The New Architectonics: An Invitation To Structural Biology

CLARENCE E. SCHUTT* AND UNO LINDBERG

The philosophy of art might offer an epistemological basis for talking about the complexity of biological molecules in a meaningful way. The analysis of artistic compositions requires the resolution of intrinsic tensions between disparate sensory categories—color, line and form—not unlike those encountered in looking at the surfaces of protein molecules, where charge, polarity, hydrophobicity, and shape compete for our attentions. Complex living systems exhibit behaviors such as contraction waves moving along muscle fibers, or shivers passing through the growth cones of migrating neurons, that are easy to describe with common words, but difficult to explain in terms of the language of chemistry. The problem follows from a lack of everyday experience with processes that move towards equilibrium by switching between crystalline order and chain-like disorder, a commonplace occurrence in the submicroscopic world of proteins. Since most of what is understood about protein function comes from studies of isolated macromolecules in solution, a serious gap exists between what we know and what we would like to know about organized biological systems. Closing this gap can be achieved by recognizing that protein molecules reside in gradients of Gibbs free energy, where local forces and movements can be large compared with Brownian motion. Architectonics, a term borrowed from the philosophical literature, symbolizes the eventual union of the structure of theories—how our minds construct the world—with the theory of structures—or how stability is maintained in the chaotic world of microsystems. Anat Rec (New Anat) 261:198–216, 2000. © 2000 Wiley-Liss, Inc.

KEY WORDS: architectonics; cytoskeleton; functional microanatomy; molecular motor; structural biology; proteins; hydrophobic effect; Gibbs’s free energy; thermodynamics; proteomics

REDUCTIONISM IN THE POST-GENOMIC ERA

We are coming to grips with our molecular destiny. Just one hundred years ago, when it appeared impossible that atoms could ever be seen, a plausible case could be made that they didn’t exist at all, and even if they did, it wasn’t clear how mere aggregations could give rise to distinct qualities (Duhem, 1914). The application of x-ray analysis to crystals by Max von Laue, William Bragg, Sr. and Jr., changed all of that in short order. Their legacy, delivered by subsequent generations of x-ray crystallographers, is that structures of complex biological macromolecules, whose presence was barely suspected a century ago, can not only be seen, but obey the ordinary laws of physical chemistry. Genes themselves, a mathematical abstraction needed to explain regularities in plant heredity, were revealed as elaborate three-dimensional structures containing nucleic acids wrapped around proteins. The human genome—nothing less than a highly encoded map of our material being, its history and development—will soon be freely available to everyone to probe, exploit, or to study as new form of knowledge about ourselves. While it is not at all obvious how we will read this map, it is a certainty that a sound understanding of the structure of proteins will be needed, because all of life’s intermeshed processes, including the natural decoding of the message, act through them.

We are now accustomed to hearing about “the post-genomics era” and words like “proteomics” and “emergomics” are meant to alert us to where the real intellectual or technological (not to say investment) opportunities lie. The “proteome” is the set of all proteins actually present in a given cell, as revealed by electrophoresis gels capable of resolving thousands of distinct spots, each reporting the presence of a single protein. Similarly, patterns of gene expression, both spa-
Architectonics is a venerable term in the philosophical literature. It pertains to both "the theory of structure," as in the architectural literature, and "the structure of theory," used by philosophers in a variety of ways to denote the processes by which ideas become fixed in our consciousness (Kant, 1787). Suzanne K. Langer (1967) in her magisterial three-volume work on the philosophy of art uses the word "architectonics" to expound on the discursive, non-sequential, quality of visual art forms: "Their complexity, consequently, is not limited, as the complexity of discourse is limited, by what the mind can retain from the beginning of an apperceptive act to the end of it. Of course, such a restriction on discourse sets bounds to the complexity of speakable ideas. An idea that contains too many minute yet closely related parts, too many relations within relations, cannot be 'projected' onto discursive forms; it is too subtle for speech." Langer (1967) is claiming that the boundary conditions set by the linear structure of sentences limits what we can communicate about the arts through language alone. The great works of art must speak for themselves directly through the multiple portals of our senses to some consciousness beyond words.

In many ways, the surfaces of proteins share this discursive aspect with the visual arts (see Figures 1 and 2). It is difficult to find words to describe the complexity of form one sees. One

Architectonics pertains to both “the theory of structure,” as in the architectural literature, and “the structure of theory,” used by philosophers to denote the processes by which ideas become fixed in our consciousness.

is clearly in the presence of a composition, but even the canonical forms of sculpture, including Alexander Calder’s mobiles, are inadequate to the task of describing all of the events that take place during protein folding or during the encounter of two proteins. Even if the surfaces are color-coded for charge, hydrophobicity, and polarity, the presence of ridges, clefts, knobs, and holes adds so much texture and landscape to the chemical complexity that one is at a loss for where to begin.

In recent years, crystallographers have determined structures for a large number of functional protein complexes. What these structures reveal is a high degree of complementarity, both chemical and topological, between the surfaces of interacting proteins (see Figure 2). These surfaces are somewhat easier to describe because they are shaped to conform to one another. Even though each is complicated in itself, the pleasing “clasped hands” nature of their mutual interactions, allows us to grasp the meaning of the functional association. As one becomes familiar with different classes of interactions and motifs by studying many crystal structures, a kind of visual gallery develops, which can form the basis for a language having its own syntax and semantic rules. To participate in the discourses of structural biology, one must learn how to express what one means to say about biological function in this language.

It is this aspect of structural biology that invites comparison with formal criticism in the arts or in literature. When an art critic assesses a new work, he or she assumes that the reader knows something of the history of art. To see the new demands knowledge of the old. But there is more to it. References to earlier works carry with them contexts of discovery, breakthrough and failure, drawing from the reader’s consciousness a broad spectrum of memories and feelings. It is the intention of the critic to set the stage for these evoked responses. The mind then becomes receptive to the critic’s message. In structural biology, certain structures are “classic” in the same way that the paintings of Cézanne, Van Gogh, Picasso, Rothko, or Stella define unique compositional styles, immediately recognizable, evocative. We will refer to these classic structures as “structural paradigms.”

But, architectonics is not the same as architecture; “tonics” refers to tensions inherent in a structure. Returning to Langer’s analysis of artistic composition: “The most fundamental elements seem to be tensions; and upon closer inspection, tensions show some peculiarly interesting traits. By their very occurrence they immediately engender a structure. They act on each other in a great variety of ways—they can be handled so as to intersect without losing their identity, or contrariwise, so that they fuse and compose entirely new elements. They
Proteins can be intensified or muted, resolved either by being spent or by being counterbalanced, modified by a touch, and all the while they make for structure. This appears to be true in all the great orders of art; in every one of them, a general range of tensions is set up by the first element—line, gesture, or tone—which the artist establishes” (Langer, 1967).

Proteins can be described as hierarchical structures using similar language (Figure 1). The lowest level of the hierarchy is the polypeptide chain itself. Under the proper conditions, the chain can fold back upon itself forming elements of secondary structure, such as helices and sheets, which subsequently pack against each other to form tertiary, or fully-folded, structures. Proteins interact with each other to form higher-order structures like filaments, tubules, and viral shells.

These “first elements” of biological structure are not rocks or bricks, but dynamic units with internal tensions between the competing tendencies for order and disorder that lie at the heart of life’s rhythmic processes. The structures of DNA and RNA are the primary elements of storage and retrieval of genetic information. Their twists and turns, and sequence variations, define a world of sufficient template complexity to encode life’s design. In the cytoplasm, actin is the first element of a system of meshed and cross-linked filaments that enables cells to move, to pull, and to change shape. These molecules are “bobbing” in a torrent of Gibbs free energy, a quantity of immense importance for understanding the emergence and maintenance of biological complexity (see Box I). The flow of free energy starts in the nuclear transformations in the sun’s core, which produce a vast stream of ultraviolet photons that are harnessed by the photosynthetic machinery of plants. These little factories produce glucose molecules, rich in chemical bond energy, that are converted by mitochondria in plant and animal cells into ATP, adenosine triphosphate, a universal fuel whose breakdown into ADP and inorganic phosphate by muscles and other kinds of transport machinery makes life possible.

