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Shaping of gel membrane 
properties by halftone lithography

of Ω(r) at each lattice point according to Eqs. 3
and 4, determining the corresponding value of
flow from the fit of Eq. 2 to the data in Fig. 1H,
and finally setting the size of the dot at that
lattice point according to Eq. 1. Because the
power-law metrics in Eq. 3 diverge or vanish at
the origin, it is necessary to cut out a small re-
gion around the center of each of the two cones.

The shapes adopted by the corresponding gel
sheets (Fig. 2, A to D) are measured by laser scan-
ning confocal fluorescence microscopy (LSCM)
and analyzed as described in the SOM. Each of
the four surfaces shows only small deviations
about an average Gaussian curvature, with the
exception of the regions near the free edges,
where our analysis yields artifactual curvatures
(due to the finite thickness of the gel sheets, the
surface meshing procedure used yields addition-
al points on the edges that do not accurately
reflect the 2D geometries of the sheets). After
excluding regions of the surface within 2h of the
edges to avoid these artifacts, we find the aver-
age Gaussian curvatures of the spherical cap and
saddle to be 6.2 mm−2 and –20.6 mm−2, respec-
tively, with nearly axisymmetric distributions
of curvature (fig. S2A). Both values are in rea-
sonable agreement with the target values, al-
though the tendency of disks with uniform dot
sizes to show slight curvatures (with radii of 2
mm) suggests the presence of slight through-
thickness variations in swelling (see SOM for
details) that may contribute to the observed de-
viations from the programmed curvature. Inter-
estingly, we do not observe a boundary layer
with negative Gaussian curvature around the
edge of the spherical cap as has been reported

for truly smooth metrics (17, 18), possibly re-
flecting the influence of the through-thickness
variations in swelling. For both cones, the av-
erage Gaussian curvatures, excluding regions at
the free edges, are close to zero. Further, Fig. 2E
shows a plot of the deficit angle d measured for
five different cone metrics with power law ex-
ponents −1 ≤ b < 0, which agrees closely with
the programmed value d = −pb.

We next consider metrics of the form

WðrÞ ¼ c½1þ ðr=RÞ2ðn−1Þ&2 ð5Þ

corresponding to Enneper’s minimal surfaces
with n nodes. These surfaces all have zero mean
curvature and so are expected to minimize the
elastic energy for these metrics at vanishing
thickness (18). Although Eq. 5 is axisymmetric,
Enneper's surfaces spontaneously break axial
symmetry by forming n wrinkles. In Fig. 2, G
to J, we demonstrate patterned surfaces with n =
3 to 6, each of which reproduces the targeted
number of wrinkles. As shown in the maps of
curvature in Fig. 2 (and azimuthally averaged
plots in fig. S2B), each surface has small mean
curvature and negative Gaussian curvature that
matches closely with the target profile. For a
given film thickness, increasing n eventually
leads to a saturation in the number of wrinkles,
because the bending energy arising from Gaussian
curvature increases with n (for the films with
h ≈ 7 mm in Fig. 4, a metric with n = 8 yielded
only six wrinkles). However, given the subtle
differences between the metrics plotted in Fig.
2F, the ability to accurately reproduce the pro-
grammed number of wrinkles for n = 3 to 6 is a

strong testament to the fidelity of the metrics
patterned by this technique.

The true power of our approach lies in the
fabrication of nonaxisymmetric swelling pat-
terns. As a simple demonstration, we first con-
sider the problem of how to form a sphere
through growth. For the axisymmetric metric
described in Eq. 4, the maximum value of r/R
to which this metric can be experimentally pat-
terned is restricted by the accessible range of
swelling. In our case, this range is Ωhigh/Ωlow ≈
3.7, limiting the maximum portion of a sphere
that can be obtained to slightly less than half.
Although further improvements in the material
system are likely to increase the available range,
the axisymmetric metric is inherently an ineffi-
cient way to form a sphere, because as one seeks
to go beyond a hemisphere and toward a closed
shape, the required swelling contrast diverges
rapidly. Given access to 2D metrics, however, a
number of well-established conformal mappings
of the sphere onto flat surfaces are known from
the field of map projections. For example, the
Peirce quincuncial projection (27) maps a sphere
of radius R onto a square using the metric
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where sn, cn, and dn are Jacobi elliptic func-
tions, and x and y are the components of r. This
metric still has four cusp-like singularities where
Ω(r) = 0; however, one of its useful properties
as a map projection is that only a small portion

Fig. 2. Halftoned disks
with axisymmetric met-
rics. Patterned sheets pro-
grammed to generate (A)
a piece of saddle surface
(Sa), (B) a cone with an
excess angle (Ce), (C) a
spherical cap (Sp), and
(D) a cone with a deficit
angle (Cd). (Top) 3D re-
constructed images of
swollen hydrogel sheets
and (bottom) top-view
surface plots of Gaussian
curvature. Initial thick-
nesses and disk diame-
ters are 9 and 390 mm,
respectively, although
the apparent thickness
of sheets is enlarged due
to the resolution of the
LSCM. (E) Measured val-
ues of deficit angle d
for cones with five dif-
ferent exponents b (see Eq. 3) (black solid circles) and the programmed
values (blue dashed line). (F) Swelling factors for the target metrics as a
function of normalized radial position on the unswelled disks r/R, with points
plotted at values corresponding to lattice points to indicate the resolu-
tion with which Ω is patterned. (G to J) Patterned sheets programmed to

generate Enneper’s minimal surfaces with n = (G) 3, (H) 4, (I) 5, and (J) 6
wrinkles upon swelling as dictated by Eq. 5. 3D reconstructed images (top)
and top-view surface plots of squared mean curvature H2 and Gaussian
curvature K (bottom). Initial thicknesses and disk diameters are 7 and 390 mm,
respectively.
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of Ω(r) at each lattice point according to Eqs. 3
and 4, determining the corresponding value of
flow from the fit of Eq. 2 to the data in Fig. 1H,
and finally setting the size of the dot at that
lattice point according to Eq. 1. Because the
power-law metrics in Eq. 3 diverge or vanish at
the origin, it is necessary to cut out a small re-
gion around the center of each of the two cones.

The shapes adopted by the corresponding gel
sheets (Fig. 2, A to D) are measured by laser scan-
ning confocal fluorescence microscopy (LSCM)
and analyzed as described in the SOM. Each of
the four surfaces shows only small deviations
about an average Gaussian curvature, with the
exception of the regions near the free edges,
where our analysis yields artifactual curvatures
(due to the finite thickness of the gel sheets, the
surface meshing procedure used yields addition-
al points on the edges that do not accurately
reflect the 2D geometries of the sheets). After
excluding regions of the surface within 2h of the
edges to avoid these artifacts, we find the aver-
age Gaussian curvatures of the spherical cap and
saddle to be 6.2 mm−2 and –20.6 mm−2, respec-
tively, with nearly axisymmetric distributions
of curvature (fig. S2A). Both values are in rea-
sonable agreement with the target values, al-
though the tendency of disks with uniform dot
sizes to show slight curvatures (with radii of 2
mm) suggests the presence of slight through-
thickness variations in swelling (see SOM for
details) that may contribute to the observed de-
viations from the programmed curvature. Inter-
estingly, we do not observe a boundary layer
with negative Gaussian curvature around the
edge of the spherical cap as has been reported

for truly smooth metrics (17, 18), possibly re-
flecting the influence of the through-thickness
variations in swelling. For both cones, the av-
erage Gaussian curvatures, excluding regions at
the free edges, are close to zero. Further, Fig. 2E
shows a plot of the deficit angle d measured for
five different cone metrics with power law ex-
ponents −1 ≤ b < 0, which agrees closely with
the programmed value d = −pb.

We next consider metrics of the form

WðrÞ ¼ c½1þ ðr=RÞ2ðn−1Þ&2 ð5Þ

corresponding to Enneper’s minimal surfaces
with n nodes. These surfaces all have zero mean
curvature and so are expected to minimize the
elastic energy for these metrics at vanishing
thickness (18). Although Eq. 5 is axisymmetric,
Enneper's surfaces spontaneously break axial
symmetry by forming n wrinkles. In Fig. 2, G
to J, we demonstrate patterned surfaces with n =
3 to 6, each of which reproduces the targeted
number of wrinkles. As shown in the maps of
curvature in Fig. 2 (and azimuthally averaged
plots in fig. S2B), each surface has small mean
curvature and negative Gaussian curvature that
matches closely with the target profile. For a
given film thickness, increasing n eventually
leads to a saturation in the number of wrinkles,
because the bending energy arising from Gaussian
curvature increases with n (for the films with
h ≈ 7 mm in Fig. 4, a metric with n = 8 yielded
only six wrinkles). However, given the subtle
differences between the metrics plotted in Fig.
2F, the ability to accurately reproduce the pro-
grammed number of wrinkles for n = 3 to 6 is a

strong testament to the fidelity of the metrics
patterned by this technique.

