related topics {math, energy, light} {ship, engine, design} {island, water, area} {acid, form, water}

Radiation pressure is the pressure exerted upon any surface exposed to electromagnetic radiation. If absorbed, the pressure is the power flux density divided by the speed of light. If the radiation is totally reflected, the radiation pressure is doubled. For example, the radiation of the Sun at the Earth has a power flux density of 1,370 W/m2, so the radiation pressure is 4.6 µPa (absorbed).

## Contents

### Discovery

The fact that electromagnetic radiation exerts a pressure upon any surface exposed to it was deduced theoretically by James Clerk Maxwell in 1871 and Adolfo Bartoli in 1876, and proven experimentally by Russian physicist Peter Lebedev in 1900[1] and by Ernest Fox Nichols and Gordon Ferrie Hull in 1901.[2] The pressure is very feeble, but can be detected by allowing the radiation to fall upon a delicately poised vane of reflective metal in a Nichols radiometer (this should not be confused with the Crookes radiometer, whose characteristic motion is not caused by radiation pressure).

### Theory

It may be shown by electromagnetic theory, by quantum theory, or by thermodynamics, making no assumptions as to the nature of the radiation, that the pressure against a surface exposed in a space traversed by radiation uniformly in all directions is equal to one third of the total radiant energy per unit volume within that space.

For black body radiation, in equilibrium with the exposed surface, the energy density is, in accordance with the Stefan-Boltzmann law, equal to 4σT4/c; in which σ is the Stefan-Boltzmann constant, c is the speed of light, and T is the absolute temperature of the space.