STRUCTURAL PARADIGMS

It is sometimes claimed by those molecular biologists who can perform the neat teleological trick of decanting “function” from “structure” that structural biology is nothing more than a tool that provides scaffolds upon which to hang notions of information flow. This view presupposes “structural paradigms,” structures whose interpretations have led to new principles and ways of looking at biological processes. The discovery of new structural paradigms is akin to discoveries in the world of art because the microscopic world never looks the same once they have appeared. The lessons learned from these classic structures, passively absorbed, are unconsciously at play in the formulation of molecular mechanisms for all biological processes.

As an exercise in thinking without structural paradigms, try to define enzyme specificity without recourse to specific molecules. A good start might be to invoke the notion of “lock and key”. Fair enough, this idea served enzymologists rather well during the decades before the structures of the first enzymes were obtained. But, exactly how is the lock fashioned from bits of polypeptide chain? How unique is the lock, how secure from tampering (e.g., by oxidants)? Once the key is inserted (a process signposted by a decreasing Gibbs free energy, described below), what makes it turn? And how does it get out? Are molecules of a certain softness or pliability required to meet a particular functional need? Are these requirements in line with the properties of bonded carbon, nitrogen, oxygen, and hydrogen? The question boils down to this: given complete knowledge of the laws of physical chemistry, can you provide a plausible basis for the diversity of biological reactions carried out by macromolecules (gene regulation, force generation, signal transduction), without referring to results obtained by x-ray crystallography?

For example, compare the structures of trypsin, chymotrypsin, and elastase (Stryer, 1988). Notice how naturally the description of specificity follows, how easily the common catalytic triad is distinguished from the specificity pocket—no fuzzy thinking, no dubious assumptions. While its function could conceivably be deduced from its structure (it might be easy to spot an icosahedral virus, or a globin e.g.), the reverse operation cannot yet be performed without relying on family resemblances within an established paradigm. This is the aspect of biology that makes it so different from physics, where First Principles generally can be specialized to the case at hand.

The helix-loop-helix DNA-binding motif is another classic piece of protein architecture. In looking at a new DNA-binding protein, one looks first...
to see if this element is present, and
considers other precedents in trying
to classify the new in terms of the old.
But in doing so, what should echo in
the mind are the struggles of the early
band of protein-DNA crystallogra-
phers. Carl Pabo, Tom Steitz, Brian
Matthews, Steve Harrison and others
were trying to find a structural code in
the patterns of charge and polarity on
the surfaces of these proteins that
might be used to predict how the
edges of specific base pairs could be
recognized in the major groove. Im-
plcit in these attempts was the belief
that the phosphodiester sugar back-
bone of DNA was an invariant, se-
quence-independent, structural fea-
ture.

The famous Watson-Crick B-form
of DNA was originally deduced from
x-ray fiber patterns. Fiber diffraction,
though clearly of value in defining he-
lical parameters such as helical pitch
and repeat distances, utilizes speci-
mens in which the fibrous molecules
are randomly oriented about the fiber
axis. Many details are averaged out
when fiber patterns are used to de-
duce structural models. The impor-
tance of these details did not become
clear until Richard Dickerson and
Horace Drew solved the crystal struc-
tures of several short DNA stretches
by x-ray crystallography. They found
sequence-dependent variation in the
structural parameters for DNA, sug-
gestin that more subtle geometric as-
pects of the structure might be in-
volved in base pair recognition than
just the matching of rigid surfaces
(Dickerson and Drew, 1981).

As crystal structures for more and
more protein-DNA complexes were
determined, it was clear that base pair
recognition was based, not just on the
gemetric possibilities of the helix-
loop-helix motif, but on other motifs
as well, and especially on the potential
for DNA to undergo changes in struc-
ture (Anderson et al., 1987; Davies et
al., 2000). Indeed, the reverse side of the
coin, how one set of proteins (the hi-
stones) can package up all possible
DNA sequences into chromatin, has
been revealed in an elegant crystal
structure analysis by Tim Richmond
and colleagues (Luger et al., 1997).

Chris Calladine, a structural engi-
neer working a stone's throw away
from the Cavendish Laboratory in
Cambridge where it all started, devel-
oped a set of simple rules that made it
possible to describe deformations of
DNA in terms of base twists and tilts
and other operations on the molecule
(for recent review see Lu and Olson,
1999). While these rules have a me-
chanical flavor easy to comprehend,
a bridge has been crossed where, even
though the machine-like character of

To participate in the
discourses of structural
biology, one must learn
how to express what
one means to say about
biological function in
this language.

intermolecular interactions involved
in "recognition" is self-evident, every-
day words to communicate the se-
quential steps in these processes are
becoming increasingly more difficult
to find (Kono and Sarai, 1999).

MICHAEL POLYANI AND LIFE'S
IRREDUCIBLE STRUCTURE

We will argue here that the Gibbs free
energy concept, when applied to pro-
tein molecules, is the First Principle of
structural biology. However, to apply
thermodynamic concepts, such as free
energy, to complex hierarchical sys-
tems, it is necessary to draw bound-
aries (physical or conceptual) be-
tween levels of the hierarchy. Over
thirty years ago, just as the revolution
in structural biology was getting un-
derway, Michael Polanyi (Polanyi,
1969) wrote about the machinery of
life as having to satisfy "boundary
conditions" in a multi-leveled hierar-
chy. The analogy to boundary condi-
tions, a concept taken from mathe-
matical physics, is apt. When a taut
wire is strung between two points and
plucked, the possible waveforms on
the wire are restricted to those which
are integral fractions of the distance
between the endpoints; the imposition
of a boundary condition, in this case
the pinned ends of the wire, results in
the selection of a particular subset of
possible harmonic motions.

Similarly, the solutions to Schrod-
inger's wave equation, the distinct-
ively shaped atomic orbitals (s,p,d,f)
familiar from freshman chemistry,
aris from the restriction that nega-
tively charged electrons stay in the po-
tential well of the positively charged
nucleus. When electrons are forced to
accommodate the restrictions of
multi-centered positive charges, as
when six atoms of carbon come to-
gether to form benzene rings, new
electronic forms emerge, imposing a
planar hexagonal structure on the nu-
clear centers themselves. The benzene
molecule is frequently used in the sci-
cence of “complexity” to illustrate
“emergent properties”, or the idea
that the whole is greater than the sum
of its parts, in this case the aromatic-
ity of the de-localized electrons is the
emergent property.

Polanyi saw “DNA structure”, the
double helical pattern of hydrogen-
bonded bases projecting inwards
from a common phosphodiester back-
bone, as organizing atoms (P,O,N,C,H)
from a lower, information-free, level
of the hierarchy into a readable blue-
print. Any other constellation of the
same atoms would be meaningless
when presented to the transcription
apparatus, a complex ensemble of
protein molecules. Polanyi stressed
the irreducibility of the information
coded in the sequence of bases, the
fact that knowing everything about
the quantum mechanical laws govern-
ing atomic structure tells us nothing
about the content of the coded mes-
sage or its origin. He wrote that: “mor-
phogenesis, the process by which the
structure of living beings develops,
can then be likened to the shaping of
a machine which will act as a boundary
for the laws of inanimate nature”. For
Polanyi, all working parts of a living
system are under ‘dual control’, whereby higher principles work on principles at a lower, more fundamental level such as the laws of physics and chemistry. Using written language as an example of a hierarchic system (letters-to-words-to-sentences-to-meaning), he argued that boundary conditions establish a semantic relation between lower and higher levels. The concept of “higher principles” may sound old-fashioned to the modern mind, since we can now “see” (owing to the power of electron microscopy and crystallography) genes packaged into chromatin, the basic unit of structure of chromosomes, and how they are transcribed and translated into proteins. Also, Polyani was speaking about holistic concepts such as “epigenetic landscapes” and “morphological fields”, which have been recast by modern developmental biologists in strictly molecular terms (Edelman, 1988). For example, a system of “semaphorin” molecules establishes signposts for migrating neurons as the developing brain connects itself. Yet, Polyani’s notion of boundary conditions in functional hierarchies is a fertile one, and represents the Second Principle of structural biology. Protein molecules can be regarded as key elements of “Polyani machines” shaped to apply boundary conditions in the functional hierarchy of life. For example, cell-cell interactions are mediated by protein-protein interactions at the cell surface, which transfer information across cell membranes to initiate intracellular signaling cascades.

