatite and monoclinic clinoenstatite (and the ferrosilite equivalents). Increasing the calcium content prevents the formation of the orthorhombic phases and pigeonite ([Mg,Fe,Ca][Mg,Fe]Si2O6) only crystallises in the monoclinic system. There is not complete solid solution in calcium content and Mg-Fe-Ca pyroxenes with calcium contents between about 15 and 25 mol.% are not stable with respect to a pair of exolved crystals. This leads to a miscibility gap between pigeonite and augite compositions. There is an arbitrary separation between augite and the diopside-hedenbergite (CaMgSi2O6 - CaFeSi2O6) solid solution. The divide is taken at >45 mol.% Ca. As the calcium ion cannot occupy the Y site, pyroxenes with more than 50 mol.% calcium are not possible. A related mineral wollastonite has the formula of the hypothetical calcium end member but important structural differences mean that it is not grouped with the pyroxenes.

Full article ▸

related documents
Carbon-14
Electron counting
Southern blot
Heme
Denaturation (biochemistry)
Solder
Organic acid
Borax
Nucleolus
Phosgene
Island of stability
Nuclear technology
Alcohol dehydrogenase
Ziegler-Natta catalyst
Erbium
Gel electrophoresis
Cubic zirconia
Alum
Organelle
Neodymium
Standard electrode potential (data page)
Chloroform
Gel
Tertiary structure
Beta sheet
Indium
Electrolyte
Covalent bond
Solvation
Gallium