The true power of our approach lies in the
fabrication of nonaxisymmetric swelling pat-
terns. As a simple demonstration, we first con-
sider the problem of how to form a sphere
through growth. For the axisymmetric metric
described in Eq. 4, the maximum value of r/R
to which this metric can be experimentally pat-
terned is restricted by the accessible range of
swelling. In our case, this range is Ωhigh/Ωlow ≈
3.7, limiting the maximum portion of a sphere
that can be obtained to slightly less than half.
Although further improvements in the material
system are likely to increase the available range,
the axisymmetric metric is inherently an ineffi-
cient way to form a sphere, because as one seeks
to go beyond a hemisphere and toward a closed
shape, the required swelling contrast diverges
rapidly. Given access to 2D metrics, however, a
number of well-established conformal mappings
of the sphere onto flat surfaces are known from
the field of map projections. For example, the
Peirce quincuncial projection (27) maps a sphere
of radius R onto a square using the metric
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where sn, cn, and dn are Jacobi elliptic func-
tions, and x and y are the components of r. This
metric still has four cusp-like singularities where
Ω(r) = 0; however, one of its useful properties
as a map projection is that only a small portion

Fig. 2. Halftoned disks
with axisymmetric met-
rics. Patterned sheets pro-
grammed to generate (A)
a piece of saddle surface
(Sa), (B) a cone with an
excess angle (Ce), (C) a
spherical cap (Sp), and
(D) a cone with a deficit
angle (Cd). (Top) 3D re-
constructed images of
swollen hydrogel sheets
and (bottom) top-view
surface plots of Gaussian
curvature. Initial thick-
nesses and disk diame-
ters are 9 and 390 mm,
respectively, although
the apparent thickness
of sheets is enlarged due
to the resolution of the
LSCM. (E) Measured val-
ues of deficit angle d
for cones with five dif-
ferent exponents b (see Eq. 3) (black solid circles) and the programmed
values (blue dashed line). (F) Swelling factors for the target metrics as a
function of normalized radial position on the unswelled disks r/R, with points
plotted at values corresponding to lattice points to indicate the resolu-
tion with which Ω is patterned. (G to J) Patterned sheets programmed to

generate Enneper’s minimal surfaces with n = (G) 3, (H) 4, (I) 5, and (J) 6
wrinkles upon swelling as dictated by Eq. 5. 3D reconstructed images (top)
and top-view surface plots of squared mean curvature H2 and Gaussian
curvature K (bottom). Initial thicknesses and disk diameters are 7 and 390 mm,
respectively.
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of Ω(r) at each lattice point according to Eqs. 3
and 4, determining the corresponding value of
flow from the fit of Eq. 2 to the data in Fig. 1H,
and finally setting the size of the dot at that
lattice point according to Eq. 1. Because the
power-law metrics in Eq. 3 diverge or vanish at
the origin, it is necessary to cut out a small re-
gion around the center of each of the two cones.

The shapes adopted by the corresponding gel
sheets (Fig. 2, A to D) are measured by laser scan-
ning confocal fluorescence microscopy (LSCM)
and analyzed as described in the SOM. Each of
the four surfaces shows only small deviations
about an average Gaussian curvature, with the
exception of the regions near the free edges,
where our analysis yields artifactual curvatures
(due to the finite thickness of the gel sheets, the
surface meshing procedure used yields addition-
al points on the edges that do not accurately
reflect the 2D geometries of the sheets). After
excluding regions of the surface within 2h of the
edges to avoid these artifacts, we find the aver-
age Gaussian curvatures of the spherical cap and
saddle to be 6.2 mm−2 and –20.6 mm−2, respec-
tively, with nearly axisymmetric distributions
of curvature (fig. S2A). Both values are in rea-
sonable agreement with the target values, al-
though the tendency of disks with uniform dot
sizes to show slight curvatures (with radii of 2
mm) suggests the presence of slight through-
thickness variations in swelling (see SOM for
details) that may contribute to the observed de-
viations from the programmed curvature. Inter-
estingly, we do not observe a boundary layer
with negative Gaussian curvature around the
edge of the spherical cap as has been reported

for truly smooth metrics (17, 18), possibly re-
flecting the influence of the through-thickness
variations in swelling. For both cones, the av-
erage Gaussian curvatures, excluding regions at
the free edges, are close to zero. Further, Fig. 2E
shows a plot of the deficit angle d measured for
five different cone metrics with power law ex-
ponents −1 ≤ b < 0, which agrees closely with
the programmed value d = −pb.

We next consider metrics of the form

WðrÞ ¼ c½1þ ðr=RÞ2ðn−1Þ&2 ð5Þ

corresponding to Enneper’s minimal surfaces
with n nodes. These surfaces all have zero mean
curvature and so are expected to minimize the
elastic energy for these metrics at vanishing
thickness (18). Although Eq. 5 is axisymmetric,
Enneper's surfaces spontaneously break axial
symmetry by forming n wrinkles. In Fig. 2, G
to J, we demonstrate patterned surfaces with n =
3 to 6, each of which reproduces the targeted
number of wrinkles. As shown in the maps of
curvature in Fig. 2 (and azimuthally averaged
plots in fig. S2B), each surface has small mean
curvature and negative Gaussian curvature that
matches closely with the target profile. For a
given film thickness, increasing n eventually
leads to a saturation in the number of wrinkles,
because the bending energy arising from Gaussian
curvature increases with n (for the films with
h ≈ 7 mm in Fig. 4, a metric with n = 8 yielded
only six wrinkles). However, given the subtle
differences between the metrics plotted in Fig.
2F, the ability to accurately reproduce the pro-
grammed number of wrinkles for n = 3 to 6 is a

strong testament to the fidelity of the metrics
patterned by this technique.

The true power of our approach lies in the
fabrication of nonaxisymmetric swelling pat-
terns. As a simple demonstration, we first con-
sider the problem of how to form a sphere
through growth. For the axisymmetric metric
described in Eq. 4, the maximum value of r/R
to which this metric can be experimentally pat-
terned is restricted by the accessible range of
swelling. In our case, this range is Ωhigh/Ωlow ≈
3.7, limiting the maximum portion of a sphere
that can be obtained to slightly less than half.
Although further improvements in the material
system are likely to increase the available range,
the axisymmetric metric is inherently an ineffi-
cient way to form a sphere, because as one seeks
to go beyond a hemisphere and toward a closed
shape, the required swelling contrast diverges
rapidly. Given access to 2D metrics, however, a
number of well-established conformal mappings
of the sphere onto flat surfaces are known from
the field of map projections. For example, the
Peirce quincuncial projection (27) maps a sphere
of radius R onto a square using the metric
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where sn, cn, and dn are Jacobi elliptic func-
tions, and x and y are the components of r. This
metric still has four cusp-like singularities where
Ω(r) = 0; however, one of its useful properties
as a map projection is that only a small portion

Fig. 2. Halftoned disks
with axisymmetric met-
rics. Patterned sheets pro-
grammed to generate (A)
a piece of saddle surface
(Sa), (B) a cone with an
excess angle (Ce), (C) a
spherical cap (Sp), and
(D) a cone with a deficit
angle (Cd). (Top) 3D re-
constructed images of
swollen hydrogel sheets
and (bottom) top-view
surface plots of Gaussian
curvature. Initial thick-
nesses and disk diame-
ters are 9 and 390 mm,
respectively, although
the apparent thickness
of sheets is enlarged due
to the resolution of the
LSCM. (E) Measured val-
ues of deficit angle d
for cones with five dif-
ferent exponents b (see Eq. 3) (black solid circles) and the programmed
values (blue dashed line). (F) Swelling factors for the target metrics as a
function of normalized radial position on the unswelled disks r/R, with points
plotted at values corresponding to lattice points to indicate the resolu-
tion with which Ω is patterned. (G to J) Patterned sheets programmed to

generate Enneper’s minimal surfaces with n = (G) 3, (H) 4, (I) 5, and (J) 6
wrinkles upon swelling as dictated by Eq. 5. 3D reconstructed images (top)
and top-view surface plots of squared mean curvature H2 and Gaussian
curvature K (bottom). Initial thicknesses and disk diameters are 7 and 390 mm,
respectively.
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Helices in plants

How are helices formed?
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rectangular cross-section. The two strips are then glued together
side-by-side along their length. At this stage, the bi-strips are flat
and the red strip is under a uniaxial pre-strain, defined as
x~(L{L’)=L’. Being elastomers, volume conservation requires

that the heights are related by h’~h
ffiffiffiffiffiffiffiffiffiffi
1zx
p

. Then, in the final
operation, the force stretching the ends of the bi-strip is gradually
released, with the ends free to rotate. More details of the
manufacturing and experimental procedures are given in Materials
and Methods.

Upon release, the initially flat bistrips start to bend and twist out
of plane and evolve towards either a helical or hemihelical shape,
depending on the cross-sectional aspect ratio. As indicated by the
images in Fig. 1, when the aspect ratio h=w is small, we observe the
formation of periodic perversions, separating helical segments of
alternating chiralities, whereas when the bi-strips have a large
aspect ratio, they spontaneously twist along their length to form a
regular helix. Significantly, these three-dimensional shapes form
spontaneously and do so irrespective of whether the release is
abrupt or the ends are slowly brought together. Furthermore, it is
also observed that after release, the bi-strip can be stretched

straight again and released many times and each time the same
shape, complete with the same number of perversions, reforms.
Experiments were also performed under water to minimize
gravitational effects and dampen vibrations. Video recordings,
reproduced in File S1, capture the evolution of the 3D shapes,
several transient features including how perversions move along
the bi-strip to form a regular arrangement as well as how an initial
twisting motion is reversed.

The experimental observations indicate that the number of
perversions n is the critical geometric parameter that distinguishes
which shape forms upon release. Assuming that the perversions
are uniformly distributed along the length of the bistrip, the
number that form can be expected to depend on the prestrain
ratio, the cross-sectional aspect ratio and the length of the bi-strip.
Dimensional arguments then suggest that the number is given by:
wn=L~g(x,h=w). To establish how the number of perversions
depends on these variables, a series of experiments were
performed with different values of pre-strain and cross-sectional
aspect ratio. The results of these experiments are shown in the
structural phase diagram in Fig. 3 where the numbers associated
with the symbols indicate the number of perversions observed.
The boundary between the formation of helices and hemihelices is
shown shaded. The data in Fig. 3 indicates that increasing the h=w
ratio drives the strip from the hemihelical configurations to helices.
On the other hand, the prestrain ratio x has only a weak influence
on both the helix-to-hemihelix transition and the number of
perversions. This phase diagram (Fig. 3) was established under
experimental conditions that allowed both ends to freely rotate as
the stretching force was reduced. A similar phase diagram (Fig. S5
in File S1) but notable by the absence of any helices was obtained
upon unloading when the ends were constrained from rotating (see
File S1 for details).