PROTEINS AS “BOUNDARY CONDITIONS”

The eukaryotic cell is the basic organizing unit of higher life forms. Thousands of proteins on the surfaces of cells continuously sample their environments, searching for molecular cues on which directions might be favorable for finding nutrients, or the correct turn to take during development. These results are passed through the plasma membrane to specialized protein structures, called “signal transduction complexes,” that shape the message that is transmitted to the nucleus. The concept of limiting surfaces formed from protein molecules allows us to see signal transduction as an “assembly process”, in which the signal on the outside, perhaps a growth factor, induces the formation of structures on the inside of...
All processes in nature are subject to the first and second laws of thermodynamics. The first law, the equivalence of work and energy and the conservation of their sum, is easy to apply once one learns how to quantify heat and to calculate the work done on or by an isolated system (Klotz, 1967). The second law, that the entropy of the universe must increase in any spontaneous process, is inherently impossible to apply because the whole universe is not accessible to measurement.

Willard Gibbs, in a remarkable scientific treatise, showed how the concept of free energy allows a neat solution to this problem. The first and second laws can be combined into one formula expressed in terms of system variables only (i.e., “changes in the rest of the universe” are not explicitly used) (Gibbs, 1906; Denbigh, 1971):

\[\Delta G_{\text{sys}} = \Delta H_{\text{sys}} - T \Delta S_{\text{sys}} + \text{work done on "system"} \]

(Gibbs’ formula)

where, \(\Delta G_{\text{sys}} = G_{\text{final}} - G_{\text{initial}} \) is the difference in free energy between initial and final states, \(\Delta H_{\text{sys}} = H_{\text{final}} - H_{\text{initial}} \) is the difference in internal energy (enthalpy, at constant pressure), \(T \) is the temperature, \(\Delta S_{\text{sys}} = S_{\text{final}} - S_{\text{initial}} \) is the difference in entropy of the ‘system’ alone, and the work done on the ‘system’ can be by a variety of external agents.

\(\Delta G_{\text{sys}} \leq 0 \) expresses the notion that a process described by the initial and final states of the “system” will not occur spontaneously unless the free energy decreases. When \(\Delta = 0 \) the “system” is in equilibrium. Transferring material between two states of equal Gibbs free energy, though they may differ in structure, as with two phases in equilibrium (liquid \(\leftrightarrow \) vapor), will not involve any net differences in enthalpy or entropy from which useful work can be derived.

The “work” terms most commonly used in biophysics (Katchalsky and Curran, 1964; Klotz, 1967; Morowitsch, 1970) are

Electrical

\[\Psi \Delta q \] (movement of charge against an electric potential)

Chemical gradients

\[\Sigma \mu_i dn_i \] (movement of molecule against a concentration gradient; \(\mu_i = \mu_i^0 + RT \ln C_i \); chemical potential of the ith species)

The “work” terms include all externally wrought changes in the structure of a system, measured in terms of volume, surface area and length. The fixed attributes of the system are the pressure, \(P \), surface tension, \(\sigma \), and tension \(\tau \). It takes work, forces resisted over distances, to bring about these changes. The re-ordering of matter and charge involved in these processes, can be driven by chemical gradients and reactions. The free energy of the system will be changed by the work done on it. This will affect the heat capacity of the system. In the final analysis, this appears as changes in bond energy in the molecules comprising the system or in the intrinsic disorder. An internal combustion engine is a perfect example of system in which a complex chemical liquid is converted to simple gases and heat in a device producing mechanical work. The total free energy available from the bond energy in the molecules, expressed as chemical potentials, balances the net change in heat released and the work produced.

Ludwig Boltzmann proposed a definition of entropy that enables changes in **molecular structure** to be used in calculating free energy changes

\[S = R \ln W \] (Boltzmann’s formula)

where \(R \) is the gas constant (the product of Boltzmann’s constant times Avogadro’s number) and \(W \) is the number of ways in which the elements of a system can be arranged (Hill, 1960). The field of statistical thermodynamics is concerned with a careful evaluation of \(W \) under all sorts of conditions. The entropy of a perfect crystal (\(W_{\text{crystal}} = 1 \)) of argon atoms, for example, is zero at a temperature of absolute zero (we will ignore entropy associated with the zero point energies of quantum mechanics). By introducing a small number of vacancies or imperfections (by decreasing the crystal density) the disorder of the system increases by a calculable amount (see Denbigh, 1971 for a rigorous discussion of the perfect crystal). Vacancies increase the heat capacity of the crystal lattice because they allow atoms to more easily hop about. A cornerstone of information theory is a statement that “information” can be quantified using Boltzmann’s formula. The basic idea is that a system can be completely described in the form of answers to a series of yes or no questions expressed as a string of ones and zeros. Thus, entropy provides a measure of our ignorance of atomic positions, quantifiable as an increase in entropy.

Stretching a rubber band results in its radiant heat in the amount \(-T \Delta S \) because stretching reduces the number of possible ways that the cross-linked polypropylene polymer chains can arrange themselves is \(W_{\text{chain}} \gg 1 \). The un-stretched rubber band in thermal equilibrium with its surroundings is most stable when the polymer chains are least structured!

Rubber elasticity illustrates the idea that contracting polymers absorb heat at constant temperature by increasing the number of degrees of rotational freedom about their bonds. The heat capacity of crystals, on the other hand, has two aspects: volume changes, which allow more degrees of freedom through vacancy creation, and increases in internal energy of the molecules in the lattice. Proteins continuously interconvert enthalpy and entropy in performing work in cells, where the Gibbs free energy is kept well above the minimum by external sources. Without structures such as proteins and lipids that can perform the feat of changing degrees of internal order, life would be impossible at ordinary temperatures. In fact, it appears to be generally true that already-folded proteins lose their ability to function at a temperature below 220 Kelvin (Rasmussen et al., 1992).
the plasma membrane. These protein complexes initiate and catalyze further change within the cell, such as increased protein synthesis, directed cytoplasmic movements, or cell division.

What is remarkable is that the signaling machinery comes together as the process proceeds. The chemically and topologically complex surfaces of interacting proteins select the parts that form signaling complexes at the cell surface. If a different factor is encountered at the surface, some other combination of parts forms, tailored to pass on the requisite signal to the nucleus. Only one combination of parts is selected from the multitude of possibilities, enabling a subtle blending and ordering of cellular responses to an incredible range of external threats and opportunities. At each step in the assembly of these response complexes, protein surfaces must match up in a precise way; unused parts stand in readiness to react to future or concurrent contingencies.

The word “machinery” conjures up many images. After Newton formulated his Laws of Motion, it became fashionable to speak of the universe as a clockwork in which all that has happened, or whatever will happen, is contained in solutions to differential equations. This Laplacean world challenged the concept of free will and made determinism a rude guest in moral dialogues. As a result, Life was held to be separate from, and even in opposition to, the workings of the mechanized world. Living beings were seen as being built on a separate plan. Even as the nature of heat and its role in work-producing chemical reactions became clarified in the 19th Century, it was hard to avoid vitalistic notions of what made cells tick. Cursory, thermodynamics, the physics of heat, held up acceptance of Darwinism, because the Earth was thought to be cooling at too high a rate to allow enough time for life to have developed. Lord Kelvin’s famous resistance to evolutionary ideas was gracefully dropped when he learned that radioactive processes in the Earth’s core could maintain a constant surface temperature for eons (Burchfield, 1975).

