# Strong acid

 related topics {acid, form, water} {math, energy, light}

A strong acid is an acid that ionizes completely in an aqueous solution by losing one proton, according to the equation

For sulfuric acid which is diprotic, the "strong acid" designation refers only to dissociation of the first proton

More precisely, the acid must be stronger in aqueous solution than hydronium ion, so strong acids are acids with a pKa < −1.74. An example is HCl for which pKa = -6.3.[1] This generally means that in aqueous solution at standard temperature and pressure, the concentration of hydronium ions is equal to the concentration of strong acid introduced to the solution. While strong acids are generally assumed to be the most corrosive, this is not always true. The carborane superacid H(CHB11Cl11), which is one million times stronger than sulfuric acid,[2][3] is entirely non-corrosive, whereas the weak acid hydrofluoric acid (HF) is extremely corrosive and can dissolve, among other things, glass and all metals except iridium[citation needed].

In all other acid-water reactions, dissociation is not complete, so will be represented as an equilibrium, not a completed reaction. The typical definition of a weak acid is any acid that does not dissociate completely. The difference separating the acid dissociation constants of strong acids from all other acids is so small that this is a reasonable demarcation.

Due to the complete dissociation of strong acids in aqueous solution, the concentration of hydronium ions in the water is equal to the total concentration (ionized and un-ionized) of the acid introduced to solution: [H+] = [A] = [HA]total and pH = −log[H+].

## Contents

### Determining acid strength

The strength of an acid, in comparison to other acids, can be determined without the use of pH calculations by observing the following characteristics:

### Some common strong acids (as defined above)

(Strongest to the weakest)