Finite element simulations

Numerical simulations to explore the morphological changes
occurring during the release in the bi-strip system were conducted
using detailed dynamic finite element simulations. In our analysis,

Figure 1. Illustration of a helix (top), a hemihelix with one
perversion marked by an arrow (middle) and a hemihelix with
multiple perversions (bottom). The scale bar is 5 cm, and is the
same for each image. These different shapes were all produced in the
same way as shown in figure 2 with the same value of pre-strain x~1:5
but with decreasing values of the height-to-width ratio of the bi-strip’s
cross-section. L~50cm, w~3mm, h~12,8,2:5mm).
doi:10.1371/journal.pone.0093183.g001

Figure 2. Sequence of operations leading to the spontaneous
creation of hemihelices and helices. Starting with two long
elastomer strips of different lengths, the shorter one is stretched to
be the same length as the other. While the stretching force, P, is
maintained, the two strips are joined side-by-side. Then, as the force is
slowly released, the bi-strip twists and bends to create either a helix or a
hemihelix.
doi:10.1371/journal.pone.0093183.g002

Figure 3. The number of perversions observed as a function of
both the prestrain and the cross-section aspect ratio, h=w. The
data indicates that there is a transition between the formation of helixes
at larger aspect ratios and hemihelices at smaller aspect ratios. The
precise phase boundary cannot be determined with any precision
experimentally and so is shown shaded but there is evidently only a
weak dependence on the value of the pre-strain. In some cases, bistrips
made the same way produce either one or the other of the two
perversion numbers indicated.
doi:10.1371/journal.pone.0093183.g003

Structural Transition from Helices to Hemihelices

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e93183

Filaments that are longer than               ,             
form helices to avoid steric interactions.

L > 2⇡R
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Cucumber tendril climbing via helical coiling

S. J. Gerbode et al., Science 337, 1087 (2012)

Cucumber tendrils 
want to pull 

themselves up above 
other plants in order 
to get more sunlight.
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Helical coiling of cucumber tendril
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fiber ribbon

tendril cross-section

theoretical treatments have incorporated in-
trinsic curvature or differential growth without
addressing its origin or mechanical consequences
(6, 15, 16). Recent studies of tendril anatomy
(17, 18) have provided a new twist by revealing
an interior layer of specialized cells similar to
the stiff, lignified gelatinous fiber (g-fiber) cells
found in reaction wood (19). These cells provide
structural support in reaction wood via tissue
morphosis driven by cell-wall lignification, water
flux, and oriented stiff cellulose microfibrils. The
presence of a similar ribbon-like strip of g-fiber
cells in tendrils suggests that the coiling of the
soft tendril tissuemay be driven by the shaping of
this stiff, internal “fiber ribbon” (18).

We investigated the role of the fiber ribbon
during tendril coiling in both Cucumis sativus
(cucumber) and Echinocystis lobata (wild cu-
cumber) (20). The g-fiber cells, identified in wild
cucumber by using xylan antibodies in (18), are
easily distinguished as a band of morphologically
differentiated cells consistently positioned along
the inner side of the helical tendril that lignify
during coiling (17, 18). In straight tendrils that
have not yet attached to a support (Fig. 1A), a faint
band of immature g-fiber cells is barely visible by
using darkfield microscopy (Fig. 1B), with no
ultraviolet (UV) illumination signature, indicating
the absence of lignification (Fig. 1C). In coiled
tendrils (Fig. 1D), g-fiber cells are clearly visible
(Fig. 1E) and lignified (Fig. 1F). The fiber ribbon
consists of two cell layers, with the ventral layer

on the inside of the helix showing increased lig-
nification relative to the dorsal outer layer (Fig. 1,
G andH), which is consistent with earlier observa-
tions of increased lignification on the stimulated
side of the tendril (17, 18). When a fiber ribbon is
extracted from the coiled tendril by using fungal
carbohydrolases [Driselase (Sigma-Aldrich, St.
Louis, MO)] to break down the nonlignified epi-
dermal tendril tissue (20), it retains the helical
morphology of a coiled tendril, and furthermore,
lengthwise cuts do not change its shape (Fig. 1I
and fig. S2).

These observations suggest that tendril coil-
ing occurs via asymmetric contraction of the fiber
ribbon; the ventral side shrinks longitudinally rel-
ative to the dorsal side, giving the fiber ribbon its
intrinsic curvature. The asymmetric contraction
may be generated by a variety of dorsiventral
asymmetries, including the observed differential
lignification (Fig. 1H), variations in cellulose mi-
crofibril orientation as in reaction wood, or dif-
ferential water affinities. For example, because
lignin is hydrophobic the ventral cells may expel
more water during lignification, driving increased
cell contraction. This would be consistent with
observations of extracted fiber ribbons that pas-
sively shrink and coil even further when dried but
regain their original shape when rehydrated
(movie S2). Dehydrated tendrils also exhibit this
behavior because they are dominated by the stiff
fiber ribbon (movie S3). Together, these facts
suggest that the biophysical mechanism for

tendril coiling is provided by the asymmetric con-
traction of the stiff fiber ribbon, whose resulting
curvature is imposed on the surrounding soft
tendril tissue. The perversions in a doubly sup-
ported tendril follow naturally from the topo-
logical constraint imposed by the prevention of
twist at its ends.

To better understand the origin of curvature in
fiber ribbons, we reconstituted the underlying
mechanism using a physical model composed of
two bonded, differentially prestrained silicone rub-
ber sheets, similar to rubber models for shaping
sheets (21–23). The first silicone sheet was uni-
axially stretched, and an equally thick layer of
silicone sealant was spread onto the stretched
sheet. After the sealant was fully cured, thin strips
were cut along the prestrained direction, yielding
bilayer ribbons (Fig. 2A) with intrinsic curvature
set by the relative prestrain, thickness, and stiff-
ness of the two layers (fig. S3) (20). Like fiber
ribbons, the initially straight physical models spon-
taneously form coiled configurations with two
opposite-handed helices connected by a helical
perversion (Fig. 2A, left).

However, there is an unexpected difference in
mechanical behavior between the physical mod-
els and tendril fiber ribbons. When clamped at
both ends and pulled axially, the physical model
simply unwinds to its original uncoiled state (Fig.
2A and movie S4). In contrast, in fiber ribbons
we observed a counterintuitive “overwinding”
behavior in which the ribbon coils even further

A B

E

G H

C

FD

I

Fig. 1. Tendril coiling via asymmetric contraction. During coiling, a strip of
specialized structural gelatinous fiber cells (the fiber ribbon) becomes lignified
and contracts asymmetrically and longitudinally. (A to C) A straight tendril
that has never coiled (A) lacks lignified g-fiber cells. In the tendril cross
section, darkfield (B) and UV autofluorescence (C) show no lignin signal. (D to
H) In coiled tendrils (D), the fully developed fiber ribbon consists of ∼2 layers
of highly lignified cells extending along the length of the tendril. In the tendril

cross section, darkfield (E) and UV autofluorescence (F) show strong lig-
nification in the fiber ribbon. In (G) and (H), increased magnification reveals
that ventral cells (top left) are more lignified than dorsal cells. (I) The extracted
fiber ribbon retains the helical morphology of the coiled tendril. (Inset) Higher
magnification shows the orientation of g-fiber cells along the fiber ribbon.
Scale bars, (B) and (C) 0.5 mm, (E) and (F) 100 mm, (G) and (H) 10 mm, (I)
1 mm.
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Coiling in older tendrils is due to a thin layer of stiff, lignified 
gelatinous fiber cells, which are also found in wood.

S. J. Gerbode et al., Science 337, 1087 (2012)
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Helical coiling of cucumber tendril
Drying of fibber ribbon

increases coiling
Drying of tendril
increases coiling

Rehydrating of tendril
increases coiling

S. J. Gerbode et al., Science 337, 1087 (2012)

theoretical treatments have incorporated in-
trinsic curvature or differential growth without
addressing its origin or mechanical consequences
(6, 15, 16). Recent studies of tendril anatomy
(17, 18) have provided a new twist by revealing
an interior layer of specialized cells similar to
the stiff, lignified gelatinous fiber (g-fiber) cells
found in reaction wood (19). These cells provide
structural support in reaction wood via tissue
morphosis driven by cell-wall lignification, water
flux, and oriented stiff cellulose microfibrils. The
presence of a similar ribbon-like strip of g-fiber
cells in tendrils suggests that the coiling of the
soft tendril tissuemay be driven by the shaping of
this stiff, internal “fiber ribbon” (18).

We investigated the role of the fiber ribbon
during tendril coiling in both Cucumis sativus
(cucumber) and Echinocystis lobata (wild cu-
cumber) (20). The g-fiber cells, identified in wild
cucumber by using xylan antibodies in (18), are
easily distinguished as a band of morphologically
differentiated cells consistently positioned along
the inner side of the helical tendril that lignify
during coiling (17, 18). In straight tendrils that
have not yet attached to a support (Fig. 1A), a faint
band of immature g-fiber cells is barely visible by
using darkfield microscopy (Fig. 1B), with no
ultraviolet (UV) illumination signature, indicating
the absence of lignification (Fig. 1C). In coiled
tendrils (Fig. 1D), g-fiber cells are clearly visible
(Fig. 1E) and lignified (Fig. 1F). The fiber ribbon
consists of two cell layers, with the ventral layer

on the inside of the helix showing increased lig-
nification relative to the dorsal outer layer (Fig. 1,
G andH), which is consistent with earlier observa-
tions of increased lignification on the stimulated
side of the tendril (17, 18). When a fiber ribbon is
extracted from the coiled tendril by using fungal
carbohydrolases [Driselase (Sigma-Aldrich, St.
Louis, MO)] to break down the nonlignified epi-
dermal tendril tissue (20), it retains the helical
morphology of a coiled tendril, and furthermore,
lengthwise cuts do not change its shape (Fig. 1I
and fig. S2).