All machines consume energy. Biological cells are open thermodynamic systems, meaning that they can exchange energy and matter across their boundaries. Much like the perennial waterfall beloved by philosophers of process, like Whitehead and Bergson, cells can appear unchanging even as their contents remain continually in flux. It was Willard Gibbs’ great distinction to have discovered the laws of chemical equilibrium and the subtle interplay of order and thermal energy in chemical systems. The protein machines operating in biological cells are best analyzed in terms of their consumption of Gibbs free energy, generally in the form of adenosine triphosphate (ATP). It is remarkable that hydrolysis of GTP by “G-proteins” is integral to the activation of internal response networks in response to external signals processed by many transmembrane signaling complexes. A cost must be paid to send a signal. This is a superb example of a “Polyani machine” acting as a gate-keeper or constituting a boundary condition, in this case across the physical surface separating outside from inside.

A Third Principle of structural biology emerges from this analysis, namely that Gibbs free energy must be spent in sorting cellular proteins to produce differences across boundaries. The life of a cell can be broken down into the “economic” process of separating components, say viral shell proteins and RNA, or the proteins involved in passing signals across a membrane, until they are later brought together by transport mechanisms to “self-assemble” into functional complexes. The economist Georgescu-Roegen, in a book of astonishing intellectual virtuosity (Georgescu-Roegen, 1971), tried with some success to unify economics with the physical and biological sciences. Central to his thinking was the concept of “sorting” and “recombining” material and energy resources as the main driving force in economic life. He quite clearly understood the importance of Gibbs free energy stored over hundreds of millions of years in petroleum and coal, and how humankind has used it to separate metals from ores, the core physical process driving economic development.

A PRIMER ON THE HISTORY OF PROTEIN STRUCTURE

When asked what a protein molecule looks like, most of us respond with a vigorous, gesticulating personification of the polypeptide chain coursing through space, describing coils and sheets, and generally folding back upon itself into a sweaty heap. The rigid appearance of helices and sheets gives a misleading picture of the forces stabilizing proteins and the extent of the motions these structures exhibit. For an isolated system at equilibrium, the Gibbs free energy is a minimum. This thermodynamic gemstone provides the currency for an economical description of biophysical processes. In particular, it enables a precise definition of “structural stability” and some clue as to why Nature needs twenty different kinds of amino acid side-chains.

The preoccupation with protein “folds” is the legacy of the victory of the polymer theory over the colloid theory in explaining the mystery of denaturation, or the ease with which proteins can be induced to give up their selective powers. Owing to the pioneering work of Emil Fischer, Jacques Loeb, Linus Pauling, Fred Sanger, Walter Kauzmann, Max Perutz, and others, the principles of protein structure are now mostly understood from the point-of-view of the chemist. Proteins are polymers with any one of 20 naturally occurring amino acid side-chains containing 20 to the 100th power different protein sequences. One of the mysteries of life is why so few protein sequences are found in the biosphere compared with the astronomically large number of possibilities. Is it simply that only a few were selected for during evolution, or are the rules governing how polypeptide chains fold up into three-dimensional structures so restrictive that only a small number of sequences qualify?
How did the modern idea of a protein as a folded polypeptide chain having a specific sequence of amino acid side-chains develop? John Edsall (Edsall, 1962) has provided the perfect jumping off point in an essay that traces the vicissitudes of the idea that proteins are very large molecules. He points out that, even though proteins were crystallized in the last century and were determined to have large molecular weights, there was still a great reluctance to consider them as distinct molecules. Indeed, scientific philosophy continued to entertain serious doubts as to the ultimate reality of atoms (Pais, 1982), as held by the schools of Ernst Mach and Pierre Duhem (Duhem, 1914), much less of molecules.

Nineteenth century biological chemists considered the central mystery to be the process by which enzymes could lose their highly specific properties (“denaturation”) by very gentle treatments. In Edsall’s analysis (Edsall, 1962), the belief that proteins were colloids, self-aggregating masses of heterogeneous peptides, was the prevalent one because it led to plausible explanations for many of the properties of proteins. For example, the variegated surfaces could provide sites for catalysis and safe harbors for the rigid organic structures that carried out the “real” chemistry. Denaturation was simply explained as the colloid losing its grip on the active agent and reaggregating into a non-productive substance. Organic chemists were very reluctant to accept the idea that long chain-like polymers could provide the specificity exhibited by enzymes. Even the great Emil Fischer, who discovered the peptide bond and established the chirality of the natural amino acids, felt that short polymers no longer than twenty amino acids or so could by combination account for the diversity of biological molecules (Fruton, 1972).

Jacques Loeb’s direct attack on the colloid school (Loeb, 1922), resembling in tone the fable of the “Emperor’s New Clothes”, established that proteins are polyelectrolytes. The wild variation in the colligative properties of protein solutions (e.g., osmotic pressure), exhibited such a strong sensitivity to metal ions and their salts that apparently explanations could only be provided in terms of colloidal behavior. Loeb showed that these effects were simply consequences of the inability of large charged proteins to cross semipermeable membranes, resulting in a redistribution of ions across membranes separating the proteins from bulk solvents. Furthermore, he showed that all of the phenomena, discussed in exquisite terminology long since abandoned, could be quantitatively accounted for when the pH was adequately controlled since it is the controlling variable for surface charge on the protein molecules. Ironically, it was a colloid chemist, The Svedberg who produced the clearest evidence that proteins were molecules with distinct molecular weights. The first photographic plates from a centrifuge run on a solution of hemoglobin, surprisingly, showed sharp boundaries for hemoglobin rather than the broad ‘smear’ that would have the distribution of smaller peptides making up the colloid.

Yet, according to Edsall (Edsall, 1962), the majority of chemists doubted whether polymers could achieve the precision displayed by proteolytic enzymes in attacking their substrates. The question became, could a protein alone, without a prosthetic group, catalyze a reaction? The answer was provided by John Northrup whose systematic crystallization of enzymes demonstrated unambiguously that proteins are true molecules (Northrop et al., 1938) with distinct masses and properties. This proof rests on appreciating the Gibbs Phase Rule (Denbigh, 1971). Essentially, Northrup showed that a saturated protein solution was a true phase in equilibrium with the solid crystalline phase. As more protein is added, it cannot dissolve and must contribute mass to the growing crystals. If it does dissolve, then it cannot be pure, and another chemical species must be present. In this way, it was established that protein molecules alone, rather than bound impurities or groups, could be the sole source of the catalytic power found in protein solutions.

The first rule of protein structure was formulated by Linus Pauling who predicted the existence of regular elements of structure (alpha helices, beta sheets, and gamma turns) from a consideration of the implications of the planarity of the peptide bond. Discovered by Fischer at the turn of the century, the peptide bond was shown in the 1930’s to have a planar structure based on Bernal’s determination of the structure of diketopiperazine. Planarity was explained in terms of quantum resonance between the amide and carbonyl groups contributed by each amino acid along the chain. Maximal overlap of electronic orbitals, related to bond strength, occurs when the NH and CO atoms lie in a plane. Pauling reasoned that planar peptide bonds stiffened the polypeptide backbone just enough to enable stable structures to form. Otherwise, if there were three flexible bonds per amino acid, rather than the two present when the peptide bond is fixed, hydrogen bonds between adjacent chains would be too weak to stabilize a distinctly folded polymer structure in the face of the universal tendency of matter to expand into the space of all possibilities (the 2nd Law of Thermodynamics), in this case of the polypeptide chain to take on all rotational angles about its main-chain bonds.

