MAE 545: Lecture 21 (12/8) Helices, spirals and phyllotaxis

Shaping of gel membrane properties by halftone lithography

Helices in plants

How are helices formed?

Differential growth or differential shrinking produces spontaneous curvature

$$
K=\frac{1}{R}=\frac{\epsilon}{W}
$$

$$
\frac{L(1+\epsilon)}{L}=\frac{R+W}{R}
$$

Filaments that are longer than $L>2 \pi R$ form helices to avoid steric interactions.

Helix

Mathematical description

diameter

$$
\vec{r}(s)=\left(r_{0} \cos (s / \lambda), r_{0} \sin (s / \lambda), \frac{p}{2 \pi \lambda} s\right)
$$

Set λ to fix the metric
$\vec{t}(s)=\frac{d \vec{r}}{d s}=\left(-\frac{r_{0}}{\lambda} \sin (s / \lambda), \frac{r_{0}}{\lambda} \cos (s / \lambda), \frac{p}{2 \pi \lambda}\right)$

$$
g=\vec{t} \cdot \vec{t}=\frac{r_{0}^{2}}{\lambda^{2}}+\frac{p^{2}}{4 \pi^{2} \lambda^{2}}=1
$$

$$
\lambda=\sqrt{r_{0}^{2}+(p / 2 \pi)^{2}}
$$

Helix

Mathematical description

$$
\begin{aligned}
\vec{r}(s) & =\left(r_{0} \cos (s / \lambda), r_{0} \sin (s / \lambda), \frac{p}{2 \pi \lambda} s\right) \\
\lambda & =\sqrt{r_{0}^{2}+(p / 2 \pi)^{2}}
\end{aligned}
$$

Tangent and normal vectors

$$
\begin{aligned}
& \vec{t}(s)=\frac{d \vec{r}}{d s}=\left(-\frac{r_{0}}{\lambda} \sin (s / \lambda), \frac{r_{0}}{\lambda} \cos (s / \lambda), \frac{p}{2 \pi \lambda}\right) \\
& \vec{n}_{1}(s)=(-\cos (s / \lambda),-\sin (s / \lambda), 0) \\
& \vec{n}_{2}(s)=\left(\frac{p}{2 \pi \lambda} \sin (s / \lambda),-\frac{p}{2 \pi \lambda} \cos (s / \lambda), \frac{r_{0}}{\lambda}\right)
\end{aligned}
$$

Helix curvatures

$$
\begin{aligned}
& \vec{n}_{1} \cdot \frac{d^{2} \vec{r}}{d s^{2}}=\frac{r_{0}}{\lambda^{2}}=\frac{r_{0}}{r_{0}^{2}+(p / 2 \pi)^{2}}=K \\
& \vec{n}_{2} \cdot \frac{d^{2} \vec{r}}{d s^{2}}=0
\end{aligned}
$$

Cucumber tendril climbing via helical coiling

Cucumber tendrils want to pull themselves up above other plants in order to get more sunlight.

Helical coiling of cucumber tendril

lignified g-fiber cells
Coiling in older tendrils is due to a thin layer of stiff, lignified gelatinous fiber cells, which are also found in wood.

Helical coiling of cucumber tendril

Drying of fibber ribbon increases coiling

Drying of tendril increases coiling

Rehydrating of tendril increases coiling

Coiling of tendrils in opposite directions

Ends of the tendril are fixed and cannot rotate. This constraints the linking number.
Link = Twist + Writhe

Coiling in the same direction increases Writhe, which needs to be compensated by the twist.
In order to minimize the twisting energy tendrils combine two helical coils of opposite handedness (=opposite Writhe).
Note: there is no bending energy when the curvature of two helices correspond to the spontaneous curvature due to the differential shrinking of fiber.

Twist, Writhe and Linking numbers

Ln=Tw+Wr
Tw
Wr
linking number: total number of turns of a particular end twist: number of turns due to twisting the beam writhe: number of crossings when curve is projected on a plane

Toroidal Plectonemic

Toroidal Plectonemic

Overwinding of tendril coils

Old tendrils overwind when stretched.

Rubber model unwinds when stretched.

Overwinding of tendril coils

Preferred curved state

In tendrils the red inner layer is much stiffer then the outside blue layer.

Flattened state

High bending energy cost associated with stretching of the stiff inner layer!

Tendrils try to keep the preferred curvature when stretched!

In rubber models both layers have similar stiffness.

Overwinding of rubber models with an additional stiff fabric on the inside layers

Overwinding of helix with infinite bending modulus

diameter
L length of the helix backbone

Mathematical description

$$
\begin{gathered}
\vec{r}(s)=\left(r_{0} \cos (s / \lambda), r_{0} \sin (s / \lambda), \frac{p}{2 \pi \lambda} s\right) \\
\lambda=\sqrt{r_{0}^{2}+(p / 2 \pi)^{2}} \quad Z=p N=p(L / 2 \pi \lambda)
\end{gathered}
$$

Infinite bending modulus fixes the helix curvature during stretching

$$
K=\frac{r_{0}}{r_{0}^{2}+(p / 2 \pi)^{2}}
$$

Helix pitch and radius

$$
\begin{aligned}
& r_{0}=\frac{1}{K}\left(1-\frac{Z^{2}}{L^{2}}\right) \\
& p=\frac{2 \pi Z}{K L} \sqrt{1-\frac{Z^{2}}{L^{2}}}
\end{aligned}
$$

Number of loops

$$
N=\frac{Z}{p}=\frac{K L}{2 \pi \sqrt{1-(Z / L)^{2}}}
$$

Overwinding of helix with infinite bending modulus

Helix pitch and radius
$r_{0}=\frac{1}{K}\left(1-\frac{Z^{2}}{L^{2}}\right)$
$p=\frac{2 \pi Z}{K L} \sqrt{1-\frac{Z^{2}}{L^{2}}}$

Number of loops

$$
N=\frac{Z}{p}=\frac{K L}{2 \pi \sqrt{1-(Z / L)^{2}}}
$$

Spirals in nature

shells

horns

beaks

teeth

claws

tusks

What simple mechanism could produce spirals?