These observations suggest that tendril coil-
ing occurs via asymmetric contraction of the fiber
ribbon; the ventral side shrinks longitudinally rel-
ative to the dorsal side, giving the fiber ribbon its
intrinsic curvature. The asymmetric contraction
may be generated by a variety of dorsiventral
asymmetries, including the observed differential
lignification (Fig. 1H), variations in cellulose mi-
crofibril orientation as in reaction wood, or dif-
ferential water affinities. For example, because
lignin is hydrophobic the ventral cells may expel
more water during lignification, driving increased
cell contraction. This would be consistent with
observations of extracted fiber ribbons that pas-
sively shrink and coil even further when dried but
regain their original shape when rehydrated
(movie S2). Dehydrated tendrils also exhibit this
behavior because they are dominated by the stiff
fiber ribbon (movie S3). Together, these facts
suggest that the biophysical mechanism for

tendril coiling is provided by the asymmetric con-
traction of the stiff fiber ribbon, whose resulting
curvature is imposed on the surrounding soft
tendril tissue. The perversions in a doubly sup-
ported tendril follow naturally from the topo-
logical constraint imposed by the prevention of
twist at its ends.

To better understand the origin of curvature in
fiber ribbons, we reconstituted the underlying
mechanism using a physical model composed of
two bonded, differentially prestrained silicone rub-
ber sheets, similar to rubber models for shaping
sheets (21–23). The first silicone sheet was uni-
axially stretched, and an equally thick layer of
silicone sealant was spread onto the stretched
sheet. After the sealant was fully cured, thin strips
were cut along the prestrained direction, yielding
bilayer ribbons (Fig. 2A) with intrinsic curvature
set by the relative prestrain, thickness, and stiff-
ness of the two layers (fig. S3) (20). Like fiber
ribbons, the initially straight physical models spon-
taneously form coiled configurations with two
opposite-handed helices connected by a helical
perversion (Fig. 2A, left).

However, there is an unexpected difference in
mechanical behavior between the physical mod-
els and tendril fiber ribbons. When clamped at
both ends and pulled axially, the physical model
simply unwinds to its original uncoiled state (Fig.
2A and movie S4). In contrast, in fiber ribbons
we observed a counterintuitive “overwinding”
behavior in which the ribbon coils even further

A B

E

G H

C

FD

I

Fig. 1. Tendril coiling via asymmetric contraction. During coiling, a strip of
specialized structural gelatinous fiber cells (the fiber ribbon) becomes lignified
and contracts asymmetrically and longitudinally. (A to C) A straight tendril
that has never coiled (A) lacks lignified g-fiber cells. In the tendril cross
section, darkfield (B) and UV autofluorescence (C) show no lignin signal. (D to
H) In coiled tendrils (D), the fully developed fiber ribbon consists of ∼2 layers
of highly lignified cells extending along the length of the tendril. In the tendril

cross section, darkfield (E) and UV autofluorescence (F) show strong lig-
nification in the fiber ribbon. In (G) and (H), increased magnification reveals
that ventral cells (top left) are more lignified than dorsal cells. (I) The extracted
fiber ribbon retains the helical morphology of the coiled tendril. (Inset) Higher
magnification shows the orientation of g-fiber cells along the fiber ribbon.
Scale bars, (B) and (C) 0.5 mm, (E) and (F) 100 mm, (G) and (H) 10 mm, (I)
1 mm.
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During the lignification of g-fiber cells 
water is expelled, which causes shrinking.

The inside layer is more lignified and 
therefore shrinks more and is also 
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Coiling of tendrils in opposite directions

right-handed
helix

left-handed
helix

perversion

theoretical treatments have incorporated in-
trinsic curvature or differential growth without
addressing its origin or mechanical consequences
(6, 15, 16). Recent studies of tendril anatomy
(17, 18) have provided a new twist by revealing
an interior layer of specialized cells similar to
the stiff, lignified gelatinous fiber (g-fiber) cells
found in reaction wood (19). These cells provide
structural support in reaction wood via tissue
morphosis driven by cell-wall lignification, water
flux, and oriented stiff cellulose microfibrils. The
presence of a similar ribbon-like strip of g-fiber
cells in tendrils suggests that the coiling of the
soft tendril tissuemay be driven by the shaping of
this stiff, internal “fiber ribbon” (18).

We investigated the role of the fiber ribbon
during tendril coiling in both Cucumis sativus
(cucumber) and Echinocystis lobata (wild cu-
cumber) (20). The g-fiber cells, identified in wild
cucumber by using xylan antibodies in (18), are
easily distinguished as a band of morphologically
differentiated cells consistently positioned along
the inner side of the helical tendril that lignify
during coiling (17, 18). In straight tendrils that
have not yet attached to a support (Fig. 1A), a faint
band of immature g-fiber cells is barely visible by
using darkfield microscopy (Fig. 1B), with no
ultraviolet (UV) illumination signature, indicating
the absence of lignification (Fig. 1C). In coiled
tendrils (Fig. 1D), g-fiber cells are clearly visible
(Fig. 1E) and lignified (Fig. 1F). The fiber ribbon
consists of two cell layers, with the ventral layer

on the inside of the helix showing increased lig-
nification relative to the dorsal outer layer (Fig. 1,
G andH), which is consistent with earlier observa-
tions of increased lignification on the stimulated
side of the tendril (17, 18). When a fiber ribbon is
extracted from the coiled tendril by using fungal
carbohydrolases [Driselase (Sigma-Aldrich, St.
Louis, MO)] to break down the nonlignified epi-
dermal tendril tissue (20), it retains the helical
morphology of a coiled tendril, and furthermore,
lengthwise cuts do not change its shape (Fig. 1I
and fig. S2).

These observations suggest that tendril coil-
ing occurs via asymmetric contraction of the fiber
ribbon; the ventral side shrinks longitudinally rel-
ative to the dorsal side, giving the fiber ribbon its
intrinsic curvature. The asymmetric contraction
may be generated by a variety of dorsiventral
asymmetries, including the observed differential
lignification (Fig. 1H), variations in cellulose mi-
crofibril orientation as in reaction wood, or dif-
ferential water affinities. For example, because
lignin is hydrophobic the ventral cells may expel
more water during lignification, driving increased
cell contraction. This would be consistent with
observations of extracted fiber ribbons that pas-
sively shrink and coil even further when dried but
regain their original shape when rehydrated
(movie S2). Dehydrated tendrils also exhibit this
behavior because they are dominated by the stiff
fiber ribbon (movie S3). Together, these facts
suggest that the biophysical mechanism for

tendril coiling is provided by the asymmetric con-
traction of the stiff fiber ribbon, whose resulting
curvature is imposed on the surrounding soft
tendril tissue. The perversions in a doubly sup-
ported tendril follow naturally from the topo-
logical constraint imposed by the prevention of
twist at its ends.

To better understand the origin of curvature in
fiber ribbons, we reconstituted the underlying
mechanism using a physical model composed of
two bonded, differentially prestrained silicone rub-
ber sheets, similar to rubber models for shaping
sheets (21–23). The first silicone sheet was uni-
axially stretched, and an equally thick layer of
silicone sealant was spread onto the stretched
sheet. After the sealant was fully cured, thin strips
were cut along the prestrained direction, yielding
bilayer ribbons (Fig. 2A) with intrinsic curvature
set by the relative prestrain, thickness, and stiff-
ness of the two layers (fig. S3) (20). Like fiber
ribbons, the initially straight physical models spon-
taneously form coiled configurations with two
opposite-handed helices connected by a helical
perversion (Fig. 2A, left).

However, there is an unexpected difference in
mechanical behavior between the physical mod-
els and tendril fiber ribbons. When clamped at
both ends and pulled axially, the physical model
simply unwinds to its original uncoiled state (Fig.
2A and movie S4). In contrast, in fiber ribbons
we observed a counterintuitive “overwinding”
behavior in which the ribbon coils even further

A B

E

G H

C

FD

I

Fig. 1. Tendril coiling via asymmetric contraction. During coiling, a strip of
specialized structural gelatinous fiber cells (the fiber ribbon) becomes lignified
and contracts asymmetrically and longitudinally. (A to C) A straight tendril
that has never coiled (A) lacks lignified g-fiber cells. In the tendril cross
section, darkfield (B) and UV autofluorescence (C) show no lignin signal. (D to
H) In coiled tendrils (D), the fully developed fiber ribbon consists of ∼2 layers
of highly lignified cells extending along the length of the tendril. In the tendril

cross section, darkfield (E) and UV autofluorescence (F) show strong lig-
nification in the fiber ribbon. In (G) and (H), increased magnification reveals
that ventral cells (top left) are more lignified than dorsal cells. (I) The extracted
fiber ribbon retains the helical morphology of the coiled tendril. (Inset) Higher
magnification shows the orientation of g-fiber cells along the fiber ribbon.
Scale bars, (B) and (C) 0.5 mm, (E) and (F) 100 mm, (G) and (H) 10 mm, (I)
1 mm.
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perversion

Ends of the tendril are fixed and 
cannot rotate. This constraints 

the linking number.

Link = Twist + Writhe

Coiling in the same direction 
increases Writhe, which needs to 

be compensated by the twist.

Note: there is no bending energy 
when the curvature of two helices 
correspond to the spontaneous 
curvature due to the differential 

shrinking of fiber.

In order to minimize the twisting 
energy tendrils combine two helical 

coils of opposite handedness
(=opposite Writhe).
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Twist, Writhe and Linking numbers
Ln=Tw+Wr linking number:  total number of turns of a particular end

twist: number of turns due to twisting the beam
Wr writhe:  number of crossings when curve is projected on a plane 
Tw
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Overwinding of tendril coils
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Overwinding of tendril coils

S. J. Gerbode et al., Science 337, 1087 (2012)

Preferred curved state Flattened state

In tendrils the red inner layer 
is much stiffer then the 

outside blue layer.