To master structural biology requires familiarity with the history of its development—much like within the world of art—because the questions posed by the early pioneers still linger and color the language we use to describe proteins.
The key to Pauling’s analysis was that each unit of the repeating backbone structure contains both a single hydrogen bond donor and an acceptor. Since the most stable structures are those for which the greatest number of bonds are formed, a repeating pattern stabilized by bonds formed between different units along the chain naturally provides an acceptor for each donor. Thus, two side-by-side polypeptide chains running in opposite directions can bond each other along their lengths as part of a beta-sheet. It is a remarkable fact that these regular structures are possible independently of the exact sequence and chemical nature of the amino acid side-chains, which project out and away from the hydrogen-bonded backbones. This indifference to specific sequence is what allows three-dimensional protein structures having quite different amino acid sequences to be classified according to backbone chain topology.

GIBBS FREE ENERGY: NATURE’S ACCOUNTANT OF ‘PROCESS’

From the point-of-view of a physical chemist, the most remarkable aspect of biology is that energy conversions, principally the production of work (mechanical, osmotic, or electrical) from chemical bond breakage, take place under isothermal conditions. As argued below, there must be a constant interchange of chemical bond energy and entropy within molecules that can undergo order-disorder transitions. For example, the energy released when a bond forms between a solvated metal ion and a protein can bring about changes in the flexibility of some part of the polypeptide chain at the expense of changes in the ordered structure of the solvation sphere. Thus, changes in structure alter the heat capacity of a system, forcing it to radiate or absorb heat energy from the surroundings to maintain a fixed temperature.

Of course, there is a net exudation in the form of broken down molecules (waste) and randomized energy (heat) but, within the organism, steady-state processes take place (memory formation, muscle movements, nerve conduction) without local changes in temperature (Morowitz, 1970). There exists a theoretical apparatus of deceptively simplicity for analyzing and describing processes taking place under isothermal conditions. These tools are called irreversible thermodynamics (Katchalsky and Curran, 1965; Prigogine and Stengers, 1984) and the centerpiece is the Gibbs free energy. To venture into structural neurobiology or physiology without understanding the idea that life is an adaptation of free energy flow through macromolecules is to invite confusion and disappointment (See Box I).

Thermodynamics, the science of what drives the process of change, originated in a commonplace observation that was difficult to explain in terms of Newton’s laws: heat spontaneously flows from a hotter to a cooler object and not the other way (Denbigh, 1971). The first crude steam engines were constructed from simple expanding cylinders. When cooled by small children throwing buckets of water at it, a collapsing cylinder could be used to lift water (via a lever) from flooded coal mines, providing access to desperately needed stores of chemical energy. The children, using water from the mines to cool the cylinders, to get the coal, to heat the cylinder, were the first of the “Maxwell Demons.” Although a few deep thinkers, notably the economist Jevons, worried about the supplies of coal running out, most persons were happy just to keep warm (Georgescu-Roegen, 1971).

Obviously, force production and other physiological processes do not depend upon heat flows through temperature gradients as in simple “heat engines.” Although muscle fibers do lengthen and contract, they do so without large changes in volume. Furthermore, muscle fibers utilize chemical energy from the hydrolysis of ATP, the universal biological fuel, to perform mechanical work at constant temperature. Rather than with volume or temperature changes, it is cyclic changes in the structure of muscle proteins that enable them to transduce chemical free energy into work.

Can a purely physical description of proteins capture our intuitive need to predict or quantify function? Thermodynamics is often said to be irrelevant for analyzing molecular mechanisms in detail since it involves relationships between bulk properties. But this sidesteps the point that Gibbs free energy provides a “plausibility index” that is useful in rooting out non-sensical or purely mechanical models for phenomena that manifestly require a non-equilibrium treatment. Maybe, some day, free energy changes involved in storing and retrieving information from genes and in sorting cellular constituents, will be added to a free energy “cost of living index” and the study of life’s processes will have an economic flavor.

An extreme post-modern structuralist might now say, without fear of ridicule, that proteins do not ‘fold’, a pedestrian view, but rather ‘condense’ to the maximally dense set of side-chain clusters compatible with the sequence. As the condensation ensues, diffusion is not in the three-dimensional space of the solvent, but rather in the one-dimensional space along the polypeptide, which continually writhes upon itself while hydrophobic editing of side-chains takes place (see Box II). Protein factors, such as the chaperonins (Pelham, 1986) might work simply by holding onto the N- and C-terminal ends of the polypeptide while supplying enough free energy to shake the self-repating chain enough to keep it out of local minima. This might explain why a major domain in chaperonins resemble actin molecules in having a strategically-placed hydrolyzable ATP molecule that potentially can mediate changes in protein conformation.

Thus, a protein molecule is a unique object for chemical study—a colloid on a string—a fixed length polymer having a specific sequence of surface-active chemical groups that can aggregate so as to find a minimum Gibbs free energy in an aqueous milieu. The unique colloidal collapse of the polymer places catalytic residues and recognition sites at distinct regions on the surface. The early chemists who struggled with the baffling questions posed by biological enzymes caught a glimpse of the truth with their notion
of achieving specificity through combination, but they considered polymerization to be too uncontrolled, yielding too heterogeneous a mixture, to provide dedicated single macromolecules. The existence of molecular mechanisms to control the ordering of amino acids in heteropolymers was apparently too speculative for any nineteenth century thinker to imagine (Edsall, 1962; Fruton, 1972). The "crystoidal" character of proteins, arising from definite sequences of amino acids, is an endowment only understandable when viewed as the product of a genetically encoded information system.

But an artistic tension, precisely in the sense meant by Langer, is revealed in the composition (Figure 3). We cannot look at a protein structure piecewise, either as bits of structure, or as resolved components of force. Water molecules, squeezed out in the process, invisible to the eye, are as much a part of what presents itself to the mind as the withering polypeptide chain or the aperiodically packed side-chains in the structural core of the protein. And how is the composition held as a piece? Its Gibbs free energy is lower than some other arrangement of parts.

THE IMMUNE SYSTEM: "SELF-NON-SELF" AS A PROBLEM IN ARCHITECTONICS

Polyani’s analysis of biological complexity leads us to examine the question of boundaries between different levels in a hierarchy. In adopting particular folds, protein molecules create unique surfaces out of which boundaries in the living hierarchy are established. One of the most fascinating questions is how an individual animal can distinguish its own proteins from those of foreign invaders. Where is the boundary between “self” and “non-self”? How can it be described in terms of the laws of chemistry? The function of the immune system is to detect and take countermeasures against threats to the health of the organism posed by viruses and bacteria. How do cells "decide" on the basis of molecular interactions to clear the body of an antigen encountered in the bloodstream?

The surfaces of most cells contain molecules of the cellular immune system, such as the major histocompatibility complexes (MHCs), which grip between "Jaws-like" alpha helices small lengths of polypeptide chain (Stern and Wiley, 1994; Stern et al., 1994; Strominger and Wiley, 1995). These peptides are sampled from the collection arising from the ceaseless “grinding up” of a large fraction (perhaps up to 30%) of all newly synthesized proteins into short peptides by maw-like structures called proteasomes. MHC molecules, once loaded...
with peptide, are transported to the surface of the cell where they are presented to receptors on circulating T-cells. T-killer cells are commissioned to pass a life-or-death sentence on the peptide-presenting cells, depending upon the “meaning” carried by the presented peptide. The “boundary” between an individual animal and its pathogenic invaders is thus not one contiguous surface, but rather the set of all cellular surfaces presenting MHC complexes.

