# X-ray

 related topics {math, energy, light} {acid, form, water} {disease, patient, cell} {@card@, make, design} {system, computer, user} {work, book, publish} {film, series, show} {son, year, death}

X-radiation (composed of X-rays) is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3 × 1016 Hz to 3 × 1019 Hz) and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays and longer than gamma rays. In many languages, X-radiation is called Röntgen radiation, after Wilhelm Conrad Röntgen, who is generally credited as its discoverer, and who had named it X-radiation to signify an unknown type of radiation.[1] Correct spelling of X-ray(s) in the English language includes the variants x-ray(s) and X ray(s).[2] XRAY is used as the phonetic pronunciation for the letter x.

X-rays from about 0.12 to 12 keV (10 to 0.10 nm wavelength) are classified as "soft" X-rays, and from about 12 to 120 keV (0.10 to 0.01 nm wavelength) as "hard" X-rays, due to their penetrating abilities.

Hard X-rays can penetrate solid objects, and their most common use is to take images of the inside of objects in diagnostic radiography and crystallography. As a result, the term X-ray is metonymically used to refer to a radiographic image produced using this method, in addition to the method itself. By contrast, soft X-rays can hardly be said to penetrate matter at all; for instance, the attenuation length of 600 eV (~ 2 nm) x-rays in water is less than 1 micrometer.[3]

The distinction between X-rays and gamma rays has changed in recent decades. Originally, the electromagnetic radiation emitted by X-ray tubes had a longer wavelength than the radiation emitted by radioactive nuclei (gamma rays).[4] Older literature distinguished between X- and gamma radiation on the basis of wavelength, with radiation shorter than some arbitrary wavelength, such as 10−11 m, defined as gamma rays.[5] However, as shorter wavelength continuous spectrum "X-ray" sources such as linear accelerators and longer wavelength "gamma ray" emitters were discovered, the wavelength bands largely overlapped. The two types of radiation are now usually distinguished by their origin: X-rays are emitted by electrons outside the nucleus, while gamma rays are emitted by the nucleus.[4][6][7][8]