In rubber models both layers 
have similar stiffness.

High bending energy cost 
associated with stretching 

of the stiff inner layer! 
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st
ud
ie
s
of

te
nd
ri
l
an
at
om

y
(1
7,
18
)h

av
e
pr
ov
id
ed

a
ne
w
tw
is
tb
y
re
ve
al
in
g

an
in
te
ri
or

la
ye
r
of

sp
ec
ia
liz
ed

ce
lls

si
m
ila
r
to

th
e
st
iff
,l
ig
ni
fi
ed

ge
la
tin

ou
s
fi
be
r
(g
-f
ib
er
)c

el
ls

fo
un
d
in
re
ac
tio

n
w
oo
d
(1
9)
.T

he
se
ce
lls

pr
ov
id
e

st
ru
ct
ur
al

su
pp
or
t
in

re
ac
tio

n
w
oo
d
vi
a
tis
su
e

m
or
ph
os
is
dr
iv
en

by
ce
ll-
w
al
ll
ig
ni
fic
at
io
n,
w
at
er

flu
x,
an
d
or
ie
nt
ed

st
iff

ce
llu
lo
se

m
ic
ro
fib

ril
s.
T
he

pr
es
en
ce

of
a
si
m
ila
r
rib

bo
n-
lik
e
st
rip

of
g-
fib

er
ce
lls

in
te
nd
ril
s
su
gg
es
ts
th
at

th
e
co
ili
ng

of
th
e

so
ft
te
nd
ril
tis
su
e
m
ay

be
dr
iv
en

by
th
e
sh
ap
in
g
of

th
is
st
iff
,i
nt
er
na
l“
fib

er
rib

bo
n”

(1
8)
.

W
e
in
ve
st
ig
at
ed

th
e
ro
le

of
th
e
fib

er
rib

bo
n

du
rin

g
te
nd
ril

co
ili
ng

in
bo
th

C
uc
um

is
sa
tiv
us

(c
uc
um

be
r)

an
d
E
ch
in
oc
ys
tis

lo
ba
ta

(w
ild

cu
-

cu
m
be
r)
(2
0)
.T

he
g-
fib

er
ce
lls
,i
de
nt
ifi
ed

in
w
ild

cu
cu
m
be
r
by

us
in
g
xy
la
n
an
tib
od
ie
s
in

(1
8)
,a
re

ea
si
ly
di
st
in
gu
is
he
d
as
a
ba
nd

of
m
or
ph
ol
og
ic
al
ly

di
ff
er
en
tia
te
d
ce
lls

co
ns
is
te
nt
ly

po
si
tio
ne
d
al
on
g

th
e
in
ne
r
si
de

of
th
e
he
lic
al

te
nd
ril

th
at

lig
ni
fy

du
rin

g
co
ili
ng

(1
7,

18
).
In

st
ra
ig
ht

te
nd
ril
s
th
at

ha
ve

no
ty
et
at
ta
ch
ed

to
a
su
pp
or
t(
Fi
g.
1A

),
a
fa
in
t

ba
nd

of
im
m
at
ur
e
g-
fib

er
ce
lls

is
ba
re
ly
vi
si
bl
e
by

us
in
g
da
rk
fie
ld

m
ic
ro
sc
op
y
(F
ig
.
1B

),
w
ith

no
ul
tra
vi
ol
et
(U
V
)i
llu
m
in
at
io
n
si
gn
at
ur
e,
in
di
ca
tin
g

th
e
ab
se
nc
e
of

lig
ni
fic
at
io
n
(F
ig
.
1C

).
In

co
ile
d

te
nd
ril
s
(F
ig
.1
D
),
g-
fib

er
ce
lls

ar
e
cl
ea
rly

vi
si
bl
e

(F
ig
.1
E
)a
nd

lig
ni
fie
d
(F
ig
.1
F)
.T

he
fib

er
rib

bo
n

co
ns
is
ts
of

tw
o
ce
ll
la
ye
rs
,w

ith
th
e
ve
nt
ra
ll
ay
er

on
th
e
in
si
de

of
th
e
he
lix

sh
ow

in
g
in
cr
ea
se
d
lig
-

ni
fic
at
io
n
re
la
tiv
e
to
th
e
do
rs
al
ou
te
rl
ay
er
(F
ig
.1
,

G
an
d
H
),
w
hi
ch

is
co
ns
is
te
nt
w
ith

ea
rli
er
ob
se
rv
a-

tio
ns

of
in
cr
ea
se
d
lig
ni
fic
at
io
n
on

th
e
st
im
ul
at
ed

si
de

of
th
e
te
nd
ril

(1
7,
18
).
W
he
n
a
fib

er
rib
bo
n
is

ex
tra
ct
ed

fr
om

th
e
co
ile
d
te
nd
ril

by
us
in
g
fu
ng
al

ca
rb
oh
yd
ro
la
se
s
[D

ris
el
as
e
(S
ig
m
a-
A
ld
ric
h,

St
.

L
ou
is
,M

O
)]
to
br
ea
k
do
w
n
th
e
no
nl
ig
ni
fie
d
ep
i-

de
rm

al
te
nd
ril

tis
su
e
(2
0)
,
it
re
ta
in
s
th
e
he
lic
al

m
or
ph
ol
og
y
of

a
co
ile
d
te
nd
ril
,a
nd

fu
rth

er
m
or
e,

le
ng
th
w
is
e
cu
ts
do

no
tc
ha
ng
e
its

sh
ap
e
(F
ig
.1

I
an
d
fig

.S
2)
.

T
he
se

ob
se
rv
at
io
ns

su
gg
es
t
th
at

te
nd
ril

co
il-

in
g
oc
cu
rs
vi
a
as
ym

m
et
ric

co
nt
ra
ct
io
n
of
th
e
fib

er
rib

bo
n;
th
e
ve
nt
ra
ls
id
e
sh
rin

ks
lo
ng
itu
di
na
lly

re
l-

at
iv
e
to
th
e
do
rs
al
si
de
,g
iv
in
g
th
e
fib

er
rib

bo
n
its

in
tri
ns
ic

cu
rv
at
ur
e.

T
he

as
ym

m
et
ric

co
nt
ra
ct
io
n

m
ay

be
ge
ne
ra
te
d
by

a
va
rie
ty

of
do
rs
iv
en
tra
l

as
ym

m
et
rie
s,
in
cl
ud
in
g
th
e
ob
se
rv
ed

di
ff
er
en
tia
l

lig
ni
fic
at
io
n
(F
ig
.1
H
),
va
ria
tio
ns

in
ce
llu
lo
se

m
i-

cr
of
ib
ril

or
ie
nt
at
io
n
as

in
re
ac
tio
n
w
oo
d,

or
di
f-

fe
re
nt
ia
l
w
at
er

af
fin

iti
es
.
Fo

r
ex
am

pl
e,

be
ca
us
e

lig
ni
n
is
hy
dr
op
ho
bi
c
th
e
ve
nt
ra
lc
el
ls
m
ay

ex
pe
l

m
or
e
w
at
er
du
rin

g
lig
ni
fic
at
io
n,
dr
iv
in
g
in
cr
ea
se
d

ce
ll
co
nt
ra
ct
io
n.

T
hi
s
w
ou
ld

be
co
ns
is
te
nt

w
ith

ob
se
rv
at
io
ns

of
ex
tra
ct
ed

fib
er

rib
bo
ns

th
at
pa
s-

si
ve
ly
sh
rin

k
an
d
co
il
ev
en

fu
rth

er
w
he
n
dr
ie
d
bu
t

re
ga
in

th
ei
r
or
ig
in
al

sh
ap
e

w
he
n

re
hy
dr
at
ed

(m
ov
ie
S2

).
D
eh
yd
ra
te
d
te
nd
ril
s
al
so

ex
hi
bi
tt
hi
s

be
ha
vi
or

be
ca
us
e
th
ey

ar
e
do
m
in
at
ed

by
th
e
st
iff

fib
er

rib
bo
n
(m

ov
ie

S3
).
To

ge
th
er
,
th
es
e
fa
ct
s

su
gg
es
t
th
at

th
e

bi
op
hy
si
ca
l
m
ec
ha
ni
sm

fo
r

te
nd
ril
co
ili
ng

is
pr
ov
id
ed

by
th
e
as
ym

m
et
ric

co
n-

tra
ct
io
n
of

th
e
st
iff

fib
er

rib
bo
n,

w
ho
se

re
su
lti
ng

cu
rv
at
ur
e
is

im
po
se
d
on

th
e
su
rr
ou
nd
in
g
so
ft

te
nd
ril

tis
su
e.
T
he

pe
rv
er
si
on
s
in

a
do
ub
ly

su
p-

po
rte
d
te
nd
ril

fo
llo
w

na
tu
ra
lly

fr
om

th
e
to
po
-

lo
gi
ca
l
co
ns
tra
in
t
im

po
se
d
by

th
e
pr
ev
en
tio
n
of

tw
is
ta
ti
ts
en
ds
.