A key aspect of this “clonal selection theory of immunology” is that each T-cell recognizes only one MHC-peptide surface. T-cells bearing receptors that could potentially bind MHC-peptide complexes derived from normally occurring cellular proteins are selected against during a prenatal “learning” phase. Before birth, any T-cell that binds to an MHC-peptide complex, presumably presenting only “self” peptides, is killed. After birth, a developmental “switch” is thrown that causes the activation of any surviving T-cell line that successfully binds an MHC-peptide complex. Since there are no “self” recognizing T-cells in circulation after the switch is thrown, owing to clonal selection before birth, only “foreign” peptides, originating from infecting viral or bacterial proteins, are recognized in the context of an MHC surface. Notice the essential role played by molecular “sorting” in establishing the boundary between “self” and “non-self”. Selection and transport of sampled peptides are central mechanisms governing the flow of information from the cell interior to its outer surface, a stunning example of Georgescu-Roegen’s architectonics of economic process. The 19th Century chemists even got part of it right in recognizing that combinations of peptide fragments can generate the diversity needed to explain Life’s contingent responses.

THE PROTEIN CLASSIFICATION PROBLEM

One of the great challenges to protein science, especially now that the human genome has become available, is to apply these general thermodynamic and structural principles to the problem of predicting three-dimensional structures of proteins. One aim of physical chemistry is to predict all states of organization of matter from a knowledge of the forces between molecules (represented as derivatives of potential energies, discovered by extrapolation from simpler systems). The achievement of these goals requires an analytical procedure for calculating the Gibbs free energy for various states of the polypeptide chain and the solvent molecules surrounding it. Stated this way the problem is unlikely to be solved in terms of the atomic interactions of all molecules involved (but see Kono et al., 2000). Why then is there a sense of excitement in the field of structure prediction, and a feeling that “proteomics” will be able to shoulder its load after the genome appears? The reasons are several.

The first is that a useful rule-of-thumb has gained wide currency and computer programs have been written to apply it (Richmond, 1984; Eisenberg and McLachlan, 1986). The idea is that, since the structure of water is extremely sensitive to the properties of surfaces with which it is in contact (water on wax), changes in solvent accessible surface area of aliphatic side-chains during protein-folding should be proportional to the decrease in Gibbs free energy accompanying the formation of the hydrophobic core (Chothia, 1984; See Box II). This simple relationship provides a means for estimating Gibbs free energy changes, without having to calculate the actual changes in the average positions and velocities of the solvent molecules in order to arrive at enthalpy and entropy values separately.

A second path-breaking development is the introduction of “tertiary filters,” a set of computer programs that can be used to determine whether a given sequence of amino acids qualifies the folded protein as a member of some family of structurally-homologous proteins (Bowie et al., 1991). These programs go beyond mere comparisons of location of helices and sheets in the linear sequence of amino acids and incorporate the specific context of each side-chain. This represents an exciting step forward in applying thermodynamic principles (see Box II) to validating proposed structures. It brings closer the day when a gene sequence alone can be used to produce a structural model, provided that at least one representative of the structural class is known to atomic resolution. Atomic detail, particularly at domain/domain or subunit/subunit interfaces, will certainly require more structural data, but essential catalytic residues or recognition sites might be readily located in many instances. The main point is that substantial progress will be made in our ability to predict three-dimensional structures by classification well before the “protein folding problem” is solved. Whewell may have anticipated our point-of-view when he wrote “Classification is the architectonic science, to which Crystallography and the Doctrine of External Characters are subordinate (Whewell, 1857).”

Thus, the reductionist approach is running the risk of being bypassed by taxonomy, a source of biological truth even before Linnaeus. Furthermore, selected-site mutagenesis of proteins, combined with measurements of changes in their heat capacity as they fold is allowing a precise dissection of the free energy changes involved in the folding-condensation process (Matsumura et al., 1988; Fersht et al., 1992; Fersht, 1993) and during protein/protein association. Growth hormone binding to its receptor provides an especially apt example (Clackson et al., 1998; Bass et al., 1991). The idea is that the free energy of proteins in solution can be shifted by changes in pH or the addition of denaturants, such as urea and guanidine hydrochloride. The resulting changes in protein structure can be monitored spectroscopically as equilibrium is approached. When temperature is changed instead of chemical potentials, changes in heat capacity can be resolved into enthalpy and entropy changes.

Finally, our knowledge of the protein folding process is being put to the test by direct design of novel proteins, having amino acid sequences that have not been refined by natural selection (Hecht et al., 1990). A major conclusion from these studies is that it is
FEATURE ARTICLE THE ANATOMICAL RECORD (NEW ANAT.) 209

BOX II: “The hydrophobic effect:” looking at proteins with thermodynamic eyes

The concept of Gibbs free energy can be invoked to explain how the tradeoff between disorder, represented in the entropy of the backbone chain and the surrounding solvent molecules, and order, apparently conferred by hydrogen bonds, salt-bridges, and disulfide links is achieved. Since polar water molecules can interact with the hydrogen bond donors and acceptors along the backbone of the unfolded chain, there is no net gain in stability in forming helices and sheets via hydrogen bonds as the chain folds up. There must be something else that explains how the polypeptide chain eludes the dictates of the 2nd Law of Thermodynamics. That something else is to be found in the chemical differences amongst the 20 amino acid side-chains, which can be charged, neutral, wax-like, polar, or be able to form covalent disulfide bonds.

A folded protein molecule is a very improbable state for a polymer, representing only one set of torsional angles \(W_{\text{chain}} = 1 \) out of a vast multitude. Substituting Boltzmann’s formula into Gibbs equation at equilibrium (\(\Delta S = 0 \)), allows a neat argument (Schulz and Schirmer, 1979) showing that hydrogen-bonding is only marginally effective at stabilizing rather long \(\alpha \)-helices against the pull of entropy in a vacuum at a temperature of 300 kelvin (\(\Delta H_{\text{bonds}} = T \Delta S_{\text{helix}} \)). Unless the peptide bond is assumed planar, thereby freezing out one of the three torsional degrees of freedom along the chain per amino acid, the randomness of the disordered chain overwhelms any tendency to form stable helices or sheets; hydrogen bonds simply are not strong enough to overcome the entropy of the freely-jointed chain (\(W_{\text{helix}} > 1 \)).

According to the quantum theory of radiation, the ‘vacuum’ of outer space contains radiation with associated degrees of freedom (Dyson, 1954) and the disordered energy (“heat”) at any temperature is partitioned between the vacuum radiation and the material structures with which it is in equilibrium. At lower temperatures, helices could form in a vacuum because thermal radiation would predominate over chain entropy in the equitable distribution of heat. Of course, the ordering of protein chains does not take place in a vacuum and the folding process does not involve radiating disordered chain energy into the frozen reaches of space. Some other vehicle must transport heat (“disordered energy”) away from the chain as it takes on a more ordered form (Figure 6).

Indeed, it was Walter Kauzmann’s celebrated paper on “the hydrophobic effect” that ushered in the modern synthesis of the concepts of solution thermodynamics and polypeptide chain flexibility (Kauzmann, 1959). He showed that the most stable state of the polypeptide chain in solution arises when the Gibbs free energy of the complete system, including the contributions arising from the entropy and changes in structure of the solvent water molecules, is a minimum. The essential breakthrough was to recognize that the proper “system” to study was protein plus solvent. The chain adopts a “fold” that, given the constraints of the peptide bond, frees up the greatest number of water molecules to roam freely in solution rather than having to adopt more restricted ‘iceberg-like’ environments in the vicinity of aliphatic side-chains. Therefore, \(WH_{2}O > 0 \) even though \(W_{\text{chain}} > 1 \), with the result that \(\Delta S_{H_{2}O} > 0 \) and the folding process is spontaneous.

The apparent stability of a soluble protein cannot be explained unless the entropic contribution of water molecules is included in Nature’s free energy ledger. Structurally this manifests itself as a partial segregation of hydrophobic, or wax-like hydrocarbon side-chains, into the interior of the protein molecule where they cannot, by virtue of their surface activity, induce local order in solvent water molecules. Thus, the origins of protein stability lie, not necessarily in the strengths of internal chemical interactions, as in the structures of everyday life such as bridges, towers, and walls, but equally in the freedom of water molecules to take on a larger number of arrangements in the surrounding medium. This is the basis for the second rule of protein structure, the “hydrophobic effect”, or entropy stabilization.