Equiangular (logarithmic) spiral

$$
\alpha=82^{\circ}
$$

in polar coordinates radius grows exponentially

$$
\begin{gathered}
r(\theta)=a^{\theta}=\exp ^{(\theta \cot \alpha)} \\
\cot \alpha=\ln a
\end{gathered}
$$

name logarithmic spiral:

$$
\theta=\frac{\ln r}{\ln a}
$$

Ratio between growth velocities in the radial and azimuthal directions velocities is constant!

$$
\cot \alpha=\frac{d r}{r d \theta}=\frac{d r / d t}{r d \theta / d t}=\frac{v_{r}}{v_{\theta}}
$$

Equiangular (logarithmic) spiral

$$
\alpha=85^{\circ}
$$

$$
\alpha=82^{\circ}
$$

$$
\alpha=80^{\circ}
$$

$$
\alpha=75^{\circ}
$$

$$
\alpha=60^{\circ}
$$

$\alpha=60^{\circ}$

$$
\alpha=45^{\circ}
$$

Growth of spiral structures

New material is added at a constant ratio of growth velocities, which produces spiral structure with side lengths and the width in the same proportions.

$$
v_{\text {out }}: v_{\text {in }}: v_{W}=L_{\text {out }}: L_{\text {in }}: W
$$

Note: growth with constant width $\left(v_{w}=0\right)$ produces helices

Growth of spiral structures

Assume the following spiral profiles of the outer and inner layers:

$$
\begin{aligned}
r_{\mathrm{out}}(\theta) & =e^{\theta \cot \alpha} \\
r_{\mathrm{in}}(\theta) & =\lambda e^{\theta \cot \alpha}
\end{aligned}
$$

$$
\lambda e^{2 \pi \cot \alpha}>1
$$

3D spirals

3D spiral of ram's horns is due to the triangular cross-section of the horn, where each side grows with a different

Shells of mollusks are often conical velocity.

Phyllotaxis

Phyllotaxis is classification of leaves on a plant stem

distichous pattern
leaves alternating every 180°

Coleus sp.
Veronicastrum virginicum

whorled pattern
3 or more leaves originating from the same node (180°)

alternate (spiral) pattern successive leaves at 137.5^{0}

Spiral phyllotaxis

florets floral
(petals) primordia
schematic description of leaves arrangement

$\alpha \approx 137.5^{\circ}$
leaves grow from the apical meristem, which also gives rise to petals, sepals, etc.

Parastichy numbers

Parastichy numbers $(21,34)$

Parastichy numbers

spiral phyllotaxis

multijugate phyllotaxis

(e.g. 2 new leaves are added at the same time)
succulent plant $(3,5)$

Gymnocalycium $(10,16)=2(5,8)$

Parastichy numbers

aonium $(2,3)$

pince cone $(8,13)$

succulent plant $(3,5)$

aloe $(5,8)$

Parastichy numbers very often correspond to successive Fibonacci numbers!

Fibonacci numbers

$$
\begin{aligned}
& F_{1}=1 \\
& F_{2}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \\
& \hline
\end{aligned}
$$

Golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\varphi^{n}-(1-\varphi)^{n}\right]
$$

Sequence of Fibonacci numbers $1,1,2,3,5,8,13,21,34,55,89,144, \ldots$

Golden angle

$\begin{gathered}\text { divide perimeter } \\ \text { in golden ratio }\end{gathered} \quad \frac{a+b}{a}=\frac{a}{b} \longrightarrow \frac{a}{b}=\varphi$

$$
\alpha=360^{\circ} \frac{b}{(a+b)}=\frac{360^{\circ}}{\varphi^{2}} \approx 137.5^{\circ}
$$

In spiral phyllotaxis successive leaves grow at approximately Golden angle!

Non-Fibonacci parastichy numbers

Statistics for pine trees in Norway 95\% Fibonacci numbers 4\% Lucas numbers
1% not properly formed

Lucas numbers

$$
\begin{aligned}
& L_{1}=1 \\
& L_{2}=3 \\
& L_{n}=L_{n-1}+L_{n-2}
\end{aligned}
$$

Sequence of Lucas numbers 1, 3, 4, 7, 11, 18, 29, 47, 76

Spiral phyllotaxis

Norway spruce

New primordia start growing at the site where plant hormone auxin is depleted.

Auxin hormones are released by growing primordia. New primordium wants to be as far apart as possible from the existing primordia.

new primordial

Mechanical analog with magnetic repelling particles

magnetic field drives particles away from the center

Parastichy numbers $(5,8)$

Energy minimization between repelling particles

Fibonacci numbers Lucas numbers

As the plant is growing it is gradually reducing the time delay between formation of new primordia. The spiral patterns then go sequentially through all the Fibonacci parastichies.
Occasional excursions to the neighbor local minima produce Lucas parastichy numbers.

Local energy minima for repelling particles

golden angle
L. Levitov, PRL 66, 224 (1991)
L. Levitov, EPL 14, 533 (1991)

Further reading

ON GROWTH AND FORM
 The Complete Revised Edition

D'Arcy Wentworth Thompson