To
be
tte
ru
nd
er
st
an
d
th
e
or
ig
in
of
cu
rv
at
ur
e
in

fib
er

rib
bo
ns
,
w
e
re
co
ns
tit
ut
ed

th
e
un
de
rly

in
g

m
ec
ha
ni
sm

us
in
g
a
ph
ys
ic
al
m
od
el
co
m
po
se
d
of

tw
o
bo
nd
ed
,d
iff
er
en
tia
lly

pr
es
tra
in
ed

si
lic
on
e
ru
b-

be
r
sh
ee
ts
,s
im

ila
r
to

ru
bb
er

m
od
el
s
fo
r
sh
ap
in
g

sh
ee
ts
(2
1–
23
).
T
he

fir
st
si
lic
on
e
sh
ee
tw

as
un
i-

ax
ia
lly

st
re
tc
he
d,

an
d
an

eq
ua
lly

th
ic
k
la
ye
r
of

si
lic
on
e
se
al
an
t
w
as

sp
re
ad

on
to

th
e
st
re
tc
he
d

sh
ee
t.
A
fte
rt
he

se
al
an
tw

as
fu
lly

cu
re
d,
th
in
st
rip

s
w
er
e
cu
ta
lo
ng

th
e
pr
es
tra
in
ed

di
re
ct
io
n,
yi
el
di
ng

bi
la
ye
rr
ib
bo
ns

(F
ig
.2
A
)w

ith
in
tri
ns
ic
cu
rv
at
ur
e

se
tb

y
th
e
re
la
tiv
e
pr
es
tra
in
,t
hi
ck
ne
ss
,a
nd

st
iff
-

ne
ss

of
th
e
tw
o
la
ye
rs

(f
ig
.
S3

)
(2
0)
.
L
ik
e
fib

er
rib
bo
ns
,t
he

in
iti
al
ly
st
ra
ig
ht
ph
ys
ic
al
m
od
el
ss
po
n-

ta
ne
ou
sl
y
fo
rm

co
ile
d
co
nf
ig
ur
at
io
ns

w
ith

tw
o

op
po
si
te
-h
an
de
d
he
lic
es

co
nn
ec
te
d
by

a
he
lic
al

pe
rv
er
si
on

(F
ig
.2
A
,l
ef
t).

H
ow

ev
er
,t
he
re
is
an

un
ex
pe
ct
ed

di
ff
er
en
ce

in
m
ec
ha
ni
ca
lb

eh
av
io
r
be
tw
ee
n
th
e
ph
ys
ic
al
m
od
-

el
s
an
d
te
nd
ril

fib
er

rib
bo
ns
.
W
he
n
cl
am

pe
d
at

bo
th

en
ds

an
d
pu
lle
d
ax
ia
lly
,t
he

ph
ys
ic
al
m
od
el

si
m
pl
y
un
w
in
ds

to
its

or
ig
in
al
un
co
ile
d
st
at
e
(F
ig
.

2A
an
d
m
ov
ie

S4
).
In

co
nt
ra
st
,i
n
fib

er
rib

bo
ns

w
e
ob
se
rv
ed

a
co
un
te
rin

tu
iti
ve

“o
ve
rw

in
di
ng
”

be
ha
vi
or

in
w
hi
ch

th
e
rib

bo
n
co
ils

ev
en

fu
rth

er

A
B E G

HC F
D I

Fi
g.

1.
Te
nd
ril

co
ili
ng

vi
a
as
ym

m
et
ric

co
nt
ra
ct
io
n.
Du

rin
g
co
ili
ng
,a

st
rip

of
sp
ec
ia
liz
ed

str
uc
tu
ra
lg
el
at
in
ou
sf
ib
er
ce
lls
(th

e
fib
er
rib

bo
n)
be
co
m
es
lig
ni
fie
d

an
d
co
nt
ra
ct
s
as
ym

m
et
ric
al
ly
an
d
lo
ng
itu
di
na
lly
.(
A
to

C)
A
st
ra
ig
ht

te
nd
ril

th
at

ha
s
ne
ve
r
co
ile
d
(A
)
la
ck
s
lig
ni
fie
d
g-
fib
er

ce
lls
.
In

th
e
te
nd
ril

cr
os
s

se
ct
io
n,
da
rk
fie
ld
(B
)a
nd

UV
au
to
flu
or
es
ce
nc
e
(C
)s
ho
w
no

lig
ni
n
sig

na
l.
(D

to
H
)I
n
co
ile
d
te
nd
ril
s(
D)
,t
he

fu
lly

de
ve
lo
pe
d
fib
er
rib

bo
n
co
ns
ist
so

f∼
2
la
ye
rs

of
hi
gh
ly
lig
ni
fie
d
ce
lls

ex
te
nd
in
g
al
on
g
th
e
le
ng
th
of
th
e
te
nd
ril
.I
n
th
e
te
nd
ril

cr
os
s
se
ct
io
n,

da
rk
fie
ld

(E
)
an
d
UV

au
to
flu
or
es
ce
nc
e
(F
)
sh
ow

st
ro
ng

lig
-

ni
fic
at
io
n
in
th
e
fib
er

rib
bo
n.
In
(G
)a
nd

(H
),
in
cr
ea
se
d
m
ag
ni
fic
at
io
n
re
ve
al
s

th
at
ve
nt
ra
lc
el
ls
(to
p
le
ft)

ar
e
m
or
e
lig
ni
fie
d
th
an

do
rs
al
ce
lls
.(
I)
Th
e
ex
tra

ct
ed

fib
er
rib

bo
n
re
ta
in
st
he

he
lic
al
m
or
ph
ol
og
y
of
th
e
co
ile
d
te
nd
ril
.(
In
se
t)
Hi
gh
er

m
ag
ni
fic
at
io
n
sh
ow

s
th
e
or
ie
nt
at
io
n
of

g-
fib
er

ce
lls

al
on
g
th
e
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er

rib
bo
n.

Sc
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e
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(C
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m
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w
hen

pulled,
adding

turns
on

both
sides

of
the

perversion
(Fig.2A

,right,and
m
ovie

S5).E
ven-

tually
though,

under
high

enough
tension

the
fiberribbon

unw
inds,returning

to
a
flat,uncoiled

state
as

expected
(m

ovie
S5).

Inspired
by

our
observations

of
asym

m
etric

lignification
in

fiber
ribbons,w

hich
suggestthat

the
inner

layer
is

less
extensible,

w
e
added

a
relatively

inextensible
fabric

ribbon
to

the
inside

of
a
coiled

physical
m
odel.

To
m
im

ic
lignified

cells
that

resist
com

pression,
w
e
added

an
in-

com
pressible

copper
w
ire

to
the

exterior
of

the
helix.

T
he

internal
fabric

ribbon
prevents

elon-
gation,w

hereasthe
externalcopperw

ire
prevents

contraction.Together,these
m
odificationsincrease

Fig.3.M
echanicalconsequencesofoverwinding.(A

and
B)

Force
extension

curves
for

one
young

tendrilthatdoes
not

overwind
(red

curves)
and

one
old

tendril
that

exhibits
substantial

overwinding
(blue

curves).
Each

tendril
was

separated
into

a
segm

entcontaining
the

helicalperversion
(dotted

curves
indicate

perverted)
and

a
segm

ent
with

no
perversion

(solid
curves

indicate
clam

ped).The
dim

ension-
less

force
F ∼
is
plotted

against
the

scaled
displacem

ent∆
l

(detailed
definitions

are
available

in
the

supplem
entary

m
aterials)

in
(A).The

difference
in

scaled
force

due
to

the
helicalperversion

∆
f=

f(perverted)−
f(clam

ped)
is
plotted

against∆
lin

(B).The
shaded

range
in
(B)indicatesvariations

in
the

fitted
initial

slope
value.

(C)
Dim

ensionless
force-

extension
curvesare

plotted
fornum

ericalfilam
entswith

B/C
values

1/5
(red),1

(green),5
(blue).(Inset)Log-linear

plot
of

the
sam

e
data.

(D
)
The

difference
in

force
∆
F ∼

=
F ∼(perverted)−

F ∼(clam
ped)highlightsthe

m
echanicaleffect

of
the

helicalperversion.For
B
<
C,the

perversion
always

decreasesthe
force

needed
to
axiallyextend

the
filam

ent;for
B
>
C,the

perversion
initially

decreasesthe
force

needed
but

eventually
increases

this
necessary

force
at

higher
exten-

sions.(Inset)∆
fis

plotted
against∆lfor

directcom
parison

with
the

experim
entaldata.

Fig.
2.

Twistless
springs

unwinding
and

overwinding.(A)A
silicone

twistless
spring

with
lower

bending
stiffness

B
than

twisting
stiffness

C
unwinds

when
pulled,returning

to
itsoriginalflatshape.(B)W

hen
a
fiberribbon

ispulled,it
initiallyoverwinds,adding

one
extra

turn
to
each

side
ofthe

perversion
(num

ber
ofturnsare

indicated
in
white).(C)Overwinding

isinduced
in
the

silicone
m
odel

byadding
a
relativelyinextensible

(undertension)fabricribbon
to
the

interiorof
the

helix
and

an
inextensible

(undercom
pression)copperwire

to
the

exterior.

Together,these
increase

the
ratio

B/C.(D
)W

hen
B/C

>
1,num

ericalsim
ulations

of
elastic

helical
filam

ents
recapitulate

this
overwinding

behavior,
which

is
consistentwith

physicaland
biologicalexperim

ents.(E)Change
in
the

num
ber

ofturnsin
each

helix∆
N
isplotted

versusscaled
displacem

ent∆
lforB/C

values
1/5

(red),1
(green),and

5
(blue).Overwinding

becom
esm

ore
pronounced

with
increasing

B/C.(F)Overwinding
isalso

observed
in
old

tendrils,which
have

dried
and

flattened
into

a
ribbon-like

shape
with

B/C
>
1.Scale

bars,1
cm

.
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Tendrils try to keep the preferred 
curvature when stretched!
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Overwinding of rubber models with an 
additional stiff fabric on the inside layers

w
hen

pulled,
adding

turns
on

both
sides

of
the

perversion
(Fig.2A

,right,and
m
ovie

S5).E
ven-

tually
though,

under
high

enough
tension

the
fiberribbon

unw
inds,returning

to
a
flat,uncoiled

state
as

expected
(m

ovie
S5).

Inspired
by

our
observations

of
asym

m
etric

lignification
in

fiber
ribbons,w

hich
suggestthat

the
inner

layer
is

less
extensible,

w
e
added

a
relatively

inextensible
fabric

ribbon
to

the
inside

of
a
coiled

physical
m
odel.