The dawn of the “crystallographically correct” synthesis of structure and thermodynamics is heralded by the work of Frederic Richards at Yale, who asks somewhat elliptically why Nature has selected a particular set of hydrophobic amino acids. After all, the most austere application of Kauzmann’s principle only requires that a certain relative number of fatty side-chains be bunched within the compact “folded” structure. Richards takes the analysis one step further by showing that for most proteins the number of packing defects or voids is rather small in the hydrophobic core (Lee and Richards, 1971). This implies that there might be some relatively restricted set of side-chain packing combinations that are to be found in natural protein structures (Ponder and Richards, 1987).
difficult to design sequences that achieve the final degree of close-pack-
ing in the hydrophobic core characteristic of natural proteins (DeGrado et al., 1991). The protein engineers have yet to master the intricate ten-
sion between packing distinctively-
shaped hydrophobic sidechains in the interior of the protein and bending of the polypeptide backbone within al-
lowed limits.

THE FREE ENERGY BOUNDARY

THE ORIGIN OF CELLULAR

TENSION

Viruses typify the value of the fac-
tory metaphor for understanding cel-
ular economics; parts are gathered in
staging areas and then brought to-
er together for assembly processes driven
by ordinary crystallization. The work
is done in the sorting (see Box III). How-
ever, something radically new happens when protein subunits can
carry free energy with them into poly-
merizing structures. Tubulin-GTP
monomers form microtubules. Actin-
ATP monomers form microfilaments.
Both of these filament systems can
generate forces if these subunits can
change shape in converting NTP to
NDP, where N can be adenosine (A) or
guanine (G). These forces result from
a conversion of Gibbs free energy
from nucleotide hydrolysis into length
changes along some direction (say
along x) since \(f = -\frac{dG}{dx} \). The struc-
tural basis for length changes in actin
is the principle of subdomain rota-
tions about hinge and shear points in
the actin molecule (Page et al., 1998)
following the structural paradigm of
viral capsid proteins (see Box III).
These forces can be rather large com-
pared with Brownian forces, 100 pi-
conewtons in the case of actin (Schutt
and Lindberg, 1998). It is curious that
microfilaments and microtubules are
considered by most experts in the field
of “motor proteins” to be merely
“tracks” along which transporting mo-
tors such as myosin and kinesin move.
Since microtubules display highly un-
usual dynamic motions in GTP-con-
taining solutions (Mitchison and
Kirschner, 1984; Desai and Mitchison,
1997) it is natural to wonder what
role they could play in more “engine-
like” mechanisms, where kinesin
and tubulin work cooperatively to
produce forces.
Explaining the existence of symmetric, highly ordered structures in biology (simple viruses, microtubules, muscle fibers) typifies the difficulty of applying the laws of thermodynamics to the living process. After all, it would seem that crystalline order, more characteristic of the inorganic chemistry of inert materials, must represent an unlikely occurrence in the interior of cells, where Brownian motion, the incessant random movement of all bits of matter at ordinary temperatures, is the dominant phenomenon. There are two structural paradigms, tobacco mosaic virus (TMV) and tomato bushy stunt virus (TBSV), two unlikely-sounding characters for the center stage, that exemplify self-assemblying structures. TMV (Bloomer et al., 1978; Namba and Stubbs, 1986) and TBSV (Harrison et al., 1978) have been solved at atomic resolution by x-ray diffraction, and there are many lessons to be learned from them in the isometric viruses (Harrison, 1991; Perutz, 1992).

Bernal deduced from the x-ray diffraction patterns that viruses had multiple copies of single protein subunits arranged according to some rule of regularity, not unlike those found in crystals. The analogy with crystal growth eventually led to the concept of self-assembly; i.e., the ability of a large structure to spontaneously assemble from its components, without the need for templates upon which to grow, or enzymes to direct bond formation. The subunits aggregate by non-covalent interactions (hydrophobic, for example) by which the system minimizes its Gibbs free energy (Janin and Chothia, 1990). Thus, in the case of simple viruses, the design for the whole particle is specified by the direction and strength of ‘bonds’ between subunits; the design of the whole is contained within the parts, an idea advocated by Buckminster Fuller for the blueprint-free assembly of geodesic domes (Caspar and Klug, 1962).

A system composed of identical subunits can most easily minimize its Gibbs free energy by forming symmetric structures. This can be understood by considering the simple case of linear polymerization where each subunit associates end-to-end with two others. If the directions of the ‘bonds’ between these subunits are changed, the linear structure can spiral outwards or inwards depending on the bond angles. For a particular set of angles, the subunits will fold into a helix generating another class of stabilizing contacts between turns; i.e., each subunit now has four or six neighbors in the helix, an idea advocated for the center stage, that exemplify self Assembling structures.

This is an example of Polyani’s notion that events at lower levels in a hierarchical system, in this case the self-association of proteins, entail functional “meaning” at higher levels that cannot be deduced from full knowledge of the lower level. There are a number of functional advantages in having a structure constructed from identical subunits (Caspar and Klug, 1962): (1) genetic efficiency - a particle of the size and composition of TMV could never have its protein shell coded for by the TMV-RNA without some element of repetition in the capsid, (2) error editing - an improperly folded subunit, say one with a misincorporated amino acid, not tailored to fit into the niche presented by the growing particle, would be rejected, and (3) self-assembly - no further protein folding or enzymatic steps are required. The simple repetitive unit that self-assembles into the growing helical ramp has been supplanted by a scheme involving a disk-like assembly intermediate (Butler and Klug, 1978). TMV protein subunits first assemble into disks which have the capacity to nucleate assembly by binding to a specific sequence on TMV-RNA, providing selectivity, while at the same time overcoming the entropic barrier in getting the first few subunits to form a helical nucleus (Namba and Stubbs, 1986). Lowering the pH of a solution of TMV subunits in the absence of RNA results in the assembly of empty helical shells. Caspar (1963) observed that a pair of carboxyl groups exhibited abnormal pHs (near 7.0) in the intact virus, but behaved normally for the disks (near 4.5). Since the carboxyl groups are charged at neutral pH in the disk, he postulated that a ‘negative electrostatic switch’ prevents ‘lockwashing’ into helices. However, when RNA is added to the protein solution, the binding energy of RNA to the disk overcomes the electrostatic repulsion, forcing the carboxyl groups into environments in the helix virus that resemble the abnormally-titrating carboxylate groups in maleic acid (Namba and Stubbs, 1986). It is clear that the TMV assembly process in solution can be fully understood in terms of the system flowing down gradients of Gibbs free energy. The free energy involved in melting stems and loops of the free RNA as it becomes packaged into the virus includes the role of water, bound and free, in the process. The subunits in the disk assembly are less tightly packed than those in the helix, and have more flexible side-chains exposed to solvent. They are entropy stabilized. When RNA becomes encapsulated, the formation of stronger, better-packed, inter-subunit bonds in the (more symmetrical) helical state lowers the free energy of the particle. In vivo, the orchestrated process of separating proteins and nucleic acids into different cellular compartments (via vesicular transport mechanisms) raises the free energy locally, setting the stage for a return to equilibrium that appears as "self-assembly". The driving force for the process, really just a flow down a chemical gradient, is set up with the original work expended in segregating the viral components.

TMV is the paradigm for helically-symmetric particle assembly. Tomato bushy stunt virus (TBSV) is the paradigm for spherical viruses, which are based on icosahedral point group symmetry. Formally, each subunit can be in an identical environment in an icosahedrally-symmetric shell only if it contains exactly 60 subunits, three arranged about each of the 20 three-fold axes. The striking aspect of TBSV is that it contains 180 protein subunits, all with the same amino acid sequences, and therefore the subunits in the TBSV shell cannot all have identical three-dimensional structures (Caspar and Klug, 1963). TMV must fill into ATP different ‘quasi-equivalent’ classes. These deviations from strict symmetry have important biological implications. The three classes of subunit structure found in the intact TBSV capsid derive from two features of the protein (Harrison, 1991). First, the N-terminal 66 residues are highly charged positively and are involved in binding RNA, while the next 35 residues form “arms” that have different degrees of packing order in the shell depending on the local environment. In two of the three “quasi-equivalent” subunits, the arms are disordered. However, every third subunit has an ordered arm that, with its 60 symmetry-related partners, knits the whole particle together. Secondly, there is a hinge between the two major domains of the TBSV subunits that allows them to take up different positions in the viral capsid without relative slippage in the subunit-subunit bonds. This design feature, maintained contacts between variability-linked domains, confers flexibility to the viral shell under conditions mimicking those in the host cell.