To
m
im

ic
lignified

cells
that

resist
com

pression,
w
e
added

an
in-

com
pressible

copper
w
ire

to
the

exterior
of

the
helix.

T
he

internal
fabric

ribbon
prevents

elon-
gation,w

hereasthe
externalcopperw

ire
prevents

contraction.Together,these
m
odificationsincrease

Fig.3.M
echanicalconsequencesofoverwinding.(A

and
B)

Force
extension

curves
for

one
young

tendrilthatdoes
not

overwind
(red

curves)
and

one
old

tendril
that

exhibits
substantial

overwinding
(blue

curves).
Each

tendril
was

separated
into

a
segm

entcontaining
the

helicalperversion
(dotted

curves
indicate

perverted)
and

a
segm

ent
with

no
perversion

(solid
curves

indicate
clam

ped).The
dim

ension-
less

force
F ∼
is
plotted

against
the

scaled
displacem

ent∆
l

(detailed
definitions

are
available

in
the

supplem
entary

m
aterials)

in
(A).The

difference
in

scaled
force

due
to

the
helicalperversion

∆
f=

f(perverted)−
f(clam

ped)
is
plotted

against∆
lin

(B).The
shaded

range
in
(B)indicatesvariations

in
the

fitted
initial

slope
value.

(C)
Dim

ensionless
force-

extension
curvesare

plotted
fornum

ericalfilam
entswith

B/C
values

1/5
(red),1

(green),5
(blue).(Inset)Log-linear

plot
of

the
sam

e
data.

(D
)
The

difference
in

force
∆
F ∼

=
F ∼(perverted)−

F ∼(clam
ped)highlightsthe

m
echanicaleffect

of
the

helicalperversion.For
B
<
C,the

perversion
always

decreasesthe
force

needed
to
axiallyextend

the
filam

ent;for
B
>
C,the

perversion
initially

decreasesthe
force

needed
but

eventually
increases

this
necessary

force
at

higher
exten-

sions.(Inset)∆
fis

plotted
against∆lfor

directcom
parison

with
the

experim
entaldata.

Fig.
2.

Twistless
springs

unwinding
and

overwinding.(A)A
silicone

twistless
spring

with
lower

bending
stiffness

B
than

twisting
stiffness

C
unwinds

when
pulled,returning

to
itsoriginalflatshape.(B)W

hen
a
fiberribbon

ispulled,it
initiallyoverwinds,adding

one
extra

turn
to
each

side
ofthe

perversion
(num

ber
ofturnsare

indicated
in
white).(C)Overwinding

isinduced
in
the

silicone
m
odel

byadding
a
relativelyinextensible

(undertension)fabricribbon
to
the

interiorof
the

helix
and

an
inextensible

(undercom
pression)copperwire

to
the

exterior.

Together,these
increase

the
ratio

B/C.(D
)W

hen
B/C

>
1,num

ericalsim
ulations

of
elastic

helical
filam

ents
recapitulate

this
overwinding

behavior,
which

is
consistentwith

physicaland
biologicalexperim

ents.(E)Change
in
the

num
ber

ofturnsin
each

helix∆
N
isplotted

versusscaled
displacem

ent∆
lforB/C

values
1/5

(red),1
(green),and

5
(blue).Overwinding

becom
esm

ore
pronounced

with
increasing

B/C.(F)Overwinding
isalso

observed
in
old

tendrils,which
have

dried
and

flattened
into

a
ribbon-like

shape
with

B/C
>
1.Scale

bars,1
cm

.
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Overwinding of helix with infinite bending modulus 

x

y
z

2r0

p

pi
tc

h

diameter

Mathematical description

~r(s) =

✓
r0 cos(s/�), r0 sin(s/�),

p

2⇡�
s

◆

� =
q
r20 + (p/2⇡)2

Infinite bending modulus fixes the 
helix curvature during stretching

Z

length of the 
helix backboneL

number
of loops

Z = pN = p(L/2⇡�)

K =
r0

r20 + (p/2⇡)2

N =
Z

p

Helix pitch and radius

r0 =
1

K

✓
1� Z2

L2

◆

p =
2⇡Z

KL

r
1� Z2

L2

Number of loops

N =
Z

p
=

KL

2⇡
p

1� (Z/L)2
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Overwinding of helix with infinite bending modulus 

x

y
z

2r0

p

pi
tc

h

diameter

Z

length of the 
helix backboneL

number
of loops

Helix pitch and radius

N =
Z

p

r0 =
1

K

✓
1� Z2

L2

◆

p =
2⇡Z

KL

r
1� Z2

L2

Number of loops

N =
Z

p
=

KL

2⇡
p

1� (Z/L)2

r0K

pK/(2⇡)

Z/L

2⇡N/(KL)

Overwinding
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Spirals in nature
shells beaks claws

horns teeth tusks

What simple mechanism could produce spirals?
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Equiangular (logarithmic) spiral
in polar coordinates radius 

grows exponentially

r(✓) = a✓ = exp

(✓ cot↵)

name logarithmic spiral:

✓ =
ln r

ln a

↵ = 82�

cot↵ = ln a

Ratio between growth 
velocities in the radial and 

azimuthal directions 
velocities is constant! 

cot↵ =

dr

rd✓
=

dr/dt

rd✓/dt
=

vr
v✓
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Equiangular (logarithmic) spiral
↵ = 85� ↵ = 82� ↵ = 80�

↵ = 75� ↵ = 60� ↵ = 45�

↵ ↵ ↵

↵
↵

↵

r(✓) = a✓ = exp

(✓ cot↵)
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Growth of spiral structures

old structure

newly added
material

W

Lin

L
out

New material is added at a constant ratio of growth 
velocities, which produces spiral structure with side 

lengths and the width in the same proportions.

v
out

�t

vin�t

v
out

: v
in

: vW = L
out

: L
in

: W

W + vw�t

Note: growth with constant width (vW=0) produces helices
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Growth of spiral structures

r
in

(✓) = �e✓ cot↵

r
out

(✓) = e✓ cot↵Assume the following spiral profiles 
of the outer and inner layers:

�
=

0.
5,

↵
=

75
�

�
=

0.
5,

↵
=

86
�

�e2⇡ cot↵ > 1 �e2⇡ cot↵ < 1

In some 
shells the 
inner layer 
does not 

grow at all
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3D spirals

3D spiral of ram’s horns 
is due to the triangular 

cross-section of the 
horn, where each side 
grows with a different 

velocity.

va

vb

vc

Shells of mollusks are 
often conical
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Phyllotaxis
Phyllotaxis is classification of leaves on a plant stem

distichous
pattern

leaves alternating 
every 1800

decussate
pattern
pairs of 

leaves at 900

whorled
pattern

3 or more leaves
originating from the 

same node (1800)

alternate
(spiral)
pattern
successive 

leaves at 137.50

maize Coleus sp. Veronicastrum 
virginicum sunflower

http://www.sciteneg.com/PhiTaxis/PHYLLOTAXIS.htm
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Spiral phyllotaxis

time

schematic description 
of leaves arrangement

leaves grow from the 
apical meristem, which 

also gives rise to 
petals, sepals, etc.

leaves

florets
(petals)

floral 
primordia

↵

↵ ⇡ 137.5�
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Parastichy numbers

21 left-handed
spirals

34 right-handed
spirals

Parastichy numbers (21,34)
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Parastichy numbers
spiral

phyllotaxis

multijugate
phyllotaxis

(e.g. 2 new leaves are 
added at the same time)

succulent plant (3,5)

Gymnocalycium (10,16)=2(5,8)
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Parastichy numbers

sunflower (21,34)pince cone (8,13) artichoke (34,55)

aloe (5,8)succulent plant (3,5)aonium (2,3)

Parastichy numbers very often correspond 
to successive Fibonacci numbers!
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Fibonacci numbers
F1 = 1

F2 = 1

Fn = Fn�1 + Fn�2

Sequence of Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Fn =
1p
5
['n � (1� ')n]

Golden ratio ' =
1 +

p
5

2

↵

a+ b

a
=

a

b

a

b
= '

divide perimeter 
in golden ratio

Golden angle

↵ = 360�
b

(a+ b)
=

360�

'2
⇡ 137.5�

In spiral phyllotaxis successive leaves 
grow at approximately Golden angle!



29

Non-Fibonacci parastichy numbers

Statistics for pine trees in Norway
95% Fibonacci numbers
   4% Lucas numbers
   1% not properly formed

Sequence of Lucas numbers
1, 3, 4, 7, 11, 18, 29, 47, 76

Lucas numbers
L1 = 1

L2 = 3

Ln = Ln�1 + Ln�2
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Spiral phyllotaxis

new primordial

Norway spruce
New primordia start growing at the site 
where plant hormone auxin is depleted.

meristem Auxin hormones are released by growing 
primordia. New primordium wants to be as far 
apart as possible from the existing primordia.

Mechanical analog with magnetic repelling particles

S. Douady and Y. Couder, PRL 68, 2098 (1992)

VOLUME 68, NUMBER 13 PH YSICAL R EVI EW LETTERS

Phyllotaxis as a Physical Self-Organized Growth Process

30 MARCH l 992

S. Douady "' and Y. Couder
Laboratoire de Physique Statistique, 24 rue Lhomond, 75231 Paris CEDEL 05, France

(Received 12 November 1991)
A specific crystalline order, involving the Fibonacci series, had until now only been observed in plants

(phyllotaxis). Here, these patterns are obtained both in a physics laboratory experiment aud in a numer-
ical simulation. They arise from self-organization in an iterative process. They are selected depending
on only one parameter describing the successive appearance of new elements, and on initial conditions.
The ordering is explained as due to the system s trend to avoid rational (periodic) organization, thus
leading to a convergence towards the golden mean.