The expansion of the shell is thought to be important during the assembly and unpackaging of the virus (Harrison, 1991). The design of TBSV, like TMV, incorporates controlled polypeptide flexibility in two different ways, variable terminal arms and internal hinges, that enable proteins to encapsulate RNA as they move down gradients of Gibbs free energy. The second law of thermodynamics is not violated when all factors are taken into account. These include the work required to keep the components separated before assembling the whole particle, and the entropy of the total energy, TΔS, hydrolysis involved in establishing gradients, and the change of entropy of the system (virus + solvent) as the particle anneals. More complicated viruses, such as poliovirus, use proteolytic cleavage to “trigger” transitions in viral capsids during the assembly process, and other elaborate strategies, but are understandable “mechanisms” in the context of free energy flow.
it moves relative to myosin. The role of the well-known actin-activated myosin ATPase is to catalyze the uptake of ATP on actin and to provide traction points for the crawling actin filaments. This suggests a new “gatekeeping” role for ATPases in controlling the kinetics of biophysical processes, “Polyani machines” operating at boundaries in the time domain. The implications of this new model for studying actin-based movements are many, but one idea is that actin subunits generate forces that can be used to drive enzymes through their catalytic cycles. In the standard theories of enzyme kinetics, it is assumed that binding to the substrate helps to lift the free energy of the enzyme into an activated state and that random Brownian motion ‘kicks the protein’ with sufficient force to bring about the required transitions. Perhaps the free energy of activation (a form of work) can be supplied by attached actin filaments undergoing force-producing length changes. In effect, the actin-rich cell cortex is a “tension bath” analogous to a thermodynamic “heat bath,” but capable of directed vectorial action that enables the enzyme to not only respond more quickly, but to be synchronized to other enzymes elsewhere in the cell and drawing free energy from the same source.

Eukaryotic cells are notable for the broad range of motile activities in which they can engage over the course of their lifetimes. Cell division is certainly the most balletic but on the local scale membrane ruffling and microspike movements probably qualify as the most violent. Neurons and immune cells are especially rich in motile activity (Smith, 1988; Davenport et al., 1993; Matus, 1999). Neurotransmitters, synthesized in the cell soma of motor neurons, are transported to

The actin-rich cell cortex is a “tension bath” analogous to a thermodynamic “heat bath,” but capable of directed vectorial action that enables the enzyme to not only respond more quickly, but to be synchronized to other enzymes elsewhere in the cell and drawing free energy from the same source.

Figure 4. Muscle as a hierarchical system. Muscle cells contain hierarchical arrays of fibers. The basic functional unit of muscle is the sarcomere, which consists of interdigitating arrays of actin and myosin filaments. When a fiber contracts, each of the thousands of sarcomeres arranged end-to-end contract in unison. In this way, the ten micron per second sarcomeric contractions are amplified into meter per second shortenings of the whole fiber. At the molecular level, the actin filaments move along the myosin filaments, powered by the hydrolysis of ATP. The background image of Leonardo Da Vinci reminds us of mankind’s centuries-long search for the secret of animal locomotion. Figure originally appeared in Kreatsoulas et al. (1999).
CONCLUSION

Structural Biology is a system of thought. It is not a simple system. It is an architectonic science because it is concerned with how living systems are built up. To master it requires familiarity with the history of its development—much like within the world of art—because the questions posed by the early pioneers still linger and color the language we use to describe proteins. Statistical thermodynamics is essential in order to understand how structure can be sustained in a micro-world where Brownian fluctuations are the dominant processes. Ultimately, if we are to understand how thoughts and beliefs can be fixed in our minds, we must look to proteins as the material substrates for mental processes and devise theories that recognize their special character as hierarchical structures under tension. Change is possible because we live in a flux of Gibbs free energy, generated in the sun, captured by plants, and parcelled out as fuel to drive the sorting and motile activities of cells.

Architectonics began with Kant (1787) and his preoccupation with the problem of how our minds devise theories about the external world from sense-given information; the structure of our minds limits what we can know of the world (Figure 5). In Kant’s words: “By the term Architectonic I mean the art of constructing a system. Without systematic unity, our knowledge cannot become science; it will be an aggregate, and not a system. Thus Architectonic is the doctrine of the scientific in cognition, and therefore necessarily forms part of our methodology.”

Susanne Langer’s great mentor, Ernst Cassirer, carried Kant’s program forward by seeking the universal metaphorical structures behind language, arts, and mathematics. Although he could never anticipate what kinds of physical structures in the brain could filter sensory data into categories, Cassirer (1957) may have captured the essence of modern thinking about how neurons construct the mind. He wrote in concluding his magnum opus: “We have so far tried to show how the individual symbolic
forms—language, myth, theoretical knowledge—are aspects in the structure of the intelligent organization of reality. Each of them presented us with an independent, architectonic principle, an ideal "structure", or, better, — since we are here never dealing with describing purely static relationships, but rather with exposing dynamic processes—a characteristic way of "structuring" itself. . .". Cassirer's language suits our present purposes because we are concerned with "structuring" itself, but as it occurs at the surfaces of communicating cells. Applied to neurons, the dynamic changes at the tips of dendritic spines are brought about by changes in the architecture of the underlying actin filaments.

There is a strain of modern philosophy that continues the tradition of Cassirer. It is the "hermeneutical school" whose central premise is that our minds build worlds out of historically learned knowledge and fresh sensory experiences. Rather than the fixed categories of cognition imagined by Kant, these philosophers (Gadamer, 1976; Goodman, 1978) posit an infinite plenitude of frames of reference depending on the conversations in which one engages. To understand Structural Biology requires a close study of the theoretical problems that beset its founders, a kind of dialogue with the past reflected in terms like "denaturation", "folding", "self-assembly", "lock-and-key", and "sorting."

Perhaps the highest level of the functional hierarchy is the brain itself and the place where theory-building takes place. The modern cellular theory holds that the combinatorial complexity inherent in networks of billions of neurons connected by thousands of synapses is enough to sort the received sensory streams from the outside world into learned and remembered categories. Whether one believes that the synapses are changeable nodes in a network that encodes concepts (Churchland, 1984), or link up neurons into groups, as in Edelman's theory of neuronal selection (Edelman, 1987), the boundary between our outer and inner worlds is the set of all synaptic surfaces (see Figure 5). The boundary is ever-changing as we encounter new experiences, sift through our memories, form new concepts. In the architectonic view, our minds are written on this surface by microscopic dendritic spines, small actin-rich "Polynami machines" reaching out to connect with axons bearing gifts of precious neurotransmitters, signaling changes in the external world. Actin is thus a prototypical architectonic element: structuring and shaping the synaptic surfaces between communicating neurons, building new worlds from our present experiences and past memories.

ACKNOWLEDGMENTS

This work was supported by grants from The Nancy Lurie Marks Family Foundation (to CES), the National Institutes of Health (GM44038 to CES), the Swedish Cancer Foundation (to UL), and the Swedish Natural Science Research Council. Figure Credits: Figures 1 and 2 were prepared by Constantin Kretzschmar and originally appeared in Kretzschmar et al. (1999). Figures 3, 4, 6 were prepared by Greg C. Ultsch. Figures 5 were prepared by Alex Plakantonakis.

LITERATURE CITED