PACS numbers: 87. l0.+e, 05.45.+b, 61.50.Cj

The elements of a plant (leaves, sepals, florets, etc. )
form very regular lattices, with a crystallinelike order. In
the most common arrangement (e.g. , on a sunflower head
or a pinecone), the eye is attracted to conspicuous spirals
(the parastichies) linking each element to its nearest
neighbors. The whole surface is covered with a number i
of parallel spirals running in one direction, and j in the
other. The most striking feature is that (i,j) are nearly
always two consecutive numbers of the Fibonacci series,
[F~]=[1,1,2, 3,5, 8, 13,21,34, . . .] where each new term is
the sum of the two preceding ones. Early works [1-3]
showed that such patterns resulted from the successive
appearance of the elements on a uniquely tightly wound
spiral, called the generative spira/. The basic quantity is
then the divergence y which is the angle between the ra-
dial directions of two consecutive elements. Measure-
ments [3] of divergences on mature plants showed that
they were surprisingly close to the golden section:
=2n(I —r )= 137.5', where r =(—I +J5)/2 is the
golden mean.
A basic hypothesis is that these phyllotactic patterns

result from the conditions of appearance of the primordia
near the tip of the growing shoots (for reviews see Refs.
[4] and [5]). The stem tips (the apical meristems) have
axisymmetric profiles [Fig. 1(a)]. The summit is occu-
pied by a stable region: the apex. The primordia (which
will evolve into leaves, petals, stamens, florets, etc. ) are
first visible as small protrusions at the periphery of the
apex. In the reference frame of the tip, due to the
growth, the existing primordia are advected away from
the apex while new ones continue to be formed [6]. In
botany, it was suggested [7] that a new primordium ap-
pears with a periodicity T near the tip in the largest gap
left between the previous primordia and the apex.
Altogether this forms an iterative process which we

wish to investigate as a dynamical system. To implement
a laboratory experiment and a numerical simulation, we
retained from botany the following characteristics: Iden-
tical elements are generated with a periodicity T at a
given radius Ro from a center in a plane surface [8].
They are radially advected at velocity Vo, and there is a
repulsive interaction between them (so that the new ele-
ment will appear as far as possible from the preceding

(a)

(b)

R, !
I

H

FIG. l. (a) Sketch of the growth in plants. (b) Sketch of
the experimental apparatus.

ones, i.e., in the largest available place). The results can
be interpreted using only one adimensional parameter
G = VoT/Ro.
The experimental system [Fig. 1(b)] consists of a hor-

izontal dish filled with silicone oil and placed in a vertical
magnetic field H(r) created by two coils near the
Helmholtz position. Drops of ferrofluid of equal volume
(i =10 mm ) fall with a tunable periodicity T at the
center of the cell. The drops are polarized by the field
and form small magnetic dipoles, which repel each other
with a force proportional to d (where d is their dis-
tance). These dipoles are advected by a radial gradient
of the magnetic field (from 2.4&&10 A/m at the center to
2.48X10 A/m at the border of the dish), their velocity
V(r) being limited by the viscous friction of the oil. In
order to model the apex, the dish has a small truncated
cone at its center, so that the drop introduced at its tip
quickly falls to its periphery. 6 can be tuned by changing
either the periodicity T or the gradient of H (controlling

2098 1992 The American Physical Society
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FIG. 3. Three photographs (seen from above) of typical
phyllotactic patterns formed by the ferrofluid drops for di}erent
values of the control parameter G. The drops are visible as dark
dots. The tube for the ferrofluid supply partially hides the central
truncated cone. The drops are numbered in their order of
formation. (a) For strong advection, G11, each new drop is
repelled only by the previous one and a distichous mode is
obtained, 8=180°. (b) Below the first symmetry breaking
bifurcation (G10.7) the successive drops move away from each
other with a divergence angle 8=150° (shown between drop three
and four). They define an anti-clockwise generative spiral (dashed
line). The parastichy numbers correspond to (1, 2). (c) For smaller
advection (G10.1) higher order Fibonacci modes are obtained.
Here 81139° and the parastichy numbers are (5, 8).

the first two (see also Figs 6 and 7). This is a symmetry
breaking bifurcation which selects once for all the
direction of winding of the generative spiral. A steady
regime is reached later with a constant divergence 8

[in Fig. 3(b) 8=150° and two parastichies i=1, j=2
are observed]. For smaller T, the new drop becomes
sensitive to the repulsion of three or more previous
drops, and the divergence gets nearer to F. In
Fig. 3(c), 8=139° and the Fibonacci numbers
are i=5, j=8. The spiral mode obtained in this
non-biological system is strikingly similar to a very
usual organization observed in botany.

3.3. DISCUSSION

The observed patterns, in fact, do not depend only
on T, but also on Rc the radius of the circle outside
of which the angular position of the particles is fixed,
and on the advection velocity Vo (controlled by the
magnetic field gradient). The only relevant parameter
is in fact adimensional and defined by G=VoT/Rc . It
is the ratio of the two typical length scales of the
system, one corresponding to the radial displacement
of the elements during one period and the other
defining the size of the central region. This parameter
is directly related to the plastochrone ratio, a, which
was introduced by Richards (1951). This author
showed that the apical growth could be characterized
by the ratio a=rn⌧1/rn of the distance of two
successive primordia to the centre. This ratio is easily
measured on transverse sections of apices. The
relation between a and G is simple because the growth
near the apical region is exponential. As V(r) A r and
V(Ro )=Vo , the distance of a primordium to the
centre at time t is: r=Ro exp(Vot/Ro ) and its velocity
V=Vo exp(Vot/Ro ). The resulting plastochrone ratio
is a=rn⌧1/rn=exp(VoT/Ro ) and our parameter G is
simply: G=Ln(a). This parameter had been used
previously in botanical cases by Meicenheimer (1979)
and by Rutishauser (1982).

The only precise way of measuring G both in plant
growth and in our experiment is to deduce it from
a=rn+1/rn . In plants, obtaining G from measurements
of Vo , T and Ro would be more di.cult and less
precise than deducing it from the geometry of
transverse sections. In our experiment Vo and T are
known with precision, but there is ambiguity on the
choice of Ro because the drops are introduced at
the centre of the cell. If we deduce a value of Ro from
the measured plastochrone ratio we find that, in all
cases, Ro is equal to Rc the radius of the circular zone
out of which there is no further reorganization and
change of 8. This result could have a meaning in
botany. It is well known that the angular positions
of the primordia become rapidly fixed at the apex

decreased, a remarkable evolution of these patterns
takes place. Below a threshold value each new drop
becomes sensitive to the repulsion of the two previous
drops and can no longer remain on the radial line
formed by them. In such a case the third deposited
drop slides to one of either side of the line formed by

Parastichy
numbers (5,8)

magnetic field drives particles 
away from the center

particles repel via magnetic dipol interactions
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Energy minimization between repelling particles

L. Levitov, PRL 66, 224 (1991)
L. Levitov, EPL 14, 533 (1991)

Local energy minima for repelling particlesL. S. LEVITOV: ENERGETIC APPROACH TO PHYLLOTAXIS 535 

1 5 4 3 5  2 1 5  a z l t  3 5 2 s  1 
2 9 7  5 0 3 1 0 7  4 9 5 6 7 0 9  

Fig. 1. - Trajectories represent positions of minima of the energy (2.2) as a function of y; arcs (2.3) 
divide the plane (x, y) into triangles (2.4). Since the pattern is symmetric under x + - x and x + x + 1, 
we show it only for 0.5 < x < 1. Inset: quasi-bifurcation in a triangle [mln, p /q ,  (m + p)/(n + q)],  n c q. 

particular case of (2.3): n = q = 1, p = w. The arcs (2.3) divide the upper half-plane into 
curved triangles with vertices xl, xz, x3 located on the x-axis: 

I np - mq I = 1. P m+P x2=- x3=x10x2=- m 
X] = - n’ q ’  n+q’ (2.4) 

The notation we use below is [mln, plql for the arcs (2.3) and [mln, plq, (m + p)/(n + q)] for 
the triangles (2.4). 

By inspecting fig. 1, one can notice that in all triangles the behaviour of the trajectories of 
the minima is qualitatively similar (see inset of fig. 1). Under decrease of y a trajectory 
enters the triangle [mln, plq, (m + p)/(n + q)] (0 < n < q) through the arc [mln, plq] and then 
exits through the arc [plq,  (m + p)/(n + a)].  In addition, a new trajectory emerges, 
separated from the old one, going out of the triangle through [mln, (m + p)/(n + q)]. This 
configuration (we call it quasi-bifurcation) one finds in every triangle of fig. 1, except for 
[0/1,1/1,1/21 where a true bifurcation occurs: the trajectory splits into two, symmetrically 
with respect to the x = 0.5 line. These two .principal)> trajectories correspond to the states 
dynamically accessible for the system, i.e. to the lattices that can be formed under 
continuous variation of y starting from + CQ. One can observe that the triangles traced by 
the principal trajectories form two sequences: 

( 2 . 5 ~ )  

(2.5b) 

where F,, are Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, .... 
This is exactly the property of phyllotaxis we are tempting to explain. But, instead of 

concentrating on the two principal trajectories, we notice that it is sufficient to explain 
another property of the pattern shared by all trajectories: the arc [plq, (m + p) / (n  + a)] ,  
0 < n < q, chosen to exit from the triangle [mln, plq, (m + p)/(n + q)] corresponds to maximal 

radial spacing betw
een particles

1

1

1

2

2

3

3

5

3

4
4

7

↵
↵

1� ↵

2⇡

Fibonacci numbers

Lucas numbers

golden angle

As the plant is growing
it is gradually reducing the time 
delay between formation of new 
primordia. The spiral patterns 

then go sequentially through all 
the Fibonacci parastichies. 

Occasional excursions to the 
neighbor local minima produce 

Lucas parastichy numbers.
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Further reading


